
5000 Characters at Video Frame Rate using Declarative

Programming

Samuel Hill1, Ian Horswill1

1 Northwestern University, 2233 Tech Drive, Evanston, IL, 60208, USA

Abstract
Video games have historically been limited in the number of characters under AI control. This is all
the more true for games that use declarative systems which are generally used for turn-based or
otherwise non-real-time games. While a declarative system can obviously be used for a real-time
simulation, we wanted to test the limits of how far it can be scaled for large numbers of characters.
This paper shows how 5000 characters can run simultaneously and in real-time with 60fps
performance on a modern laptop using a declarative logic programming language.

Keywords
Declarative programming, Logic programming, Needs-based AI, crowd simulations 1

1. Introduction

Performance considerations have traditionally

restricted the number of simultaneous NPCs,

particularly when those characters are driven by

symbolic rules or other declarative methods. Many

systems that do support this kind of character AI are

also turn-based rather than real-time. In this paper,

we show that 5000 The Sims-style characters can be

run simultaneously on a modern laptop using a

version of logic programming.

Although Sims-style ‘needs-based AI’ is relatively

simple, and the rendering of the characters in our

demo is extremely simple (particle-like dots on the

screen), this still demonstrates that symbolic,

declarative techniques can be pushed well beyond

what would have been though possible. In this paper,

we will discuss the system, and the techniques used to

make it so efficient.

2. Related Work

Many AI-based games have used symbolic declarative

systems - logic, symbolic rules, or some kind of rule

engine - for social reasoning and character control.

Façade [1] used a reactive planner, ABL [2], that

incorporated a forward-chaining production system.

Prom Week [3] also used a forward-chaining

production system, Comme Il Faut [4]. CiF’s successor

the Ensemble Engine [5] is similarly a forward-

chaining production system. The Sims 3 [6] used a

rule system to script the interactions between

situations, personality traits, and actions available to

a given character [7]. MKULTRA [8] and City of

Gangsters [9] both used logic programming to

implement social reasoning [10]. F.E.A.R. makes use of

11th Experimental Artificial Intelligence in Games Workshop,
November 19, 2024, Lexington, Kentucky, USA.

a planner, GOAP, that allows for declarative

definitions of various AIs in the GDBEdit database tool

[11].

One of the earliest and most influential symbolic

systems for games is the Inform 7 language [12], [13]

that allows designers to build interactive narrative

systems using declarative statements. The Versu

simulationist narrative system [14], [15] used a

custom logic programming language, Praxis, based on

an exotic modal logic called eremic logic (aka

exclusion logic) [16]. The Lume system [17] made

extensive use of Prolog’s definite clause grammars

[18], [19] for text generation. Lapeyrade has also used

Prolog for better character decision making [20].

All these games and systems use declarative

programming for either some component of character

control and/or social reasoning. Some are turn-based

games like in the Versu platform, others are batch like

jobs used in Townlikes (that still need to run fast but

not at any particular frame rate), and others are real-

time systems like with GOAP in F.E.A.R.. Even when

used for real-time character control the number of

NPCs is usually relatively low and the portion of the

game logic that is declarative are the relations

between possible actions and the world state. The

code for how a Goal executes is still usually written in

an imperative manner [11].

There are also entire games that have been built

using declarative languages, such as those built with

the video game description language - VGDL [21].

Currently this technique is used to generate 2D tile

arcade style games with the help of ASP and

evolutionary search [22], [23]. These games are

playable by a human and are fully declarative -

everything from character controls to game logic to

the tilemap itself are declared in text files that are

Copyright © 2024 for this paper by its authors. Use permitted under
Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

used to generate a game. The purpose of these games

is largely to allow for testing of general video game

playing (GVGP) algorithms on several different games

[24].

In large part because of the expense of AI

simulation, games involving large-scale character

simulation are relatively rare. The best known is

Dwarf Fortress [25], which supports real-time

simulation of small hundreds of characters. Achieving

this level of performance requires implementation in

C++ and significant programmer effort to optimize

cache locality and minimize pointer chasing.

RimWorld is a very similar game that also involves

social simulation for the purpose of storytelling [26].

Caves Of Qud is a game that is more like adventure

mode in DF and, similarly, features hundreds of

characters that all have various social relations and

need to choose what action to take each tick [27].

