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Abstract 
The paper proposes a spline model of a parametrized digital image based on two momentary texture 
features, namely, the locally averaged illumination intensity and the root mean square. The model is an 
estimate of the density function of the distribution of these characteristics and is an alternative to the model 
of a mixture of normal distributions. 
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1. Introduction and problem statement 

The problem of digital image segmentation is not new – there are numerous diverse and effective 

approaches to solving it, both in purely mathematical methods and through the use of hardware-

software approaches. However, the segmentation of oversized realistic images or video data (e.g., 

from aerial or space observations) in real-time or near-real-time mode gains particular relevance. 

By its nature, the segmentation (clustering) problem relates to unsupervised pattern recognition, 

generally solved based on the model of feature distribution density defining certain characteristics 

of digital images. In general, the problem of pattern recognition can be broken down into the 

following main stages [1]: 

1. Generating features of the recognized object. 

2. Selecting features of the recognized object. 

3. Building a classifier. 

4. Assessing the quality of classification. 

Feature formation is one of the most critical stages in constructing any information processing 

system. The quality of the chosen feature system and algorithms for their computation depends on 

the specific requirements of the applied system for processing and analyzing digital images. 

Therefore, when prioritizing the requirement for segmentation speed, it is necessary to pose a 

demand for both the high adequacy of the density function model on one hand and the efficiency of 

obtaining and learning it on the other hand [2, 3]. 

Hence, the relevant research direction of this work will be to define a model of realistic digital 

images that would address the segmentation task in a mode close to real-time within modern 

computerized systems 
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2. Literature review 

To further the analysis, let's introduce the concept of texture. Texture refers to fragments of an image 

that can be characterized by different properties. Texture can be homogeneous when the pattern or 

structure repeats with the same intensity in all directions and at all points. For example, the surface 

of sand on a beach or a field can have a homogeneous texture. On the other hand, texture can be 

heterogeneous when the pattern or structure varies at different points or directions. For instance, an 

image of a forest with different types of trees, shrubs, and other plants can have a heterogeneous 

texture. Let's consider methods for forming textural features related to the segmentation and 

classification of digital images, commonly encountered in tasks of processing aerial photography, 

aerial, and space monitoring data. 

The simplest and often-used segmentation method is based on dividing the image by a brightness 

threshold [4, 5]. For this, the intensities of each image element are used. If the intensity of a certain 

selected threshold value increases, the element is classified as an object component; otherwise, it's 

considered a background element. However, such methods may be ineffective for complex image 

structures like aerial photographs. 

The application of segmentation methods based on textural characteristics holds great potential 

in various image processing areas. Statistical methods, such as local dispersion analysis [6, 7], 

histogram-based analysis [8], and using local binary patterns for feature extraction and region 

merging [9], efficiently highlight textural areas of images by computing statistical characteristics. 

They can be effective in recognizing different types of textures but may require substantial 

computational resources for calculating a large number of characteristics. 

Structural methods, like the multi-layer adaptive graph cut method [10], excel in segmenting 

textures with complex structures by identifying primitive structures. However, they may be less 

effective for irregular textures or textures without known standards. 

Spectral methods, like deep learning-based methods and conditional random fields [11, 12], ensure 

high segmentation accuracy by processing deep features and modeling context using conditional 

random fields. Additionally, wavelet transform methods also prove effective for segmenting textural 

images. Wavelet transformation [13, 14] enables the extraction of textural details of various scales in 

an image using multi-scale analysis. 

The Gaussian Mixture Model (GMM) method for constructing digital image models is another 

prevalent approach to data segmentation [15]. This method involves creating a complex image model 

using a combination of several Gaussian functions with different parameters. The use of the 

Expectation-Maximization (EM) algorithm adapts GMM to a dataset by considering the multimodal 

data distribution as a combination of individual unimodal distributions. GMM assumes that data in 

a certain cluster is generated by a specific Gaussian distribution. The method allows approximating 

complex structures and details in an image, facilitating their further analysis. However, constructing 

a complex model requires significant computational resources, which can complicate processing a 

large amount of data. 

Therefore, the analysis of research and sources shows that a computationally simple approach to 

texture analysis is possible based on the construction of textural features using the distribution of 

statistical characteristics, given the simplicity of estimating (modeling) the corresponding probability 

density function. According to studies [16], two-dimensional splines based on B-splines meet similar 

conditions, closely resembling interpolations on average. This approach may have advantages in 

terms of computational efficiency and interpretability. However, its accuracy may be limited 

compared to some deep learning models capable of solving more complex texture classification 

tasks [17–21]. 

