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Abstract
In the field of recommender systems, an important issue within the current state-of-the-art is the inconsistency in item rankings
produced by models initialized with different weight seeds. Despite these models achieve convergence and obtain similar average
performance metrics, their item rankings differ significantly. This phenomenon is quantitavely demonstrated using metrics such as
Rank List Sensitivity (RLS) and Normalized Discounted Cumulative Gain (NDCG) across different model pairs. In this paper, we reaffirm
the existence of this problem and provide new insights by analysing models with common item embeddings but different network
initialization, and different item embeddings but common network initialization, to identify which network components most influence
ranking variability. To address the general issue, we propose an ensemble approach that averages the output of multiple models. Our
ensemble maintains the NDCG of the original model while significantly improving ranking stability: the RLS FRBO@10 value shows an
approximate increase of 30.82%.
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1. Introduction
In the recent years, neural sequential recommender systems
have gained importance due to their ability to model user
behavior over time, providing more accurate and person-
alized recommendations[1, 2]. Unlike traditional recom-
mender systems that consider user preferences in a static
context, neural sequential recommender systems capture
the temporal dynamics of user interactions[3]. This capabil-
ity is central in domains such as e-commerce[4], streaming
services[5], and social media[6]. By analyzing the sequence
of items a user interacts with, these systems can predict
future preferences[7].

Despite the advancements in neural sequential recom-
mender systems, a significant issue persists: the vari-
ability in item rankings generated by models initialized
with different weight seeds[8]. This rank variability is
problematic as it affects the consistency and reliability of
recommendations[9, 10]. Consider the following example
of ranking variability between two different initializations
of a model (tables 1 and 2):

In both initializations, when the models arrive at conver-
gence, Item A is consistently ranked as the top item, which
is expected as it is the correct positive item that the model
should prioritize. However, there is significant variability
in the ranking of the other items.
For instance, Item B is ranked 2nd in Initialization 1 but
drops to 3rd in Initialization 2. Similarly, Item C rises from
3rd in Initialization 1 to 2nd in Initialization 2. This vari-
ability can occur because the loss function used in training
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Table 1
Ranking Initialization 1

Rank Item ID

1 Item A
2 Item B
3 Item C
4 Item D
5 Item E

Table 2
Ranking Initialization 2

Rank Item ID

1 Item A
2 Item C
3 Item B
4 Item E
5 Item D

typically focuses on ensuring the correct positive item is
ranked highest, but does not enforce a specific order for the
remaining negative items.
Even when models converge and predict the same top-
ranked item for a given user sequence, the subsequent items
in the ranking often differ. This inconsistency can affect
tasks that require multiple item predictions simultaneously,
generate relevance-ordered rankings, and impact the ex-
plainability of the model’s recommendations. In particular,
we are referring to these related works that address the sen-
sitivity and robustness of recommender systems[11]. Oh
et al.[9] have shown that recommender systems are highly
sensitive to perturbations in the training data, where even
minor changes can significantly alter the recommendations
for users. They introduce Rank List Sensitivity (RLS) as a
measure to assess this instability and propose the CASPER
method, which identifies minimal perturbations that induce
significant instability. Their experiments reveal that such
perturbations, even if minimal, can drastically impact the
recommendation lists, particularly for users who receive
low-quality recommendations. Similarly, Betello et al.[12]
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investigate the robustness of Sequential Recommender Sys-
tems (SRSs) in the face of training data perturbations. They
identify limitations in existing robustness measures like
Rank-Biased Overlap (RBO) and propose Finite Rank-Biased
Overlap (FRBO), a more suitable metric for finite rankings.
Their findings highlight that perturbations at the end of a
sequence can severely degrade system performance, em-
phasizing the importance of the position of perturbations
within the training data. To address this challenge, this
paper investigates the root causes of ranking variability,
focusing on the role of weight initialisation. We investigate
whether this variability is primarily due to the initialisation
of item embeddings or to the initialisation of the whole net-
work. Through a detailed analysis using metrics such as
RLS and NDCG, we show how different weight initialisation
seeds lead to significant discrepancies in ranking results,
highlighting the need for more robust approaches. As a
solution, we propose the use of ensemble models, which
combine the predictions of multiple models initialized with
different seeds. By averaging the scores of these models, we
can improve the stability of the rankings while maintaining
or even improving the overall performance as measured by
the NDCG.