Unlike DF Fortress mode and RimWorld, this rogue-

like experience is turn based and as such doesn’t need

to run at a particular frame rate. While all these games

feature large numbers of characters acting in a world,

none use declarative systems for the control of these

NPCs.

Some large-scale crowd simulation exist for use in

film and other rendered media forms [28], [29]. Some

of these tools even allow the behaviors of the agents

to be stated in sentence form for specific decision

nodes [30]. These tools target rendered scenes for

film and television and as such do not need to run in

real-time.

Some crowd simulation techniques have been

used to study crowd dynamics and the creation of

autonomous agents for visualization [31], [32]. Shao

have claimed real-time performance at 30fps when

animating up to 1400 characters moving and

pathfinding around a 3D scene on 2007 hardware

[31]. This was done with over 50,000 lines of C++ and

uses a simple action selection method reminiscent of

needs-based AI.

3. Needs-based AI

Needs-based AI is a famous technique for controlling

characters in video games that was created for The

Sims [33], [34], and has been used in other games like

Roller Coaster Kingdom and an RPG for Lord Of the

Rings [34].

Needs-based AI attempts to fulfill various needs

for NPCs by searching over the actions of each object

available to them (i.e. advertisements) and weighting

the cost of completing the action against each

character’s needs with some scoring function [34].

Each character goes about completing actions that

have been selected/assigned to them, potentially

getting rewarded for the various tasks. When no more

actions remain in the queue of selected actions the

NPC searches for all the advertisements on all the

objects around them then scores each action based on

their needs and selects the best scoring

advertisement. The equation for selecting the best

scoring advertisement is 𝑎𝑟𝑔𝑚𝑎𝑥(𝑆) where 𝑆 is the

set of all scored advertisements for a given character.

The complexity of scoring all advertisements is

𝑂(𝑁𝐿𝑀), where 𝑁 is the number of people, 𝐿 is the

objects nearby, and 𝑀 is the advertisements at each

location. Once you have scored all advertisements for

all characters, you can run the argmax equation for

each character. Since argmax is operating on the set of

all advertisements for each person, the complexity of

selecting an action from the scored set is 𝑂(𝑁𝐿𝑀),

where 𝑁 is the number of people, 𝐿 is the objects

nearby, and 𝑀 is the advertisements. Given that these

two steps are each of the same complexity, and that

the two iterations are sequential, the total complexity

of action selection is 𝑂(𝑁𝐿𝑀).

The selected advertised action sequence is then

added to the queue of actions to be completed. Needs-

based AI has always had the ability to sequence

actions, a technique called action chaining [34], but in

The Sims 4 the developers wanted to be able to have

more interesting action sequences. To accomplish this

the developers allowed the system to simultaneously

dispatch multiple actions from the queue when those

actions would not interfere with one another [35].

The Sims 3 had a goal of creating a larger varied

living world, and to do this while remaining playable

several optimizations were employed [36]. Some

execution optimizations such as hierarchical planning

and commodity-interaction maps as well as some

level of detail (LoD) optimizations such as auto-satisfy

curves and story progression [36]. Hierarchical

planning takes the usually 𝑂(𝑁𝐿𝑀) approach of

searching for every person (𝑁), for every location (𝐿),

and then for every advertised action (𝑀), and makes

it 𝑂(𝑁 + 𝐿 + 𝑀) by instead selecting each step one at

a time. Commodity-interaction maps are essentially

dictionaries of needs and the actions that satisfy those

needs, and they are used to trade off compute time

searching over all advertisements on all objects to see

if they satisfy a sim’s needs with storage cost. The LoD

optimizations tick the actions of sims not in the

current focused level when they come into focus

(auto-satisfy), and tick certain subsystems like the

wants of the town itself at a lower rate (story

progression). As a result, although the simulation

notionally supports hundreds of characters, the vast

majority of them are effectively idle at any given time.

As well, although The Sims 3 has many more possible

motives (needs) than the 8 used in previous versions,

any individual character has a small number of those

possible motives.

