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Abstract 
Video games have historically been limited in the number of characters under AI control. This is all 
the more true for games that use declarative systems which are generally used for turn-based or 
otherwise non-real-time games. While a declarative system can obviously be used for a real-time 
simulation, we wanted to test the limits of how far it can be scaled for large numbers of characters. 
This paper shows how 5000 characters can run simultaneously and in real-time with 60fps 
performance on a modern laptop using a declarative logic programming language. 
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1. Introduction 

Performance considerations have traditionally 

restricted the number of simultaneous NPCs, 

particularly when those characters are driven by 

symbolic rules or other declarative methods. Many 

systems that do support this kind of character AI are 

also turn-based rather than real-time. In this paper, 

we show that 5000 The Sims-style characters can be 

run simultaneously on a modern laptop using a 

version of logic programming. 

Although Sims-style ‘needs-based AI’ is relatively 

simple, and the rendering of the characters in our 

demo is extremely simple (particle-like dots on the 

screen), this still demonstrates that symbolic, 

declarative techniques can be pushed well beyond 

what would have been though possible. In this paper, 

we will discuss the system, and the techniques used to 

make it so efficient. 

2. Related Work 

Many AI-based games have used symbolic declarative 

systems - logic, symbolic rules, or some kind of rule 

engine - for social reasoning and character control. 

Façade [1] used a reactive planner, ABL [2], that 

incorporated a forward-chaining production system. 

Prom Week [3] also used a forward-chaining 

production system, Comme Il Faut [4]. CiF’s successor 

the Ensemble Engine [5] is similarly a forward-

chaining production system. The Sims 3 [6] used a 

rule system to script the interactions between 

situations, personality traits, and actions available to 

a given character [7]. MKULTRA [8] and City of 

Gangsters [9] both used logic programming to 

implement social reasoning [10]. F.E.A.R. makes use of 
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a planner, GOAP, that allows for declarative 

definitions of various AIs in the GDBEdit database tool 

[11]. 

One of the earliest and most influential symbolic 

systems for games is the Inform 7 language [12], [13] 

that allows designers to build interactive narrative 

systems using declarative statements. The Versu 

simulationist narrative system [14], [15] used a 

custom logic programming language, Praxis, based on 

an exotic modal logic called eremic logic (aka 

exclusion logic) [16]. The Lume system [17] made 

extensive use of Prolog’s definite clause grammars 

[18], [19] for text generation. Lapeyrade has also used 

Prolog for better character decision making [20].  

All these games and systems use declarative 

programming for either some component of character 

control and/or social reasoning. Some are turn-based 

games like in the Versu platform, others are batch like 

jobs used in Townlikes (that still need to run fast but 

not at any particular frame rate), and others are real-

time systems like with GOAP in F.E.A.R.. Even when 

used for real-time character control the number of 

NPCs is usually relatively low and the portion of the 

game logic that is declarative are the relations 

between possible actions and the world state. The 

code for how a Goal executes is still usually written in 

an imperative manner [11]. 

There are also entire games that have been built 

using declarative languages, such as those built with 

the video game description language - VGDL [21]. 

Currently this technique is used to generate 2D tile 

arcade style games with the help of ASP and 

evolutionary search [22], [23]. These games are 

playable by a human and are fully declarative - 

everything from character controls to game logic to 

the tilemap itself are declared in text files that are 
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used to generate a game. The purpose of these games 

is largely to allow for testing of general video game 

playing (GVGP) algorithms on several different games 

[24]. 

In large part because of the expense of AI 

simulation, games involving large-scale character 

simulation are relatively rare. The best known is 

Dwarf Fortress [25], which supports real-time 

simulation of small hundreds of characters. Achieving 

this level of performance requires implementation in 

C++ and significant programmer effort to optimize 

cache locality and minimize pointer chasing. 

RimWorld is a very similar game that also involves 

social simulation for the purpose of storytelling [26]. 

