
AI-based user identification method for web services

Ihor Zakutynskyi1,∗,†, Oleksandr Kalishuk1,†, Maksim Iavich2,†, Vitalii Nebylytsia1,† and Vasyl

Yehunko1,†

1 National Aviation University, Liubomyra Huzara Ave. 1, Kyiv, 03058, Ukraine
2 Caucasus University, Paata Saakadze Str., 1, Tbilisi, 0102, Georgia

Abstract
In our paper, we introduce a universal web service user’s identification method. This method is based on
analyzing the digital fingerprint of the visitor using a neural network. Within the scope of our research, we
performed a comparative analysis between our developed method and the existing fingerprint detection
services. The testing results indicate that the accuracy of fingerprint identification using our method
surpasses fingerprint.com by 3.1% on desktop platforms and 6.3% on mobile devices. Furthermore, the
utilization of our method significantly reduces the number of false positive errors, thereby enhancing the
robustness of user identification against variations in browser and device parameters.

Keywords
digital fingerprint, user identification, neural network, LSTM 1

1. Introduction

In our paper, we present a universal web service user's identification method, which is based on

creating a digital fingerprint that is determined using a dataset collected both on the client side (using

a JS library) and on the server side (from the HTTP request data from the client) and subsequent

analysis by a neural network. The method we have developed for calculating and evaluating a set of

parameters using a neural network trained on a test database of users allows for achieving: 1) Greater

overall accuracy in user identification, 2) Extended lifespan of the digital fingerprint, 3) Correct

cross-browser user identification, 4) Accurate user identification through VPN.

Moreover, the user recognition process requires no significant computational resources,

maintains a high identification speed, has a low collision rate, and high accuracy [1].

The neural network helps us identify hidden patterns in parameters and allows us to reveal

implicit associations among sets of parameters in the digital fingerprints of visitors [2, 3].

At the same time, our method provides strong protection of privacy and security of user data.

2. Background

Browser fingerprint or device fingerprint, combined into the concept of a digital fingerprint, is

information collected about the software and hardware of a remote device for the purpose of its

identification.

CH&CMiGIN’24: Third International Conference on Cyber Hygiene & Conflict Management in Global Information Networks,
January 24–27, 2024, Kyiv, Ukraine
∗ Corresponding author.
† These authors contributed equally.

 ihor.zakutynskyi@nau.edu.ua (I. Zakutynskyi); akalishuk@gmail.com (O. Kalishuk); miavich@cu.edu.ge (M. Iavich);
tet129@gmail.com (V. Nebylytsia); 7253362@stud.nau.edu.ua (V. Yehunko)

 0000-0003-2905-3205 (I. Zakutynskyi); 0009-0008-1577-6473 (O. Kalishuk); 0000-0002-3109-7971 (M. Iavich); 0009-0000-
0154-9909 (V. Nebylytsia); 0000-0002-5316-8996 (V. Yehunko)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

2.1. Fingerprinting techniques

The technique of digital fingerprinting has existed for many years. The first mentions of various

techniques for obtaining and analyzing digital fingerprints in scientific literature appeared in 2003

[4], and they have been widely studied since 2009 [5].

Since then, many different techniques for determining the digital fingerprint have been described:

• JavaScript-Based Fingerprints

• CSS-Based Fingerprints

• Canvas-Based Fingerprint

• Hardware and Software-Based Fingerprints

• Fingerprint Based on Audio API

• Plugin-Based Fingerprint

• TLS Fingerprint

• Other Browser Fingerprint Acquisition Technologies (correlation between visitor's gaze and

mouse movement; characteristics of HTML parser; font sets (font glyphs); methods based on

calculation of JavaScript scripts set execution time; based on user lag time on websites; on

the nature of user interaction with touchpad; speed and specificity of typing on keyboard;

speed and directions of mouse movement).

In most cases, to identify a digital fingerprint, a scheme is used in which code based on a special

JS library is executed on the client side. The code performs a set of tests and checks defined by the

library and send the received parameters to the server. Usually, the server is deployed as a separate

service (Figure 1).