3.1. Scoring functions

The scoring function that we use here is the most

sophisticated function listed in Zubeks description of

needs-based AI, an attenuated need-delta scoring

function that is additionally attenuated based on

distance [34]. One difference in our version is that

each action can only satisfy one need. In the version of

action performance outlined by Zubek, some actions

can be sequences, and this can potentially allow for

multiple needs to be fulfilled by an advertisement. As

such, the algorithm for calculating an advertised

action score must sum the attenuated scoring across

all needs. Instead of summing across all needs, with

each action only satisfying one need, we can simplify

the attenuated need-delta scoring with distance

attenuation to:

𝑠𝑐𝑜𝑟𝑒 = 𝐷(𝐴𝑛𝑒𝑒𝑑(𝜈𝑐𝑢𝑟𝑟𝑒𝑛𝑡) − 𝐴𝑛𝑒𝑒𝑑(𝜈𝑐𝑢𝑟𝑟𝑒𝑛𝑡 + 𝛿))

where 𝜈𝑐𝑢𝑟𝑟𝑒𝑛𝑡 is the current need value of a particular

need type, 𝛿 advertised need delta, 𝐴𝑛𝑒𝑒𝑑 is an

attenuation function, and 𝐷 is the distance

attenuation function. 𝐴𝑛𝑒𝑒𝑑(𝑥) =
10

𝑥
 as is discussed in

Zubek, but instead of the mentioned 𝐷(𝑥) =
𝑥

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒2

function ours is 𝐷(𝑥) =
𝑥

1+(
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒2

2870
)
 to tune down the

degree to which NPCs attenuate distance. The value

2870 was not chosen at random, it relates to the size

of the map that the characters move on and effectively

scales 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒2 to be between 1 and 30 (as opposed

to a max of 82369).

One more simplification in the current demo is

that all locations only advertise a single action. In

effect, a location has a type that correlates to a need.

As such, the complexity of this scoring algorithm can

be given as 𝑂(𝑁𝐿), where 𝑁 is the number of NPCs

that need to select actions and 𝐿 is the number of

locations to search over.

4. Real-time logic programming

To test the scaling limits of declarative symbolic

logical methods for real-time NPC control, we built a

state-fair simulator, as one might find in a tycoon

game, using a logic-programming implementation of

needs-based AI. NPC’s wander through the state fair

eating, drinking, seeking entertainments, and so on.

The simulation consists of a map with 367 locations,

onto which we spawn a few thousand NPCs. Each

character has 6 motivations (hunger, bathroom,

games, amusement, music, and shopping) that

influence their action selection.

4.1. Needs-based AI in logic
programming

The logic for the core steps of scoring all available

actions and then selecting the best action for each

Figure 1: State Fair Sim running in Unity

character is contained in the few lines of code found in

Code Fragment 1 and 2. For a discussion of the

programming language used, see [37], [38], but the

following fragments can be explained thusly:

Code Fragment 1 defines a predicate that is true

when a given person performing a given advertised

action at a given location has a given score. It states

that it has that score when the location advertises that

action, it fulfills some need, and score is the result of

distance-based scoring, above, along with some noise

to add a small amount of randomness to the action

selection:

Code Fragment 1
Action Scoring

Given this, Code Fragment 2 defines a predicate

stating a given action/location pair is best for a given

character (note that this is essentially the same as the

argmax equation, just written in logic):

Code Fragment 2
Action Selection

4.2. Implementation optimizations

The performance of the system is dependent on

several optimizations. Many of these have to do with

the specific programming language implementation:

strong typing, bottom-up execution, parallel

execution, native code compilation. The details of the

language implementation are outside the scope of this

paper but see [37], [38] for more information.

Another important optimization might be called

implicit need decay. Normally, a needs-based AI

system would update each need state of each

character on every tick. For our system, this would be

prohibitively expensive. Instead, we store

timestamped need values; a need value is represented

as a tuple of (𝑣, 𝑡, 𝜌) stating that the need had value 𝜈

at time 𝑡, and was decaying at rate 𝜌. We can then

compute the current need value on demand as:

𝜈𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = max(𝜈 − (𝑡 − 𝑡𝑛𝑜𝑤) ∗ 𝜌)

with 𝑡𝑛𝑜𝑤 being the current time. Since these values

are read infrequently but would otherwise be updated

frequently, this is much more efficient. As is

recommended by Zubek, decay rates for a given need

vary slightly from character to character to give them

slightly different “personalities”. These decay rates

are chosen randomly (Appendix A, Code Fragment 3).