Caves Of Qud is a game that is more like adventure 

mode in DF and, similarly, features hundreds of 

characters that all have various social relations and 

need to choose what action to take each tick [27]. 

Unlike DF Fortress mode and RimWorld, this rogue-

like experience is turn based and as such doesn’t need 

to run at a particular frame rate. While all these games 

feature large numbers of characters acting in a world, 

none use declarative systems for the control of these 

NPCs. 

Some large-scale crowd simulation exist for use in 

film and other rendered media forms [28], [29]. Some 

of these tools even allow the behaviors of the agents 

to be stated in sentence form for specific decision 

nodes [30]. These tools target rendered scenes for 

film and television and as such do not need to run in 

real-time. 

Some crowd simulation techniques have been 

used to study crowd dynamics and the creation of 

autonomous agents for visualization [31], [32]. Shao 

have claimed real-time performance at 30fps when 

animating up to 1400 characters moving and 

pathfinding around a 3D scene on 2007 hardware 

[31]. This was done with over 50,000 lines of C++ and 

uses a simple action selection method reminiscent of 

needs-based AI. 

3. Needs-based AI 

Needs-based AI is a famous technique for controlling 

characters in video games that was created for The 

Sims [33], [34], and has been used in other games like 

Roller Coaster Kingdom and an RPG for Lord Of the 

Rings [34]. 

Needs-based AI attempts to fulfill various needs 

for NPCs by searching over the actions of each object 

available to them (i.e. advertisements) and weighting 

the cost of completing the action against each 

character’s needs with some scoring function [34]. 

Each character goes about completing actions that 

have been selected/assigned to them, potentially 

getting rewarded for the various tasks. When no more 

actions remain in the queue of selected actions the 

NPC searches for all the advertisements on all the 

objects around them then scores each action based on 

their needs and selects the best scoring 

advertisement. The equation for selecting the best 

scoring advertisement is 𝑎𝑟𝑔𝑚𝑎𝑥(𝑆) where 𝑆 is the 

set of all scored advertisements for a given character. 

The complexity of scoring all advertisements is 

𝑂(𝑁𝐿𝑀), where 𝑁 is the number of people, 𝐿 is the 

objects nearby, and 𝑀 is the advertisements at each 

location. Once you have scored all advertisements for 

all characters, you can run the argmax equation for 

each character. Since argmax is operating on the set of 

all advertisements for each person, the complexity of 

selecting an action from the scored set is 𝑂(𝑁𝐿𝑀), 

where 𝑁 is the number of people, 𝐿 is the objects 

nearby, and 𝑀 is the advertisements. Given that these 

two steps are each of the same complexity, and that 

the two iterations are sequential, the total complexity 

of action selection is 𝑂(𝑁𝐿𝑀). 

The selected advertised action sequence is then 

added to the queue of actions to be completed. Needs-

based AI has always had the ability to sequence 

actions, a technique called action chaining [34], but in 

The Sims 4 the developers wanted to be able to have 

more interesting action sequences. To accomplish this 

the developers allowed the system to simultaneously 

dispatch multiple actions from the queue when those 

actions would not interfere with one another [35]. 

The Sims 3 had a goal of creating a larger varied 

living world, and to do this while remaining playable 

several optimizations were employed [36]. Some 

execution optimizations such as hierarchical planning 

and commodity-interaction maps as well as some 

level of detail (LoD) optimizations such as auto-satisfy 

curves and story progression [36]. Hierarchical 

planning takes the usually 𝑂(𝑁𝐿𝑀) approach of 

searching for every person (𝑁), for every location (𝐿), 

and then for every advertised action (𝑀), and makes 

it 𝑂(𝑁 + 𝐿 + 𝑀) by instead selecting each step one at 

a time. Commodity-interaction maps are essentially 

dictionaries of needs and the actions that satisfy those 

needs, and they are used to trade off compute time 

searching over all advertisements on all objects to see 

if they satisfy a sim’s needs with storage cost. The LoD 

optimizations tick the actions of sims not in the 

current focused level when they come into focus 

(auto-satisfy), and tick certain subsystems like the 

wants of the town itself at a lower rate (story 

progression). As a result, although the simulation 

notionally supports hundreds of characters, the vast 

majority of them are effectively idle at any given time. 