Our experiments show that ensemble methods effectively
reduce ranking variability. Specifically, models with differ-
ent initialization seeds obtain an average RLS-FRBO@10
of 0.542, while an ensemble of models achieves a score of
0.709. Furthermore, we show that the average NDCG@10
across models with different seeds is 0.129, while an en-
semble approach improves it to 0.132. This results show
that ensemble methods not only reduce variability but also
maintain or even slightly enhance recommendation quality.
Our contributions can be summarized as follows:

• We identified the significant impact of weight ini-
tialization on the variability of item rankings in rec-
ommender systems.

• We proposed the use of ensemble models to reduce
this variability, demonstrating that shared embed-
dings can further improve ranking consistency.

2. Methodology

2.1. Sequential Recommendation Model
The experimental framework employs the SASRec
model[13], a state-of-the-art sequential recommendation
system that uses self-attention mechanisms. The model
processes user interaction sequences in the following
stages:

• Embedding Layer: Items in the user interaction
sequence are transformed into dense vector repre-
sentations in a continuous vector space. Given an
item 𝑖 from the vocabulary of size 𝑁 , the embedding
layer maps it to a dense vector v𝑖 ∈ R𝑑, where 𝑑 is
the embedding dimension:

v𝑖 = E𝑖x𝑖

Here, E𝑖 ∈ R𝑑×𝑁 is the embedding matrix, and x𝑖

is a one-hot encoded vector representing item 𝑖.
• Unidirectional Self-Attention Mechanism: The

SASRec model uses a unidirectional self-attention
mechanism, which focuses on identifying temporal

dependencies in the sequence of user interactions,
considering only the items that precede a given item
in the sequence. The attention score 𝛼𝑖𝑗 for items 𝑖
and 𝑗 (with 𝑗 < 𝑖) is computed as:

𝛼𝑖𝑗 = softmax
(︂
(q𝑖)

⊤k𝑗√
𝑑𝑘

)︂
where q𝑖 = W𝑄v𝑖, k𝑗 = W𝐾v𝑗 , W𝑄, W𝐾 are
learned weight matrices, and 𝑑𝑘 is the dimension of
the key vectors. This mechanism ensures that the
model only attends to past items, maintaining the
sequential nature of the recommendation process.

• Prediction and Ranking: The attention outputs
are used to predict the next item in the sequence,
generating a ranked list of recommendations based
on the user’s interaction history. The output of the
self-attention mechanism yields a context-aware em-
bedding z𝑖 for each item:

z𝑖 =

𝑖−1∑︁
𝑗=1

𝛼𝑖𝑗v𝑗

The next item �̂�𝑡+1 is predicted by applying a soft-
max function over the dot products between z𝑖 and
the embedding matrix E:

�̂�𝑡+1 = argmax
(︁

softmax
(︁
z⊤𝑖 E

)︁)︁
For example, if the user interacted with items [𝑖1, 𝑖2, . . . , 𝑖𝑡],
the model will generate predictions for the next likely item
�̂�𝑡+1 based on the context-aware embeddings. Assume 𝑖1
corresponds to "Book A", 𝑖2 to "Book B", and so on. If the at-
tention mechanism strongly associates "Book B" with "Book
D" in the past, "Book D" might be ranked higher as the next
recommendation �̂�𝑡+1.

For this study, the SASRec model configuration includes
an embedding dimension of 50, a single self-attention head,
and a dropout rate of 0.2, the latter being employed to reduce
the risk of overfitting.