4.3. Action States

For characters to perform a selected action they must

move to the location of the selected action and then

take some steps to complete the action before the

need is satisfied. While we could allow for completion

of actions instantaneously, to be more in line with The

Sims implementation - as specified by Zubek – we

instead have some action performance before a need

is satisfied.

When an action is initiated, the system tells the

unity code to start moving the character, and then

marks the character as being in progress towards that

location. When the character arrives at the location

they are marked as no longer moving towards their

destination. When the action is completed, unity

informs the system, and the system updates the need

states, and generates a new next action (Appendix A,

Code Fragment 6, 7, 8, 11). In place of the animations

that would normally be running when performing an

action, we simulate an animation running by starting

a timer that indicates the selected action is being done

(Appendix A, Code Fragment 9).

Unlike in The Sims all actions in this simulation

are individual, there is no chaining of actions nor are

there any concurrent interactions. This simplification

is what allows us to use a timer for each person taking

an action, when the timer is running the “animation”

is playing and when the timer completes the character

PersonActionScoring = Predicate("…",

 person.Indexed, actionType.Indexed,

 location.Indexed, score).If(

 ReadyToSelectAction,

 CoordForPerson[person, coords],

 LocationAdvertisements,

 deltaOffset == delta +

 RandomFloat[-2, 2],

 ActionSatisfiesNeed,

 FairgroundLocations[location, __,

 otherCoords],

 NeedByType[person, needType, need],

 DistanceScoring[need, deltaOffset,

 coords, otherCoords,

 score]);

PersonActionBestScore = Predicate("…",

 person.Key, actionType.Indexed,

 location.Indexed).If(

 ReadyToSelectAction[tempPerson],

 Maximal((person, actionType,

 location), score,

 PersonActionScoring[tempPerson,

 actionType, location, score] &

 person == tempPerson));

has completed the action and finished its animation.

While we do not have proper animations for each sim,

when on a timer for an action the sim is moving

randomly around the location that they have selected

an action at.

4.4. Destinations & Unity Interface

For control of character movements, we have a simple

interface between the action selection simulation and

the Unity code that performs movements. The

Simulog code provides a table of people and the

destination they are moving to (Appendix A, Code

Fragment 7) that the Unity code iterates over each tick

to adjust NPC positions. The Unity code in turn

provides a function that we can call to ask if someone

has arrived at their destination. With this simple

interface of action selection assigning destinations to

the Unity code and Unity only needing to report back

when someone has arrived at the destination, we are

able to change out the underlying movement

implementation without needing to do any

modifications to the action selection algorithm.

Currently, the movement is all simple vector addition

moving sims at a set speed straight towards their

destination.

5. Performance

With 5000 NPCs running this simulation on an Apple

M3 Pro we are able to achieve 60fps or better for 95%

of frames when running some performance tests. Our

average inner-frame time was 13.87ms with a

standard deviation of 2.077ms. Figure 3 shows our

performance curve once stable (from 12500 to 25000

ticks) which is somewhat bell curve shaped with a

longer tail to the right. Most of the tail to the right is

likely garbage collection or some other Unity process

as that performance tail is not present in Figure 4

when we show the performance curve for just the rule

execution times.

Figure 2: Performance of the State Fair Sim

Figure 3: State Fair Sim Inter-Frame Intervals

Figure 4: Action Selection Rule Execution Times

The graph in Figure 2 shows the progression of the

simulation over a 25,000-tick run time. The first 5000

ticks spawn one person every tick causing the slow

rise in compute time for both the action selection

mechanism and the inner-frame updates. For the next

7500 ticks characters begin to arrive at their first

destination and need to select their next action,

creating a tiered slope in the action selection

performance as various numbers of characters need

to select an action. From 12500 ticks on we have a

steady state where performance is consistent and

linear with NPCs now moving around and selecting

actions at a rate of 13.7 actions selected on average

per tick for our sample with a σ of 3.8 actions.

The cost of moving 5000 NPCs and rendering the

scene (amongst other functions that Unity runs) is the

difference between the action selection rule execution

time and the inner-frame time. As can be seen in

Figure 1, this difference (looking from 5000 ticks to

9000 ticks where action selection has not yet taken

off) is about 7ms. There is also a baseline cost to

running the rest of the declarative simulation when

not performing action selection. As can be seen in

Figures 2 and 4, the cost of running our declarative

simulation on 5000 characters without any action

selection takes about 1ms.