Figure 1: General fingerprinting process.

All modern methods of identifying digital fingerprinting have both advantages and

disadvantages.

2.2. Fingerprinting advantages and disadvantages

The main drawbacks of fingerprinting solutions include:

• Low user identification accuracy,

• Computation time for generating a digital fingerprint,

• Time required for matching with previously known digital fingerprints in the system,

• Short lifespan of a specific digital fingerprint,

• High device load on the user's end,

• Dependence on JavaScript,

• Challenges in computing a digital fingerprint in homogeneous environments (computer labs,

internet cafes, mobile network environments),

• Cross-browser digital fingerprinting,

• Low accuracy in identifying users operating in incognito mode,

• Matching digital fingerprints over VPN.

In addition to the mentioned drawbacks of existing methods for digital fingerprinting based on

open solutions, ready-made commercial services are characterized by additional disadvantages:

• High cost,

• Closed source nature,

• Data stored on third-party servers,

• Dependence on the service provider.

In our assessment, there are currently no effective methods that reliably identify a user based on

their digital fingerprint over an extended period, especially when using VPN, incognito mode, or

engaging in cross-browser surfing.

2.3. The literature review

We reviewed some research papers that address the problems of fingerprinting and user

identification on the Internet.

In [6], the authors reviewed and classified the existing fingerprinting techniques and their

applications for user identification on the Internet and analyzed in detail the development of different

research directions of browser fingerprinting. Based on the analysis of existing results, the problems

faced by different research directions are pointed out. Also, the research achievements in the field of

browser fingerprint recognition are summarized and the trend of future development is pointed out.

The authors also discussed the privacy issues associated with the use of fingerprinting techniques.

The authors of the paper [7] show that GPU information obtained using WebGL and other

technologies can be used to create a unique device fingerprint that can be used for user identification.

At the same time, the authors note that changing GPU settings and parameters can change the device

fingerprint, which makes identification more difficult.

In the study [8], the authors demonstrate the correlation between gaze and mouse movements

and argue that this serves as a valuable source for obtaining browser fingerprints. Simultaneously,

the authors point out that collecting data on a person's gaze in the browser has drawbacks, such as

inaccuracies when using a webcam and the limitation that users must grant permission for camera

access. The study also reveals that, in the case of computers used by multiple users, browser statistics

may malfunction and can no longer differentiate between individuals.

In the article [9] authors analyze the popularity of the Transport Layer Security (TLS) protocol

on the Internet and its use in censorship circumvention tools. The researchers collected and analyzed

a huge volume of real-world TLS traffic to identify the different implementations of TLS clients used

on the Internet. Censors can use deep packet inspection (DPI) to identify and block such tools based

on their TLS fingerprints. That said, many circumvention tools fail to properly mimic popular TLS

implementations, leading to their detection and blocking. To solve the censorship circumvention

problem, the authors proposed a solution that allows developers to automatically mimic other

popular TLS implementations. Using real-world data, the authors of the paper propose methods to

flexibly adapt TLS-fingerprint to the dynamic TLS ecosystem with minimal manual effort.

The authors of the paper [10] propose a new mobile device user's identification method based on

the study and analysis of touch dynamics, which has stable patterns of interaction between the user

and his mobile device, including factors such as touch force, swipe speed and duration of touch.

This method has shown excellent results, but its scope is limited to only a subset of mobile devices

and depends on the availability of APIs for interacting with physical device elements.

In the paper [11], the authors propose a browser fingerprinting defense tool to anonymize users'

browsers. The authors show that browser fingerprinting cannot be prevented by the user. Although

new methods are constantly being developed that can prevent browser fingerprinting, they cannot

prevent it completely.

In the article [12], presents new algorithms for encoding and comparing fingerprints, which focus

on the values of parameters with low stability and low entropy.

2.4. Benefits of our method

The method proposed by the authors allows for:

• Improved accuracy in user identification under specified conditions,

• Reduce the percentage of false positives,

• Increased lifespan of the calculated digital fingerprint,

• Maintenance of the speed of digital fingerprint identification at an industry-standard level.