2.2. Dataset
The dataset employed for this study is the MovieLens 1M
(ML-1M) dataset[14], which is a widely recognized bench-
mark for evaluating recommendation algorithms. The
MovieLens 1M dataset contains 1 million ratings provided
by approximately 6,000 users on 4,000 movies. Each user in
the dataset has rated at least 20 movies, making it a dense
dataset that is well-suited for assessing the performance of
sequential recommendation models like SASRec.

2.3. Dataset Preparation
The experimental dataset is curated with careful considera-
tion of the following preprocessing steps:

• Rating Threshold: To ensure meaningful interac-
tion data, only users who have rated at least 5 items,
and items rated by at least 5 users, are retained.

• Data Partitioning: A leave-one-out strategy is
adopted for data splitting. In particular, for each
user, the most recent interaction is used for testing,
while the one before the last is reserved for valida-
tion. The remaining data constitutes the training
set.



• Negative Sampling: Negative sampling is em-
ployed to balance the dataset. During training and
validation, one negative sample per positive instance
is generated, whereas, in the testing phase, all non-
interacted items are considered as negative samples.

2.4. Implementation Details
The training pipeline is meticulously designed to optimize
performance and efficiency:

• Batch Processing: Training is conducted with a
batch size of 128, ensuring the model can efficiently
process substantial data per iteration.

• Model Checkpointing: To capture the most op-
timal model configuration, checkpoints are saved
at intervals. The best model is determined based
on the highest NDCG@10 score observed during
validation.

• Training Setup: The model undergoes training for
up to 200 epochs, utilizing the Adam optimizer. The
objective function is the Binary Cross-Entropy Loss,
which is particularly suited for this task. It is a suit-
able choice because it computes probabilities over
two classes, the positive one and the negatives, since
the model has to guess if the items is or not the next
one in the sequence. Additionally, BCE Loss outputs
probabilities that can be used directly to rank items
by their likelihood of being the next interaction.

2.5. Metrics
The evaluation of model performance is based on several
metrics, addressing both predictive accuracy and robustness.

• Performance Metrics: The primary metric for as-
sessing predictive performance is NDCG (Normal-
ized Discounted Cumulative Gain), calculated at var-
ious cutoffs (5, 10, and 20). NDCG evaluates the
ranking quality of the recommended items, giving
higher importance to items ranked closer to the top
of the list.

• Robustness Metrics: To evaluate the robustness
of the recommender system, we use the Rank List
Sensitivity (RLS) metric.

𝑅𝐿𝑆 =
1

|𝑋test|
∑︁

𝑋𝑘∈𝑋test

sim(𝑅
𝑋𝑘
ℳ , 𝑅

𝑋𝑘
ℳ′)

Here, 𝑋test is the set of test items, 𝑅𝑋𝑘
ℳ and 𝑅

𝑋𝑘
ℳ′

are the rank lists generated by the model ℳ and
a perturbed version ℳ′ for item 𝑋𝑘 . The func-
tion sim(𝐴,𝐵) measures the similarity between two
rank lists 𝐴 and 𝐵. The RLS metric gives an average
similarity score over all test items. RLS measures
how much a model’s recommendations change in
response to small perturbations in the training data.
There are two versions of RLS: the RLS-RBO (Rank-
Biased Overlap) and the RLS-JAC (Jaccard Similar-
ity). RLS-RBO, based on the Rank-Biased Overlap,
computes the similarity between two ranked lists,
but it is tailored for infinite rankings, which can
limit its applicability in finite settings.