As well, although The Sims 3 has many more possible 

motives (needs) than the 8 used in previous versions, 

any individual character has a small number of those 

possible motives. 

3.1. Scoring functions 

The scoring function that we use here is the most 

sophisticated function listed in Zubeks description of 

needs-based AI, an attenuated need-delta scoring 

function that is additionally attenuated based on 

distance [34]. One difference in our version is that 

each action can only satisfy one need. In the version of 

action performance outlined by Zubek, some actions 

can be sequences, and this can potentially allow for 

multiple needs to be fulfilled by an advertisement. As 

such, the algorithm for calculating an advertised 

action score must sum the attenuated scoring across 

all needs. Instead of summing across all needs, with 

each action only satisfying one need, we can simplify 

the attenuated need-delta scoring with distance 

attenuation to: 

 

𝑠𝑐𝑜𝑟𝑒 = 𝐷(𝐴𝑛𝑒𝑒𝑑(𝜈𝑐𝑢𝑟𝑟𝑒𝑛𝑡) − 𝐴𝑛𝑒𝑒𝑑(𝜈𝑐𝑢𝑟𝑟𝑒𝑛𝑡 + 𝛿)) 

 

where 𝜈𝑐𝑢𝑟𝑟𝑒𝑛𝑡  is the current need value of a particular 

need type, 𝛿 advertised need delta, 𝐴𝑛𝑒𝑒𝑑  is an 

attenuation function, and 𝐷 is the distance 

attenuation function. 𝐴𝑛𝑒𝑒𝑑(𝑥) =
10

𝑥
 as is discussed in 

Zubek, but instead of the mentioned 𝐷(𝑥) =
𝑥

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒2 

function ours is  𝐷(𝑥) =
𝑥

1+(
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒2

2870
)
   to tune down the 

degree to which NPCs attenuate distance. The value 

2870 was not chosen at random, it relates to the size 

of the map that the characters move on and effectively 

scales 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒2 to be between 1 and 30 (as opposed 

to a max of 82369). 

One more simplification in the current demo is 

that all locations only advertise a single action. In 

effect, a location has a type that correlates to a need. 

As such, the complexity of this scoring algorithm can 

be given as 𝑂(𝑁𝐿), where 𝑁 is the number of NPCs 

that need to select actions and 𝐿 is the number of 

locations to search over. 

4. Real-time logic programming 

To test the scaling limits of declarative symbolic 

logical methods for real-time NPC control, we built a 

state-fair simulator, as one might find in a tycoon 

game, using a logic-programming implementation of 

needs-based AI. NPC’s wander through the state fair 

eating, drinking, seeking entertainments, and so on. 

The simulation consists of a map with 367 locations, 

onto which we spawn a few thousand NPCs. Each 

character has 6 motivations (hunger, bathroom, 

games, amusement, music, and shopping) that 

influence their action selection. 

4.1. Needs-based AI in logic 
programming 

The logic for the core steps of scoring all available 

actions and then selecting the best action for each 

Figure 1: State Fair Sim running in Unity 



character is contained in the few lines of code found in 

Code Fragment 1 and 2. For a discussion of the 

programming language used, see [37], [38], but the 

following fragments can be explained thusly: 

Code Fragment 1 defines a predicate that is true 

when a given person performing a given advertised 

action at a given location has a given score.  It states 

that it has that score when the location advertises that 

action, it fulfills some need, and score is the result of 

distance-based scoring, above, along with some noise 

to add a small amount of randomness to the action 

selection: 

Code Fragment 1 
Action Scoring 

 
 

Given this, Code Fragment 2 defines a predicate 

stating a given action/location pair is best for a given 

character (note that this is essentially the same as the 

argmax equation, just written in logic): 

Code Fragment 2 
Action Selection 

 
 

4.2. Implementation optimizations 

The performance of the system is dependent on 

several optimizations.  Many of these have to do with 

the specific programming language implementation: 

strong typing, bottom-up execution, parallel 

execution, native code compilation.  The details of the 

language implementation are outside the scope of this 

paper but see [37], [38] for more information.   