All of these improvements are achieved through the implementation of a novel neural network

training algorithm. The results of determining the digital fingerprint of a web service user are a non-

linear time series consisting of a set of browser and user device parameters and may vary over time

[13, 14]. As the practice of the last 10 years shows, recurrent neural networks (RNN) are the most

effective architecture for solving time series problems that cannot be solved by feedforward

networks [15]. We performed comparative tests of the two most common RNN architectures LSTM

and GRU by the methodology described in [16]. The results of the digital fingerprint accuracy tests

are presented in Figure 2.

Figure 2: LSTM vs GRU comparison.

For our solution, we utilized the LSTM architecture as it demonstrated significantly better results

over a small number of training epochs (50-100 epochs). This implies that, with equal resource

consumption, LSTM yields superior results, which can be expressed by:

 ������� 	

��	
� � ��������� → ���
�� ���� ��! → ��"#. (1)

3. Experiment

3.1. Competitor

Currently, the majorities of systems for obtaining a digital fingerprint are based on the fingerprint.js

library or incorporate some of its functions. This library, one of the earliest to emerge, is dynamically

evolving and includes prospective developments that emerge periodically. The library is actively

developing, and the project repository is frequently updated. As of December 2023, the latest version

is 4 [17]. Starting from this version, the developer has changed the distribution terms, and it is now

offered under the Business Source License 1.1. Currently, the FingerprintJS service is considered an

industry standard.

The service allows for the identification of numerous browser and operating system parameters.

The key modules of the fingerprint.js library are outlined in Table 2.

Table 1

Key Modules of the fingerprint.js Library

Parameter Function Type of Returned value

Audio fingerprint getAudioFingerprint() number or Promise<number>

Fonts getFonts() string[]

Plugins getPlugins() string[]

Canvas getCanvasFingerprint() object

Touchscreen getTouchSupport() object

OS CPU getOsCpu() string | undefined

Languages getLanguages() string[][]

Color depth getColorDepth() number

Memory getDeviceMemory() number

Resolution getScreenResolution() [number | null, number | null]

Screen frame size getRoundedScreenFrame() [number | null, number | null, number | null]

Hardware
concurrency getHardwareConcurrency() number | undefined

Time zone getTimezone() string

Session storage getSessionStorage() boolean

Local storage getLocalStorage() boolean

Indexed DB getIndexedDB() boolean | undefined

Open DB getOpenDatabase() boolean

CPU class getCpuClass() string | undefined

Platform getPlatform() string

Vendor getVendor() string

Vendor flavors getVendorFlavors() string[]

Cookie enabled areCookiesEnabled() Boolean

Ad blockers getDomBlockers() Promise<string[] | undefined>

Color gamut getColorGamut() string | undefined

Color inverted mode areColorsInverted() boolean | undefined

Colors forced areColorsForced() boolean | undefined

Monochrome depth getMonochromeDepth() number | undefined

Contrast getContrastPreference() number | undefined

Reduced motion isMotionReduced() boolean | undefined

HDR isHDR() boolean | undefined

Math calc getMathFingerprint() Record<string, number>

Font width getFontPreferences() Promise<Record<string, number>>

Video card (WebGL) getVideoCard() object | undefined

PDF viewer isPdfViewerEnabled() boolean

Architecture getArchitecture() number

The general algorithm of operation for the fingerprint.js library is presented in Figure 3.

Figure 3: General fingerprinting algorithm.

3.2. Neural network training

At the initial stage of preparing data for training the neural network, we have a multidimensional

dataset about the user collected in the previous stage. To optimize time and computational resource

costs, this multidimensional dataset is transformed into a linear vector. Thus, the neural network

receives a one-dimensional vector as input.

Next, after normalization, the data is randomly split into testing and training sets in a 30%/70%

ratio.

Based on the testing set, a prediction is made to determine if the visitor is known in our service,

and the prediction result is compared with the result obtained based on the predefined parameters

of the model. The schematic process of training the neural network is illustrated in Figure 4.