Therefore, the goal of this work is to formalize and justify the possibility of applying the 

mentioned splines to the task of constructing a digital image model based on moment characteristics 

for automated processing systems of digital images, including aerial observation data. 



3. The study materials and methods 

Let's consider a certain digital image (DI), represented by the illumination intensity of each pixel � = ���,� , � = 0, 	 − 1;  = 0, � − 1�, (1) 

where � is for instance, any of the color components in the RGB color space or a component 

representing DI in grayscale; 	, � are the linear dimensions of DI. 

If we consider a realistic DI, such as an aerial image, then any element of intensity (1) is a random 

variable, so when choosing a DI model, this fact should be taken into account. 

Let � = ������,�, ��,�, … , ��,��; � = 1, �� be a set of textures that exhibit similar characteristics 

within a certain neighborhood determined by the size of a sliding window   (2� + 1) × (2� + 1), � = 1,2, …, where �� − texture; ��,! − characteristic of the �-th texture;   � − number of textures; " − number of characteristics of the texture. In fact, each of the features of a separate texture ��,! is 

defined as some random function of the pixel intensities in the local (2� + 1) × (2� + 1) area 

around any (�, )-th pixel of DI: ��,! = #!��$,%�, & = � − �, � + �, ' =  − �,  + �, ( = 1, ", 
(2) � = 0, 	 − 1,  = 0, � − 1. 

Therefore, we're discussing the parameterization of DI (2) based on texture characteristics. In such 

a case, a DI model can be proposed by estimating the density distribution of parameters in the texture 

characteristic space. Regarding each separate g-th group of "similar" textures, due to the randomness 

of characteristics, it's possible to assume the existence of some parameter distribution density 

function *�(��,�, ��,�, … , ��,�), (3) 

where the natural assumption is that the texture group distribution present in DI is a mixture *(Θ) = , -�*�(��,�, ��,�, … , ��,�).
�/� , 

(4) , -�.
�/� = 1. 

For instance, assuming a normal distribution of densities (3), the task of evaluating model (4) boils 

down to reproducing a mixture of normal distributions in the texture characteristic space. Solving 

this latter task would allow for image segmentation (clustering), for example, based on dividing the 

mixture followed by a naive Bayesian pixel classification (1). Despite all the advantages (low 

sensitivity to "noise" and anomalous values, independence of the clustering result from the data entry 

order, the ability to highlight clusters of different structures, etc.), the algorithms developed to solve 

such a task have significant drawbacks – the assumption of a normal density distribution (3) is not 

always valid, hence the limited applicability functional of the mixture model (4). Moreover, such 

algorithms are characterized by relative computational complexity, thus not recommended for 

processing large DIs or streaming video. In general, it can be assumed that the hypothesis of local 

continuity and smoothness of the density distribution of texture characteristics holds true – for most 

realistic images, this is quite acceptable. Therefore, without reducing generality, let's consider that  *(�) ∈ С2,…,2, 3 ≥ 2 .   

Further on, let's examine the case when the number of texture characteristics " = 2 is only two. 

For example, these could be parameters characterizing the average color (illumination) of a group of 

pixels and their variability. Publications [1, 4, 6] have shown that moment characteristics of DI are 

invariant to scale and rotation with respect to the size of the local window, so for the 

parameterization that defines the properties of textures, let's limit the choice to estimating the local 

mean and standard deviation of pixel intensities in the area: 

5�,� = 1(2� + 1)� , , �$,%
�67

%/�87
�67

$/�87 , (5) 



9�,� = : 1(2� + 1)� , , ��$,% − 5�,����67
%/�87

�67
$/�87 , (6) 

� = 3, 	 − 3 − 1,  = 3, � − 3 − 1.  

Therefore, as a result of calculating the characteristics (5) and (6), we obtain a random two-

dimensional sample (5, 9) in the texture feature space ;�,< = �(5! , 9!); ( = 1, =�, where = is the 

number of sliding windows within which mean and standard deviation estimates are calculated. It's 

worth noting that the order of forming the sample Ω�,< is not critical in this presentation: the 

calculation can be done for a sliding window of size (2� + 1) × (2� + 1) with a shift of 1 pixel or 

any other shift of the central element of the area relative to the pixels of DI. Moreover, for the 

following exposition, the magnitude of the positive integer � is also not crucial. 

With the sample Ω�,<, we will proceed to construct a two-dimensional variational series divided 

into classes. For this, we'll define the division ?@A,@B of the plane of realizations of characteristics (5) 

and (6) according to the following algorithm of actions. 