𝑅𝐵𝑂(𝐴,𝐵) = (1− 𝑝)
∑︀|𝐼|

𝑑=1 𝑝
𝑑−1 |𝐴[1:𝑑]∩𝐵[1:𝑑]|

𝑑

The Rank-biased Overlap (RBO) measures the sim-
ilarity of orderings between two rank lists 𝐴 and
𝐵. The parameter 𝑝 (typically set to 0.9) controls
the weighting, with higher weights given to the top
ranks. |𝐼| is the total number of items, and 𝐴[1 : 𝑑]
represents the top-𝑑 items in list 𝐴. The RBO score
lies between 0 and 1, where higher values indicate
more similarity between the rank lists. RLS-JAC, on
the other hand, uses the Jaccard similarity coeffi-
cient, focusing on the overlap of items between two
sets without considering their order.

Jaccard =
|𝐴 ∩𝐵|
|𝐴 ∪𝐵|

where 𝐴 and 𝐵 are the sets of items in the two
ranked lists. Given the limitations of RLS-RBO,
we utilize an enhanced version called Finite Rank-
Biased Overlap (FRBO)[12], which is specifically de-
signed for finite-length rankings.

𝐹𝑅𝐵𝑂(𝑋,𝑌 )@𝑘 = 1−𝑝

1−𝑝𝑘

∑︀𝑘
𝑑=1 𝑝

𝑑−1 |𝑋[1:𝑑]∩𝑌 [1:𝑑]|
𝑑

Here, 𝑝 is a parameter that controls the weight as-
signed to ranks, and 𝑋[1 : 𝑑] and 𝑌 [1 : 𝑑] represent
the top-𝑑 items in the two ranked lists being com-
pared.
The RBO value is now normalized to its maximum
possible value, ensuring that the metric reaches 1
when the two rankings are identical.
FRBO addresses the shortcomings of RBO by cor-
rectly handling identical rankings, making it more
suitable for practical evaluation scenarios.
By comparing different versions of RLS, we aim to
capture how robustly the models handle perturba-
tions, ensuring a more reliable assessment of system
stability. For brevity, we will refer to the Jaccard
version of RLS as 𝑅𝐿𝑆𝐽@𝑘, and the FRBO version
of RLS as 𝑅𝐿𝑆𝐹@𝑘 in the subsequent sections and
tables. The notation @k indicates a cutoff at the first
k item of the lists.

3. Research Questions
We aim to answer the following questions:

• RQ1: Does a variation of (an apparently) small factor
influence the robustness of Neural Recommender
Systems?

• RQ2: Do ensemble of models improve the robust-
ness of Neural RecSys?

• RQ3: Can we improve performance through ensem-
bling?

3.1. RQ1
Tables 3 and 4 reveal that models initialized with differ-
ent seeds, which means entirely different weight initializa-
tions, obtain an average Jaccard@10 of 0.505 and an average
FRBO@10 of 0.542, both of which are significantly below
the ideal value of 1.

When initializing only the item embeddings with the
same seed, Tables 5 and 6 show a slight but not significant
increase, getting a value of 0.514 for the Jaccard@10, and
0.547 for the FRBO@10.



Seed 1 Seed 2 𝑅𝐿𝑆𝐽@5 𝑅𝐿𝑆𝐽@10 𝑅𝐿𝑆𝐽@20

42 43 0.465 0.508 0.565
42 44 0.464 0.507 0.563
42 45 0.456 0.498 0.555
43 44 0.464 0.507 0.563
43 45 0.463 0.506 0.561
44 45 0.461 0.504 0.560

AVG ± SD 0.462 ± 0.001 0.505 ± 0.001 0.561 ± 0.001

Table 3
𝑅𝐿𝑆𝐽 computed between models initialized with different seeds,
for different values of 𝑘 (5, 10, and 20).

Seed 1 Seed 2 𝑅𝐿𝑆𝐹@5 𝑅𝐿𝑆𝐹@10 𝑅𝐿𝑆𝐹@20

42 43 0.499 0.546 0.580
42 44 0.497 0.544 0.579
42 45 0.489 0.536 0.571
43 44 0.497 0.544 0.578
43 45 0.495 0.542 0.577
44 45 0.493 0.541 0.575

AVG ± SD 0.495 ± 0.001 0.542 ± 0.001 0.577 ± 0.001

Table 4
𝑅𝐿𝑆𝐹 computed between models initialized with different seeds,
for different values of 𝑘 (5, 10, and 20).