The initial training of the model was conducted using the "Login Data Set for Risk-Based

Authentication" dataset from Kaggle [13]. This dataset includes a list of parameters associated with

each login attempt.

The structure of the dataset is presented in Table 2.

Figure 4: Neural network training algorithm.

Table 2

Dataset Structure

Characteristics Type Range or example

User Agent String

Mozilla/5.0 (Windows NT 10.0; Win64; x64)
AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/58.0.3029.110 Safari/537.36.

HTTP Accept Headers String

Access-Control-Allow-Origin: *,
Cache-Control: max-age=604800,
Content-Type: multipart/form-data,
If-Unmodified-Since: Mon, 27 Nov 2023 12:43:00 EET

Language String uk

Screen Resolution

Integer
(Width x
Height) 2073600

Timezone String Europe/Kiev

Browser Plugins
List of
Strings []

[PDF Viewer, Chrome PDF Viewer, Chromium PDF
Viewer, Microsoft Edge PDF Viewer, WebKit built-in
PDF]

Platform (Operating
System)

String Linux x86_64

Browser Version String Chrome 119

Device Memory
Integer (in
gigabytes)

8

Canvas Fingerprint
String
(hashed or
raw data)

93a13b9b08d18393f5c731f8f5c58a11

WebGL Vendor and
Renderer

String WebKit WebGL

Cookies Enabled Boolean TRUE

Characteristics Type Range or example

Do Not Track (DNT)
Header

Boolean FALSE

Fonts List
List of
Strings []

["4274,142 default, cursive, fantasy",
"4314,143 sans-serif, Arial, Arimo, Helvetica,
Liberation Sans",
"4249,142 serif",
"3780,149 monospace",
"4431,143 system-ui, Ubuntu",
"4189,143 aakar"]

Audio Fingerprint
String
(hashed or
raw data)

13b9b08d18393f5c731f8f5c58a116dcb

Hardware Concurrency Integer 4

Touch Support Boolean FALSE

Geolocation Boolean FALSE

Connection Speed String 4g

Ad Blocker Detection Boolean FALSE

Local IP Address String 0.0.0.0 - 255.255.255.255

WebRTC Leak Boolean TRUE

Battery Level
Float
(percentage)

78.2

CPU Cores Integer 4

Device Type String Desktop

Hash of User Identity
Information

String
(hashed)

52d84b11737d980aef856699f885ca86

3.3. Experiment conditions

To perform an experiment comparing the effectiveness of the developed method and the method of

digital fingerprinting using the FingerprintJS service, a set of parameters from 2134 devices of

different types (desktop computers, mobile devices, tablets) and a set of user agents that was

generated using the npm package User-Agents [18] were used. User-Agents are a JavaScript package

for generating random user agents based on how often they are used in a real environment.

The generated data includes hard-to-find browser fingerprint properties, and powerful filtering

capabilities allow the generated user agents to be constrained to fit specific needs.

An experiment to measure the qualitative performance of the developed web service user

identification method was performed on the current web service using the algorithm that is shown

in Figure 5.

3.4. The results of the experiment

The results of the experiment are summarized in Tables 3 – 5.

Figure 5: Algorithm of the experiment.