Figure 5: Performance of Action Selection

After these baseline costs, the variation in

performance largely comes down to the number of

characters selecting actions on any given tick. The

performance cost for one NPC selecting an action

averages to just under 0.3ms. This gap between each

number of agents selecting is clearly visible in Figure

2 and 5 with both the color mapped data points and

green lines indicating the moving average for each

tier. The same gaps are not visible in the inter-frame

time data (grey dots in Figure 2), although there is

clearly a correlation between the range of

performance for rule execution and for total inter-

frame time.

5.1. Pushing character counts

The performance shown above is only possible when

we first compile our rules down to native C# code, the

process for which is described in [37], [38], and then

we run our compiled code in parallel. The type of

parallelism employed is per predicate, not per sim,

utilizing the dependency graph for all predicates to

spin up tasks that run the compiled rules for a given

predicate only when its dependencies have finished.

Without these optimizations the maximum character

count at nearly the same performance is 2000 NPCs.

One optimization that could be employed to

further stabilize performance (and potentially allow

for more NPCs) is to throttle the number of characters

that are selecting actions on a given tick. With a limit

on the number of characters selecting actions that is

slightly higher than the un-limited average number

selecting you could effectively cap the cost of doing

action selection while still eventually performing the

same sets of needs-based calculations. This technique

was not employed in this demo but a commercial

system that cares more about never dropping below

60fps may want to implement such a throttle.

6. Conclusion

AI character control based on declarative

programming can be surprisingly performant.

Through a combination of compilation, parallel

evaluation, and careful optimization, thousands of

characters can be run at video frame rate. Although

this demonstration involves simple needs-based AI,

we intend to investigate more complicated techniques

in the future.

References

[1] M. Mateas and A. Stern, Façade. (2005).
[2] M. Mateas and A. Stern, “A behavior language for

story-based believable agents,” IEEE Intell. Syst.,
vol. 17, no. 4, pp. 39–47, Jul. 2002, doi:
10.1109/MIS.2002.1024751.

[3] J. McCoy, M. Treanor, B. Samuel, A. A. Reed, N.
Wardrip-Fruin, and M. Mateas, “Prom week,” in
Proceedings of the International Conference on
the Foundations of Digital Games, in FDG ’12. New
York, NY, USA: Association for Computing
Machinery, May 2012, pp. 235–237. doi:
10.1145/2282338.2282384.

[4] J. McCoy, M. Treanor, B. Samuel, N. Wardrip-
Fruin, and M. Mateas, “Comme il Faut: A System
for Authoring Playable Social Models,” Proc. AAAI
Conf. Artif. Intell. Interact. Digit. Entertain., vol. 7,
no. 1, pp. 158–163, Oct. 2011, doi:
10.1609/aiide.v7i1.12454.

[5] B. Samuel, A. A. Reed, P. Maddaloni, M. Mateas,
and N. Wardrip-Fruin, “The Ensemble Engine:
Next-Generation Social Physics”.

[6] The Sims 3. (2009). Maxis.
[7] R. Evans, “AI challenges in Sims 3,” Artif. Intell.

Interact. Digit. Entertain., 2009.
[8] I. Horswill, “Postmortem: MKULTRA, An

Experimental AI-Based Game,” Proc. AAAI Conf.
Artif. Intell. Interact. Digit. Entertain., vol. 14, no.
1, Art. no. 1, Sep. 2018, doi:
10.1609/aiide.v14i1.13027.

[9] City of Gangsters. (2021). SomaSim, Chicago.
[10] R. Zubek, I. Horswill, E. Robison, and M. Viglione,

“Social Modeling via Logic Programming in City
of Gangsters,” Proc. AAAI Conf. Artif. Intell.
Interact. Digit. Entertain., vol. 17, no. 1, pp. 220–
226, Oct. 2021, doi: 10.1609/aiide.v17i1.18912.

[11] J. Orkin, “Three States and a Plan: The A.I. of
F.E.A.R.,” 2006.

[12] G. Nelson, Inform 7. (2006).
[13] G. Nelson, “NATURAL LANGUAGE, SEMANTIC

ANALYSIS AND INTERACTIVE FICTION,” 2006.
[14] R. Evans and E. Short, “Versu—A Simulationist

Storytelling System,” IEEE Trans. Comput. Intell.
AI Games, vol. 6, no. 2, pp. 113–130, Jun. 2014,
doi: 10.1109/TCIAIG.2013.2287297.