Algorithm for constructing the partition  CDE,DF . 

Step 1. The central point of the  (G, H)-th partition element ?@A,@B is taken as the variant row (5I, 9I)   5I = 5JIK + (G + 0,5)ℎJ, G = 0, NJ − 1, 9O = 9JIK + (H + 0,5)ℎP , H = 0, NP − 1, 
where 5JIK = min! T5!U ;   5JWX = max! T5!U ;   ℎJ = 5JWX − 5JIKNJ ; 

9JIK = min! T9!U ;   9JWX = max! T9!U ;   ℎP = 9JWX − 9JIKNP ; 
where NJ, NP −  the number of partition elements (classes) along the respective axes. 

Step 2. The frequency [I,O of the variant row is calculated as the number of sample points Ω�,< falling within the limits of the (G, H)-th partition element  ?@A,@B , whereby the indices G, H 

determining to which of the partition elements  ?@A,@B any point  (5! , 9!); ( = 1, =  belongs, are 

found using the expressions G = \5!ℎJ] , H = \ 9!ℎP] , 
where ^∙` is the integer part. 

Step 3. The randomness  aI,O of the variants (5I , 9I) is determined by the relation 

aI,O = [I,O= ,          , , aI,O
bB8�
O/c = 1bA8�

I/c . 
Let us consider the estimation of the feature density function of 5 and 9 as a parameterised image 

model and evaluate it on the basis of the sample ;�,< = �(5! , 9!); ( = 1, =� and the two-dimensional 

variation series built on its basis �5I, 9O, aI,O;  G = 0, NJ − 1, H = 0, NP − 1� 

of this random variable. Let the density function be smooth. If (5I, 9I) is the centre point of the (G, H)-

th element of the partition ?@A,@B , then *I̅,O = 1ℎJℎP e e *(5, 9)'5'9Pf6c,g@B
Pf8c,g@B

Jh6c,g@A
Jh8c,g@A  

is the average value of the probability density function of the features (5, 9) in the specified area 

and the following connection with the randomness of the option takes place 



aI,O = *I̅,OℎJℎP = = i�j: 5I − 0,5ℎJ ≤ m(j) < 5I + 0,5ℎJ, 9O − 0,5ℎP ≤ o(j) < 9O + 0,5ℎP� 

Thus, up to the constant ℎJ ⋅ ℎP , the randomness is an estimate of the average value of the density 

function *(5, 9). Then, as a model for density approximation, we propose a model in the form of a 

two-dimensional polynomial spline based on q-splines that is close to the interpolation average. 

That is, the array of values a̅ = �a̅I,O,  G ∈ s,  H ∈ s� will be matched with the following local 

polynomial spline [18]: t�,c(a, 5, 9) = , , q�,@A(5 − GℎJ)q�,@B(9 − HℎP)aI,OO∈uI∈u  (7) 

where (with the notation accuracy up to the split step) [12] 

q�,@(5) = ⎩⎨
⎧ 0, 5 ∉ ^− 3ℎ 2⁄ ; 3ℎ 2⁄ `,(3 + 25 ℎ⁄ )� 8⁄ , 5 ∈ ^− 3ℎ 2⁄ ; − ℎ 2⁄ `,3 4⁄ − (25 ℎ⁄ )� 4⁄ , 5 ∈ ^− ℎ 2⁄ ; ℎ 2⁄ `,(3 − 25 ℎ⁄ )� 8⁄ , 5 ∈ ^ℎ 2⁄ ; 3ℎ 2⁄ `.  

or in expanded form t�,c(a, 5, 9) = 164 �(1 − �)�(1 − �)�aI8�,O8� + (1 − �)�(6 − 2��)aI8�,O + +(1 − �)�(1 + �)�aI8�,O6� + (6 − 2��)(1 − �)�aI,O8� + (6 − 2��)(6 − 2��)aI,O + +(6 − 2��)(1 + �)�aI,O6� + (1 + �)�(1 − �)�aI6�,O8� + (1 + �)�(6 − 2��)aI6�,O + +(1 + �)�(1 + �)�aI6�,O6�� 

(8) 

where � = �@A (5 − GℎJ), |�| ≤ 1 ;    � = �@B (9 − HoP), |�| ≤ 1.  