Seeds 1 Seeds 2 𝑅𝐿𝑆𝐽@5 𝑅𝐿𝑆𝐽@10 𝑅𝐿𝑆𝐽@20

43_42 43_45 0.481 0.528 0.581
44_42 44_43 0.469 0.517 0.571
42_43 42_44 0.467 0.515 0.569
42_44 42_45 0.467 0.516 0.569
42_43 42_45 0.466 0.513 0.567
43_44 43_45 0.465 0.513 0.567
43_42 43_45 0.465 0.511 0.566
44_43 44_45 0.462 0.510 0.565
44_42 44_45 0.462 0.511 0.565
45_43 45_42 0.462 0.511 0.565
45_43 45_44 0.463 0.511 0.566
45_42 45_44 0.464 0.512 0.566

AVG ± SD 0.466 ± 0.001 0.514 ± 0.001 0.568 ± 0.001

Table 5
𝑅𝐿𝑆𝐽 computed between models initialized with the same em-
bedding seeds, for different values of 𝑘 (5, 10, and 20). The no-
tation x_y represents a model where the embedding layer is
initialized with seed x, while the rest of the model is initialized
with seed y.

Seeds 1 Seeds 2 𝑅𝐿𝑆𝐹@5 𝑅𝐿𝑆𝐹@10 𝑅𝐿𝑆𝐹@20

43_44 43_42 0.514 0.562 0.596
44_42 44_43 0.502 0.551 0.586
42_43 42_44 0.501 0.549 0.584
42_44 42_45 0.501 0.549 0.584
42_43 42_45 0.498 0.546 0.582
43_44 43_45 0.498 0.547 0.582
43_42 43_45 0.496 0.545 0.580
45_43 45_44 0.494 0.543 0.578
44_42 44_45 0.495 0.543 0.579
44_43 44_45 0.496 0.545 0.580

AVG ± SD 0.499 ± 0.002 0.547 ± 0.001 0.582 ± 0.001

Table 6
𝑅𝐿𝑆𝐹 computed between models initialized with the same em-
bedding seeds, for different values of 𝑘 (5, 10, and 20). The no-
tation x_y represents a model where the embedding layer is
initialized with seed x, while the rest of the model is initialized
with seed y.

Instead, initializing the rest of the network with the same
seed but using different embedding seeds, leads to a signifi-
cant improvement: in Tables 7 and 8 we observe an value
of 0.541 for the Jaccard@10 and 0.575 for the FRBO@10.

Seeds 1 Seeds 2 𝑅𝐿𝑆𝐽@5 𝑅𝐿𝑆𝐽@10 𝑅𝐿𝑆𝐽@20

43_44 42_44 0.461 0.507 0.564
44_42 43_42 0.467 0.515 0.569
44_43 42_43 0.465 0.513 0.567
42_43 45_43 0.485 0.533 0.586
42_44 45_44 0.481 0.529 0.582
43_45 44_45 0.494 0.542 0.594
44_45 42_45 0.503 0.550 0.602
43_45 42_45 0.513 0.561 0.612
43_42 45_42 0.510 0.557 0.609
44_42 45_42 0.516 0.564 0.614
44_43 45_43 0.511 0.558 0.610
43_44 45_44 0.518 0.565 0.616

AVG ± SD 0.494 ± 0.006 0.541 ± 0.006 0.594 ± 0.005

Table 7
𝑅𝐿𝑆𝐽 computed between models initialized with same rest of
the network seeds for different values of 𝑘 (5, 10, and 20). The
notation x_y represents a model where the embedding layer is
initialized with seed x, while the rest of the model is initialized
with seed y.