Another important optimization might be called 

implicit need decay. Normally, a needs-based AI 

system would update each need state of each 

character on every tick.  For our system, this would be 

prohibitively expensive. Instead, we store 

timestamped need values; a need value is represented 

as a tuple of (𝑣, 𝑡, 𝜌) stating that the need had value 𝜈 

at time 𝑡, and was decaying at rate 𝜌. We can then 

compute the current need value on demand as: 

 

𝜈𝑐𝑢𝑟𝑟𝑒𝑛𝑡 =  max(𝜈 − (𝑡 −  𝑡𝑛𝑜𝑤) ∗ 𝜌) 

 

with  𝑡𝑛𝑜𝑤 being the current time. Since these values 

are read infrequently but would otherwise be updated 

frequently, this is much more efficient.  As is 

recommended by Zubek, decay rates for a given need 

vary slightly from character to character to give them 

slightly different “personalities”. These decay rates 

are chosen randomly (Appendix A, Code Fragment 3). 

4.3. Action States 

For characters to perform a selected action they must 

move to the location of the selected action and then 

take some steps to complete the action before the 

need is satisfied. While we could allow for completion 

of actions instantaneously, to be more in line with The 

Sims implementation - as specified by Zubek – we 

instead have some action performance before a need 

is satisfied.  

When an action is initiated, the system tells the 

unity code to start moving the character, and then 

marks the character as being in progress towards that 

location. When the character arrives at the location 

they are marked as no longer moving towards their 

destination. When the action is completed, unity 

informs the system, and the system updates the need 

states, and generates a new next action (Appendix A, 

Code Fragment 6, 7, 8, 11). In place of the animations 

that would normally be running when performing an 

action, we simulate an animation running by starting 

a timer that indicates the selected action is being done 

(Appendix A, Code Fragment 9). 

Unlike in The Sims all actions in this simulation 

are individual, there is no chaining of actions nor are 

there any concurrent interactions. This simplification 

is what allows us to use a timer for each person taking 

an action, when the timer is running the “animation” 

is playing and when the timer completes the character 

PersonActionScoring = Predicate("…", 

    person.Indexed, actionType.Indexed, 

    location.Indexed, score).If( 

        ReadyToSelectAction, 

        CoordForPerson[person, coords], 

        LocationAdvertisements,  

        deltaOffset == delta +  

                       RandomFloat[-2, 2], 

        ActionSatisfiesNeed, 

        FairgroundLocations[location, __, 

                            otherCoords], 

        NeedByType[person, needType, need], 

        DistanceScoring[need, deltaOffset, 

                        coords, otherCoords, 

                        score]); 

PersonActionBestScore = Predicate("…", 

    person.Key, actionType.Indexed, 

    location.Indexed).If( 

        ReadyToSelectAction[tempPerson], 

        Maximal((person, actionType, 

                 location), score, 

        PersonActionScoring[tempPerson, 

            actionType, location, score] & 

        person == tempPerson)); 



has completed the action and finished its animation. 

While we do not have proper animations for each sim, 

when on a timer for an action the sim is moving 

randomly around the location that they have selected 

an action at. 

4.4. Destinations & Unity Interface 

For control of character movements, we have a simple 

interface between the action selection simulation and 

the Unity code that performs movements. The 

Simulog code provides a table of people and the 

destination they are moving to (Appendix A, Code 

Fragment 7) that the Unity code iterates over each tick 

to adjust NPC positions. The Unity code in turn 

provides a function that we can call to ask if someone 

has arrived at their destination. With this simple 

interface of action selection assigning destinations to 

the Unity code and Unity only needing to report back 

when someone has arrived at the destination, we are 

able to change out the underlying movement 

implementation without needing to do any 

modifications to the action selection algorithm. 