By means of the explicit analytical representation (8), the models (7) can obtain an asymptotically 

precise estimation of the approximation error of the density distribution *(5, 9)  indirectly through 

the estimation of the function a(5, 9), the values of which are the relative frequencies of the 

respective two-dimensional variational series: aI,O = a̅I,O + �I,O, 
where 

āI,O = 1ℎJℎP e  e a(5, 9)'5'9�Pf6c,g�@B
�Pf8c,g�@B ,(Jh6c,g) @A

(Jh8c,g) @A  

�I,O − an arbitrary error. In particular, for ℎJ → 0, ℎP → 0 for ∀a(5, 9) ∈ ��,� is true ^10`: �a(5, 9) − t�,c(a, 5, 9)�С ≤ ℎJ�6 �aJ�� (5, 9)�С + ℎP�6 �aP�� (5, 9)�С + 

+ ℎJ� ℎP�36 �aJ�P�(�) (5, 9)�С + �‖a(5, 9)‖� + �(ℎ�) 

(9) 

where � = maxG,H ��G.H�,     ℎ = maxTℎJ, ℎPU.  
4. Results of the study 

Analyzing the local peculiarities of the constructed model of the two-dimensional normalized density a(5, 9), for instance, allows solving the segmentation problem. With this approach, individual 

segments correspond to clusters determined by local maxima (modes) of the estimate (7). 

As an application example of model (7), consider an image representing several textures: a grass 

lawn, a runway, airplanes (Figure 1). We'll illustrate how these textures look locally and what 



distribution they have. We'll consider the two-dimensional density functions depending on the mean 

and standard deviation for each of the textures. 

The lawn is a simple texture (Figure 2a). By “simple”, we mean relatively low variability of light 

intensity within a local window. The estimation of the normalized density function of the “lawn” 

(Figure 3) based on model (7) is unimodal and has a mean 44 ≤ 5 ≤ 84 and standard deviation 9 ≤14. 

 

Figure 1: Image with textures: grass lawn, runway, airplanes. 

 
a) 

 
b) 

 
c) 

Figure 2: Examples of textures: a) grass lawn; b) runway; c) airplane. 

Similarly, the runway is a simple texture (Figure 2b). The distribution density of the average 

intensity 134 ≤ 5 ≤ 170 and variability 9 ≤ 12 is also unimodal (Figure 4). 



 
a) 

 
b) 

Figure 3: Two-dimensional normalized density function of the lawn (Figure 2a) with a sliding 

window: а) � = 4;  b) � = 8. 

 
a) 

 
b) 

Figure 4: Two-dimensional normalized density function of the runway (Figure 2b) with a sliding 

window: а) � = 4;  b) � = 8. 

Complex textures are characterized by high variability in light intensity due to the presence 

within a local window of pixels from various 'simple' textures, for example, the 'airplane' texture 

(Figure 2c). The normalized density function (Figure 5) is multimodal, indicating the presence of 

pixels from the “grass lawn”, “runway” and airplane. 

 
a) 

 
b) 

Figure 5: Two-dimensional normalized density function of the airplane (Figure 2c) with a sliding 

window: а) � = 4;  b) � = 8. 

Let us consider (Figures 6 and 7) the density function of the entire original digital image 

parameterised by (5, 9) (Figure 1). There are three local groups of pixels defined by the proposed 

model (7). According to a natural analysis, the first group of pixels belongs to the lawn, the second 

to the runway, and the third to the airplanes (Figures 6a and 7a). Visually, it's not difficult to identify 

local maxima and intuitively divide the model into separate segments (Figures 6b and 7b), which 

determine the corresponding segmentation of textures in the original image. 



 
a) 

 
b) 

Figure 6: Spline model of the image (Figure 1) with a sliding window � = 4: а) spline model; b) 1 – 

local maxima defining separate image segments. 

 
a) 

 
b) 

Figure 7: Spline model of the image (Figure 1) with a sliding window � = 8: а) spline model; b) 1 – 

local maxima defining separate image segments. 

5. Conclusions 

In the study, a spline model (7) for parameterized digital imagery (DI) based on two momentary 

characteristics of textures was proposed, namely: the locally averaged illumination intensity (5) and 

the root mean square (6). This model represents an estimation of the probability density function of 

the mentioned characteristics and serves as an alternative to a mixture model of normal distributions. 

Thanks to the analytical presentation (8), the spline model demonstrates low computational 

complexity, substantiated acceptable approximation errors, and can be recommended for 

implementation in automated DI processing systems operating in near real-time regimes. 

Future research involves developing a DI segmentation method based on the introduced spline 

model and procedures for detecting low-probability textures that provide enhanced informativeness 

in the analysis of aerial observation data. Additionally, the results of this work are expected to be 

used in developing neural network models and exploring the hyperparameters of deep learning 

algorithms. 
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