Seeds 1 Seeds 2 𝑅𝐿𝑆𝐹@5 𝑅𝐿𝑆𝐹@10 𝑅𝐿𝑆𝐹@20

43_44 42_44 0.501 0.546 0.581
44_42 43_42 0.505 0.551 0.585
44_43 42_43 0.502 0.549 0.583
42_43 45_43 0.522 0.568 0.602
42_44 45_44 0.517 0.564 0.598
43_45 44_45 0.529 0.575 0.609
44_45 42_45 0.537 0.583 0.617
43_45 42_45 0.546 0.593 0.626
43_42 45_42 0.543 0.590 0.623
44_42 45_42 0.549 0.595 0.628
44_43 45_43 0.544 0.591 0.624
43_44 45_44 0.551 0.597 0.630

AVG ± SD 0.529 ± 0.005 0.575 ± 0.005 0.609 ± 0.005

Table 8
𝑅𝐿𝑆𝐹 computed between models initialized with same rest of
the network seed, for different values of 𝑘 (5, 10, and 20). The
notation x_y represents a model where the embedding layer is
initialized with seed x, while the rest of the model is initialized
with seed y.

These results suggest that embedding initialization has a
limited impact on the final model performance and resulting
rankings. We therefore aim to investigate the relationship
between two final trained embedding spaces.

3.1.1. Investigation of Embedding Spaces

To explore the relationship between embeddings from dif-
ferent models, we applied a linear transformation to map
the embeddings from one model to another, followed by a
visualization using Principal Component Analysis (PCA).
This analysis aims to provide insights into how well the
embeddings from different models align after the transfor-
mation.

The experimental procedure involved the following steps:

1. Embeddingmatrices: 𝑋 and 𝑌 are the embedding
matrices of the first and second models, respectively,
each with a shape of 𝑁 × 𝑑.

2. Fitting a Linear Regression Model: We use a
linear regression model to estimate a transformation
matrix 𝑊 that maps the embeddings from Model 1
to those of Model 2:

𝑌 = 𝑋 ·𝑊

where 𝑌 is the transformed embeddings obtained
from Model 1 that should match those of Model 2.



3. Dimensionality Reduction with PCA: To visual-
ize the embeddings, we reduce their dimensionality
using Principal Component Analysis (PCA). Both the
transformed embeddings 𝑌 and the original embed-
dings 𝑌 are projected into a 2D space by retaining
the first two principal components:

𝑌 PCA = PCA(𝑌 ) 𝑌PCA = PCA(𝑌 )

4. Visualization: We use scatter plots to visualize the
relationship between the transformed and the orig-
inal embeddings, for each PCA component. A red
dashed line representing the bisector (𝑦 = 𝑥) is in-
cluded in both plots to visually assess the alignment
of the components.

Figure 1: Plot of the PCA components of the original embeddings
of Model 2 and the transformed embeddings.

Fig. 1 reveals a strong alignment between the transformed
embeddings and the original embeddings from Model 2, as
the points are closely distributed along the bisector. This
suggests that the linear transformation was highly effective
in mapping the embeddings from Model 1 to the embedding
space of Model 2. This finding implies that the embedding
layers converge to a similar space, that is different from the
others apart from a linear transformation. Assuming that
the transformation matrix W has full rank, it represents an
endomorphism, meaning that W is invertible. This implies
that the attention mechanism, which applies linear transfor-
mations as described in Section 2.1, can effectively learn to
align the embeddings, regardless of the specific embedding
space to which the layers converge.

As a result, we argue that the position to which the embed-
ding converges is almost independent of the initialization
seed. This means that even when the rest of the network
is initialized with different seeds, the embeddings tend to
converge to similar positions in the embedding space. As a
result, changing the seed for the rest of the network has a
more significant impact because the representations of the
items in the embedding space remain quite similar regard-
less of the seed, while the rest of the network’s components
do not. This highlights that the embedding space is rela-
tively stable across different seeds, whereas the rest of the
network is more sensitive to the initial seed.