Currently, the movement is all simple vector addition 

moving sims at a set speed straight towards their 

destination. 

5. Performance 

With 5000 NPCs running this simulation on an Apple 

M3 Pro we are able to achieve 60fps or better for 95% 

of frames when running some performance tests. Our 

average inner-frame time was 13.87ms with a 

standard deviation of 2.077ms. Figure 3 shows our 

performance curve once stable (from 12500 to 25000 

ticks) which is somewhat bell curve shaped with a 

longer tail to the right. Most of the tail to the right is 

likely garbage collection or some other Unity process 

as that performance tail is not present in Figure 4 

when we show the performance curve for just the rule 

execution times. 

 

 

Figure 2: Performance of the State Fair Sim 



 
Figure 3: State Fair Sim Inter-Frame Intervals 

 
Figure 4: Action Selection Rule Execution Times 

 

The graph in Figure 2 shows the progression of the 

simulation over a 25,000-tick run time. The first 5000 

ticks spawn one person every tick causing the slow 

rise in compute time for both the action selection 

mechanism and the inner-frame updates. For the next 

7500 ticks characters begin to arrive at their first 

destination and need to select their next action, 

creating a tiered slope in the action selection 

performance as various numbers of characters need 

to select an action. From 12500 ticks on we have a 

steady state where performance is consistent and 

linear with NPCs now moving around and selecting 

actions at a rate of 13.7 actions selected on average 

per tick for our sample with a σ of 3.8 actions. 

The cost of moving 5000 NPCs and rendering the 

scene (amongst other functions that Unity runs) is the 

difference between the action selection rule execution 

time and the inner-frame time. As can be seen in 

Figure 1, this difference (looking from 5000 ticks to 

9000 ticks where action selection has not yet taken 

off) is about 7ms. There is also a baseline cost to 

running the rest of the declarative simulation when 

not performing action selection. As can be seen in 

Figures 2 and 4, the cost of running our declarative 

simulation on 5000 characters without any action 

selection takes about 1ms. 

 

 
Figure 5: Performance of Action Selection 

 

After these baseline costs, the variation in 

performance largely comes down to the number of 

characters selecting actions on any given tick. The 

performance cost for one NPC selecting an action 

averages to just under 0.3ms. This gap between each 

number of agents selecting is clearly visible in Figure 

2 and 5 with both the color mapped data points and 

green lines indicating the moving average for each 

tier. The same gaps are not visible in the inter-frame 

time data (grey dots in Figure 2), although there is 

clearly a correlation between the range of 

performance for rule execution and for total inter-

frame time. 

5.1. Pushing character counts 

The performance shown above is only possible when 

we first compile our rules down to native C# code, the 

process for which is described in [37], [38], and then 

we run our compiled code in parallel. The type of 

parallelism employed is per predicate, not per sim, 

utilizing the dependency graph for all predicates to 

spin up tasks that run the compiled rules for a given 

predicate only when its dependencies have finished. 

Without these optimizations the maximum character 

count at nearly the same performance is 2000 NPCs. 

One optimization that could be employed to 

further stabilize performance (and potentially allow 

for more NPCs) is to throttle the number of characters 

that are selecting actions on a given tick. With a limit 

on the number of characters selecting actions that is 

slightly higher than the un-limited average number 

selecting you could effectively cap the cost of doing 

action selection while still eventually performing the 

same sets of needs-based calculations. This technique 

was not employed in this demo but a commercial 

system that cares more about never dropping below 

60fps may want to implement such a throttle. 



6. Conclusion 

AI character control based on declarative 

programming can be surprisingly performant. 