[15] R. P. Evans and E. Short, “The AI Architecture of
Versu”.

[16] R. Evans, “Introducing Exclusion Logic as a
Deontic Logic,” in Deontic Logic in Computer
Science, vol. 6181, G. Governatori and G. Sartor,
Eds., in Lecture Notes in Computer Science, vol.
6181. , Berlin, Heidelberg: Springer Berlin
Heidelberg, 2010, pp. 179–195. doi:
10.1007/978-3-642-14183-6_14.

[17] S. Mason, C. Stagg, and N. Wardrip-Fruin, “Lume:
a system for procedural story generation,” in
Proceedings of the 14th International Conference
on the Foundations of Digital Games, San Luis
Obispo California USA: ACM, Aug. 2019, pp. 1–9.
doi: 10.1145/3337722.3337759.

[18] F. C. N. Pereira and D. H. D. Warren, “Definite
clause grammars for language analysis—A
survey of the formalism and a comparison with
augmented transition networks,” Artif. Intell., vol.
13, no. 3, pp. 231–278, May 1980, doi:
10.1016/0004-3702(80)90003-X.

[19] F. Pereira and S. M. Shieber, “Prolog and Natural-
Language Analysis,” 1987. [Online]. Available:
https://api.semanticscholar.org/CorpusID:2642
03475

[20] S. Lapeyrade, “Reasoning with Ontologies for
Non-player Character’s Decision-Making in
Games,” Proc. AAAI Conf. Artif. Intell. Interact.
Digit. Entertain., vol. 18, no. 1, Art. no. 1, Oct.
2022, doi: 10.1609/aiide.v18i1.21980.

[21] T. Schaul, “A video game description language for
model-based or interactive learning,” in 2013
IEEE Conference on Computational Inteligence in
Games (CIG), Niagara Falls, ON, Canada: IEEE,
Aug. 2013, pp. 1–8. doi:
10.1109/CIG.2013.6633610.

[22] T. S. Nielsen, G. A. B. Barros, J. Togelius, and M. J.
Nelson, “Towards generating arcade game rules
with VGDL,” in 2015 IEEE Conference on
Computational Intelligence and Games (CIG),
Tainan: IEEE, Aug. 2015, pp. 185–192. doi:
10.1109/CIG.2015.7317941.

[23] M. J. Nelson and M. Mateas, “Towards Automated
Game Design,” in AI*IA 2007: Artificial
Intelligence and Human-Oriented Computing, vol.
4733, R. Basili and M. T. Pazienza, Eds., in Lecture
Notes in Computer Science, vol. 4733. , Berlin,
Heidelberg: Springer Berlin Heidelberg, 2007,
pp. 626–637. doi: 10.1007/978-3-540-74782-
6_54.

[24] J. Levine et al., “General Video Game Playing,”
Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2013, p. 7 pages, 336517 bytes. doi:
10.4230/DFU.VOL6.12191.77.

[25] T. Adams and Z. Adams, Slaves to Armok: God of
Blood Chapter II: Dwarf Fortress. (2006). Bay 12
Games.

[26] T. Sylvester, RimWorld. (Oct. 2018). Ludeon
Studios.

[27] Caves of Qud. (Jul. 15, 2015). Freehold Games,
South Bend, IN and Berkeley, CA.

[28] “MIARMY | Home.” Accessed: Aug. 29, 2024.
[Online]. Available:
https://www.miarmy.com/#/

[29] “Massive Software.” Accessed: Aug. 29, 2024.
[Online]. Available:
https://www.massivesoftware.com/

[30] “Defuzz Process - Feishu Docs.” Accessed: Aug.
29, 2024. [Online]. Available:
https://basefount.feishu.cn/wiki/GhgswVsrfidf
OVkmFcgc1XoYnKA

[31] W. Shao and D. Terzopoulos, “Autonomous
pedestrians,” Graph. Models, vol. 69, no. 5–6, pp.
246–274, Sep. 2007, doi:
10.1016/j.gmod.2007.09.001.

[32] Q. Yu and D. Terzopoulos, “A Decision Network
Framework for the Behavioral Animation of
Virtual Humans”.

[33] W. Wright, The Sims. (2000).
[34] R. Zubek, “Needs-based AI,” in Game

Programming Gems 8, A. Lake., Cengage Learning,
Florence, KY, 2010.