3.2. RQ2
The next step of the analysis is to combine the scores of
different models, in order to check if the RLS between com-
bined models shows significant changes.

It is evident from Table 9 that using ensembles signifi-
cantly improves the RLS compared to individual models,
indicating better stability.

Ensemble 1 Ensemble 2 𝑅𝐿𝑆𝐹@5 𝑅𝐿𝑆𝐹@10 𝑅𝐿𝑆𝐹@20

42_43 43_45 0.663 0.705 0.733
42_43 44_45 0.631 0.673 0.702
42_43 43_44 0.646 0.688 0.717
42_43 42_44 0.657 0.698 0.726
42_43 44 0.653 0.695 0.724

AVG ± SD 0.650 ± 0.005 0.692 ± 0.005 0.720 ± 0.005

Table 9
RLS FRBO Improvement with Different Ensembles. The notation
x_y represents an ensemble formed by averaging the scores of
models initialized with seeds x and y. The last row shows the
computation of RLS between an ensemble and a single model.

3.3. RQ3
To investigate the performance, we present Table 10 show-
ing the NDCG scores of the individual models computed
@5, @10 and @20.

Seed NDCG@5 NDCG@10 NDCG@20

42 0.106 0.132 0.157
43 0.105 0.129 0.156
44 0.101 0.127 0.152
45 0.106 0.130 0.156

AVG ± SD 0.105 ± 0.002 0.130 ± 0.002 0.155 ± 0.002

Table 10
NDCG scores for different seeds.

#Models NDCG_@5 NDCG_@10 NDCG_@20

1 0.105 ± 0.002 0.130 ± 0.002 0.155 ± 0.002
2 0.108 ± 0.001 0.133 ± 0.001 0.160 ± 0.001
3 0.110 ± 0.001 0.135 ± 0.001 0.163 ± 0.001
4 0.110 0.137 0.164

Table 11
NDCG values for ensembles of different sizes. The values are
averages computed from all possible model combinations for
each number of models, except for the last row which shows the
NDCG scores of a single ensemble formed by all four trained
models.

In contrast, Table 11 presents the NDCG scores for en-
sembles of different sizes, with values averaged across all
possible model combinations and the final row reflecting
the NDCG scores of the ensemble formed by all four trained
models. The results demonstrate a slight but consistent
improvement in performance with larger ensembles.

4. Considerations on Computational
Cost.

In the context of enhancing the robustness of neural recom-
mender systems, the use of an ensemble of models provides
significant benefits. However, it also introduces a computa-
tional cost that scales linearly with the number of models
in the ensemble. Specifically, the computational cost of
training an ensemble is approximately the cost of training a
single model multiplied by the number of models, denoted
as:

Costensemble = 𝑁models × Costsingle_model



The same applies to the inference stage. As shown in
Tables 9,11, the performance of the system remains relatively
stable regardless of the number of models used, while the
robustness sees notable improvements when moving from
a single model to an ensemble of two models. Given this, a
reasonable compromise is to use an ensemble of two models.
This choice results in a computational cost of approximately:

Costtraining = 2× Costsingle_model × Iterations

for backpropagation during training, and:

Costinference = 2× Costsingle_model

for inference during deployment. This allows for a sig-
nificant improvement in robustness by paying around the
double in terms of computational cost.

5. Conclusions
In conclusion, this work addresses the critical issue of rank-
ing variability in recommender systems, which arises due
to different model initialization seeds. Our findings suggest
that ensemble methods, particularly those incorporating
shared embeddings, offer a promising solution to mitigate
this variability. By reducing ranking fluctuations, these
methods enhance the reliability and consistency of recom-
mendations. However, while our approach significantly
reduces variability, some residual variability remains, indi-
cating the need for further research to explore additional
techniques or refinements to achieve even greater consis-
tency in recommendations.
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