Through a combination of compilation, parallel 

evaluation, and careful optimization, thousands of 

characters can be run at video frame rate. Although 

this demonstration involves simple needs-based AI, 

we intend to investigate more complicated techniques 

in the future. 
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A. Code Appendix 

Other than the two code fragments inside the body of 

this document, the remain fragments in this appendix 

contain the entirety of the Simulation code written in 

TED/Simulog. 

Code Fragment 1 
NPCs (people) and their Needs 

 

 
 
 
 

Code Fragment 2 
NPC start and end conditions 

 

Code Fragment 3 
Need assignments 

 

Code Fragment 4 
Locations and their Advertisements 

 

Code Fragment 5 
Action satisfies need table 

 

Code Fragment 6 
Person action state table 

 

Code Fragment 7 
Destinations and Arrivals 

 

 
 

People = Exists("People", person); 

NeedByType = Predicate("NeedByType", 

    person.JointKey, needType.JointKey, need); 

Unsatisfied = Definition("Unsatisfied", 

    person).Is(NeedByType[person, __, need], 

               NeedValue[need] == Zero); 

People.StartWhen(People.Population[count], 

                 count < 5000, RandomPerson) 

      .EndWhen(People[person], 

               Unsatisfied[person]); 

foreach (var needOfType in NeedTypeList) 

    People.StartCauses(Add(NeedByType[person, 

                       needOfType, need]).If( 

        NewNeed[RandomFloat[0.002f, 0.007f], 

                need])); 

FairgroundLocations = Parse( 

    "FairgroundLocations", location.Key,  

    locationType.Indexed, coords.Indexed, 

    ParseFairgroundLocations()); 

LocationAdvertisements = Parse( 

    "LocationAdvertisements", 

    location.Indexed, actionType.Indexed, 

    delta, ParseLocationAdvertisements()); 

ActionSatisfiesNeed = Parse("ActionSatisfi…",  

    actionType, needType, 

    DefaultActionSatisfiesNeed.Select( 

        pair => (pair.Key, pair.Value))); 

PersonActionAt = Predicate("PersonActionAt", 

    person.Key, actionType.Indexed, 

    location.Indexed, moving.Indexed); 

PersonActionAt.Overwrite = true; 

PersonMovingTo = Definition("PersonMovingTo", 

    person, location).Is(PersonActionAt[ 

        person, __, location, true]); 

Destinations = Predicate("Destinations", 

                         person, coords) 

    .If(People[person], PersonMovingTo[person, 

        location], FairgroundLocations); 

ArrivedAtDestination = Predicate("…", person) 

    .If(People[person], PersonMovingTo[person, 

        __], HasPersonArrived[person]); 



Code Fragment 8 
Arrival state update 

 

Code Fragment 9 
Action timer 

 

Code Fragment 10 
Ready to select action 

 

Code Fragment 11 
Action assignment 

 

Code Fragment 12 
Action completion and reward 

 
 

 

 

PersonActionAt.Set(person, moving, false) 

    .If(ArrivedAtDestination); 

ActionTimer = Timer("Action", person); 
ActionTimer.StartWhen(ArrivedAtDestination, 

    PersonActionAt, 

    ActionTypeInteractionTime[actionType, 

                              count]); 

ReadyToSelectAction = Event("…", person) 

    .OccursWhen(People[person], 

                !People.Start[person], 

                !PersonMovingTo[person, __], 

                ActionTimer.NotOnTimer); 

PersonActionAt.Add[person, actionType, 

    location, true].If(PersonActionBestScore); 

CompletedAction = Definition("…", person, 

    needType, delta).Is( 

        ActionTimer.TimerFinished, 

        PersonActionAt, 

        ActionSatisfiesNeed[actionType, 

            needType], 

        LocationAdvertisements); 

NeedByType.Set((person, needType), need).If( 

    CompletedAction[person, needType, delta], 

    NeedByType[person, needType, needCol], 

    UpdateNeed[needCol, delta, need]); 