[35] “Concurrent Interactions in The Sims 4.”
Accessed: Aug. 30, 2024. [Online]. Available:
https://gdcvault.com/play/1020190/Concurre
nt-Interactions-in-The-Sims

[36] “Modeling Individual Personalities in The Sims
3.” Accessed: Aug. 29, 2024. [Online]. Available:
https://www.gdcvault.com/play/1012450/Mo
deling-Individual-Personalities-in-The

[37] I. Horswill and S. Hill, “Fast, Declarative,
Character Simulation Using Bottom-Up Logic
Programming,” presented at the AIIDE
Workshop on Experimental Artificial
Intelligence in Games, University of Utah, Utah,
USA, Oct. 2023.

[38] I. Horswill and S. Hill, “Fast, Declarative,
Character Simulation Using Bottom-Up Logic
Programming,” in AIIDE 24,

A. Code Appendix

Other than the two code fragments inside the body of

this document, the remain fragments in this appendix

contain the entirety of the Simulation code written in

TED/Simulog.

Code Fragment 1
NPCs (people) and their Needs

Code Fragment 2
NPC start and end conditions

Code Fragment 3
Need assignments

Code Fragment 4
Locations and their Advertisements

Code Fragment 5
Action satisfies need table

Code Fragment 6
Person action state table

Code Fragment 7
Destinations and Arrivals

People = Exists("People", person);

NeedByType = Predicate("NeedByType",

 person.JointKey, needType.JointKey, need);

Unsatisfied = Definition("Unsatisfied",

 person).Is(NeedByType[person, __, need],

 NeedValue[need] == Zero);

People.StartWhen(People.Population[count],

 count < 5000, RandomPerson)

 .EndWhen(People[person],

 Unsatisfied[person]);

foreach (var needOfType in NeedTypeList)

 People.StartCauses(Add(NeedByType[person,

 needOfType, need]).If(

 NewNeed[RandomFloat[0.002f, 0.007f],

 need]));

FairgroundLocations = Parse(

 "FairgroundLocations", location.Key,

 locationType.Indexed, coords.Indexed,

 ParseFairgroundLocations());

LocationAdvertisements = Parse(

 "LocationAdvertisements",

 location.Indexed, actionType.Indexed,

 delta, ParseLocationAdvertisements());

ActionSatisfiesNeed = Parse("ActionSatisfi…",

 actionType, needType,

 DefaultActionSatisfiesNeed.Select(

 pair => (pair.Key, pair.Value)));

PersonActionAt = Predicate("PersonActionAt",

 person.Key, actionType.Indexed,

 location.Indexed, moving.Indexed);

PersonActionAt.Overwrite = true;

PersonMovingTo = Definition("PersonMovingTo",

 person, location).Is(PersonActionAt[

 person, __, location, true]);

Destinations = Predicate("Destinations",

 person, coords)

 .If(People[person], PersonMovingTo[person,

 location], FairgroundLocations);

ArrivedAtDestination = Predicate("…", person)

 .If(People[person], PersonMovingTo[person,

 __], HasPersonArrived[person]);

Code Fragment 8
Arrival state update

Code Fragment 9
Action timer

Code Fragment 10
Ready to select action

Code Fragment 11
Action assignment

Code Fragment 12
Action completion and reward

PersonActionAt.Set(person, moving, false)

 .If(ArrivedAtDestination);

ActionTimer = Timer("Action", person);
ActionTimer.StartWhen(ArrivedAtDestination,

 PersonActionAt,

 ActionTypeInteractionTime[actionType,

 count]);

ReadyToSelectAction = Event("…", person)

 .OccursWhen(People[person],

 !People.Start[person],

 !PersonMovingTo[person, __],

 ActionTimer.NotOnTimer);

PersonActionAt.Add[person, actionType,

 location, true].If(PersonActionBestScore);

CompletedAction = Definition("…", person,

 needType, delta).Is(

 ActionTimer.TimerFinished,

 PersonActionAt,

 ActionSatisfiesNeed[actionType,

 needType],

 LocationAdvertisements);

NeedByType.Set((person, needType), need).If(

 CompletedAction[person, needType, delta],

 NeedByType[person, needType, needCol],

 UpdateNeed[needCol, delta, need]);