Table 3

Comparison Results: Desktop

Method
Develo

ped

Standa

rd

Develo

ped

Standa

rd

Develo

ped

Standa

rd

Develo

ped

Standa

rd

Devel

oped

Stand

ard

Platform MacIntel Linux Windows Android Total

Total

executions
226 188 871 329 1614

Accuracy, % 93,1 91,5 94,4 89,1 93,8 91,3 93,6 89,3 93,7 90,7

False positive 8 12 5 15 28 60 11 18 52 105

False negative 8 7 5 6 26 16 10 18 49 47

Duration, ms 59 78 71 69 54 55 77 82 61 65

Table 4

Comparison Results: Mobile

Method
Devel

oped

Stand

ard

Devel

oped

Stand

ard

Devel

oped

Stand

ard

Devel

oped

Stand

ard

Devel

oped

Stand

ard

Deve

loped

Stan

dard

Platform iPhone
Android

type 1

Android

type 2
Linux

Android

type 3
Total

Total

executions
73 114 93 17 122 419

Accuracy, % 98,9 87,1 96,5 88,7 95,2 91,2 95,2 88,3 94,6 91,4 96,0 89,7

False positive 0 6 2 6 2 6 0 1 4 7 8 26

False

negative
0 3 2 7 2 2 0 1 3 3 7 16

Duration, ms 156 152 164 168 181 164 160 138 143 146 160 157

Table 5

Comparison Results: Tablet

Method Developed Standard Developed
Standar

d

Develope

d

Standar

d

Develop

ed

Standa

rd

Platform Android type 3 iPad Android type 1 Total

Total

executions
19 28 54 101

Accuracy, % 97,2 88,4 94,3 87,1 93,8 90,6 94,6 89,2

False positive 0 1 1 2 2 4 3 7

False negative 0 1 1 2 2 1 3 4

Duration, ms 92 96 110 121 99 104 101 107

4. Conclusions

The accuracy comparison data for digital fingerprint identification indicate that for desktop

computers, the accuracy of the existing identification method (FingerprintJS) is 90.7%, while the

accuracy of our developed method is 93.7%, representing a 3.1% improvement.

For mobile devices, the accuracy of the existing user identification method (FingerprintJS) is

89.7%, whereas the accuracy of our developed method is 96%, showcasing an improvement of 6.3%.

In the case of tablets, the accuracy of the existing identification method (FingerprintJS) is 89.2%,

which is 5.4% lower than that of our developed method (94.6%).

The weighted average accuracy of the method developed by us is 3.8% higher than the existing

method (94.2% versus 90.4%).

The stability of the algorithm directly depends on reducing the percentage of false positives and

false negatives in user identification. The stability of the algorithm can be determined using equation

$�	%&'&�� () + (+
() + (+ + ,) + ,+ , (2)

where TP - true positive, TN - true negative, FP - false positive, FN - false negative.

The method developed by us shows a lower number of false positive fingerprint identification

results on all investigated platforms:

• Desktop computers: 52 versus 105,

• Mobile devices: 8 versus 26,

• Tablets: 3 versus 7.

The weighted average number of false positive errors for the developed method is 41.0, compared

to 84.9 for the existing method.

The number of false negative results in digital fingerprint identification is comparable for both

methods on all investigated platforms, with the advantage of the developed method being notably

better only on mobile devices:

• Desktop computers: 49 versus 47,

• Mobile devices: 7 versus 16,

• Tablets: 3 versus 4.

The weighted average number of false negative errors for the developed method is 38.6, compared

to 38.9 for the existing method. According to formula (2), with a decrease in the number of errors,

the overall stability of the method increases. Based on the results obtained, due to a significant

reduction in the number of false positive results for the developed method, its stability to changes is

higher by 2% compared to the results of the existing method. The number of false negative results is

comparable, so it did not significantly impact the final comparison result.

The duration of the identification process using the developed method varies in the ranges of 59-

77 ms for desktop computers, 143-181 ms for mobile devices, and 92-110 ms for tablets. Based on the

comparison results, it can be concluded that the speed of user identification using the developed

method is comparable to the speed of identification using existing modern methods.

The analysis of the obtained results shows that the developed method has higher accuracy on all

investigated types of devices and platforms. Additionally, it exhibited a lower overall error rate in

the accuracy of identification and comparable speed in the process of digital fingerprint

determination.

Declaration on Generative AI

The author(s) have not employed any Generative AI tools.

References

[1] J. S. Al-Azzeh, M. Al Hadidi, R. S. Odarchenko, S. Gnatyuk, Z. Shevchuk, Z. Hu, Analysis of self-

similar traffic models in computer networks, International Review on Modelling and

Simulations 10(5) (2017) 328–336. doi: 10.15866/iremos.v10i5.12009.

[2] M. Zaliskyi, R. Odarchenko, S. Gnatyuk, Y. Petrova, A. Chaplits, Method of traffic monitoring

for DDoS attacks detection in e-health systems and networks, CEUR Workshop Proceedings

2255 (2018) 193–204. URL: https://ceur-ws.org/Vol-2255/paper18.pdf.

[3] V. Tkachuk, Y. Yechkalo, S. Semerikov, M. Kislova, Y. Hladyr, Using mobile ICT for online

learning during COVID-19 lockdown, Communications in Computer and Information Science,

1308 (2021) 46–67. doi: 10.1007/978-3-030-77592-6_3.

[4] A. Hintz, Fingerprinting websites using traffic analysis, in: R. Dingledine, P. Syverson (Eds.),

Privacy Enhancing Technologies. PET 2002, volume 2482 of Lecture Notes in Computer Science,

Springer, Berlin, 2003. doi: 10.1007/3-540-36467-6_13.

[5] J. R. Mayer, Any person a pamphleteer: Internet Anonymity in the Age of Web 2.0, Princeton

University, 2009, Undergraduate Senior Thesis. URL:

http://arks.princeton.edu/ark:/88435/dsp01nc580n467.

[6] D. Zhang, J. Zhang, Y. Bu, B. Chen, C. Sun, T. Wang, A survey of browser fingerprint research

and application, Wireless Communications and Mobile Computing, 2022. doi:

10.1155/2022/3363335.

[7] DRAWNAPART: A Device Identification Technique based on Remote GPU Fingerprinting, 2022.

URL: https://arxiv.org/abs/2101.03793.

[8] W. Fuhl, N. I. Sanamrad, E. Kasneci, The Gaze and Mouse. Signal as additional Source for User

Fingerprints in Browser, 2022. URL: https://arxiv.org/abs/2101.03793.

[9] E. Wustrow, S. Frolov, (University of Colorado Boulder), The use of TLS in Censorship

Circumvention, doi:10.14722/ndss.2019.23511.

[10] B. Pelto, M. Vanamala, R. Dave, Your Identity is Your Behavior -- Continuous User

Authentication based on Machine Learning and Touch Dynamics, 2022. URL:

https://arxiv.org/abs/2305.09482.

[11] D. Moad, V. Sihag, G. Choudhary, Fingerprint defender: Defense against browser-based user

tracking. In: I. You, H. Kim, TY., Youn, F. Palmieri, I. Kotenko (Eds.), Mobile Internet Security.

MobiSec 2021, volume 1544 of Communications in Computer and Information Science, Springer,

Singapore, 2021. doi: 10.1007/978-981-16-9576-6_17.

[12] M. Gabryel, K. Grzanek, Y. Hayashi, Browser Fingerprint Coding Methods Increasing the

Effectiveness of User Identification in the Web Traffic, Journal of Artificial Intelligence and Soft

Computing Research 10(4) (2020). doi: 10.2478/jaiscr-2020-0016.

[13] Login Data Set for Risk-Based Authentication, 2022. URL:

https://www.kaggle.com/datasets/dasgroup/rba-dataset.

[14] O. I. Abiodun, A. Jantan, A. E. Omolara, K. V. Dada, N. A. Mohamed, H. Arshadf, State-of-the-

art in artificial neural network applications: A surveyб Heliyon. 4(11):e00938 (2018). doi:

10.1016/j.heliyon.2018.e00938.

[15] A. Lheureux, Feed-forward vs feedback neural networks, 2022. URL:

https://blog.paperspace.com/feed-forward-vs-feedback-neural-networks/.

[16] L.V. Sibruk, I.V. Zakutynskyi, Recurrent Neural Networks for Time Series Forecasting.

Choosingthe best Architecture for Passenger Traffic Data. Automation and computer-integrated

technologies 2(72) (2022) 38–44. doi: 10.18372/1990-5548.72.16941.

[17] GitHub, fingerprintjs/fingerprintjs: Browser fingerprinting library, 2023. URL:

https://github.com/fingerprintjs/fingerprintjs.

[18] User Agents, 2022. URL: https://www.npmjs.com/package/user-agents.

