
Evaluating the Stability of the Smogon Tier List for Competitive
Pokémon Battling
Nathan Arnold, Nicholas Fluty, Ryan D. Flores, Judy Goldsmith and Brent Harrison

Abstract
Tier lists are often used to describe the relative power of different competitive game elements. These are used so that players can
evaluate the relative power of certain aspects of a competitive game and act accordingly. In the game Pokémon, each Pokémon is
assigned into a tier based on its power, performance in tournament play, and potential synergy with other Pokémon it could team with.
These tier lists, however, are typically designed based on observation, meaning that their quality could suffer.

In this work, we treat tier lists as coalition formation games. By doing this, we can leverage algorithms designed to find stable
coalitions. In terms of tier lists, this would mean that each Pokémon would be in the correct tier and have no desire to move to a higher
or lower tier. To evaluate this, we examine the Smogon tier list for Generation 1 Pokémon to determine its stability.

Keywords
Coalition formation games, Artificial intelligence, Machine learning, Stability

1. Introduction
In competitive games, tiers are used to refer to the relative
power of some element of the game compared to others. For
a first-person shooter, for example, certain more powerful
weapons may be considered "higher tier" than less powerful
weapons. Similar concepts can be applied to other game
genres as well. In this paper, we examine how tiers are as-
signed in the game, Pokémon. Specifically, we are looking to
examine whether or not established tier lists in Pokémon are
stable. We computed expected win rates for 1v1 battles, and
used those values to examine a tier list on a popular fan site.
Doing so challenged assumptions we had made about how
the tier lists on a popular fan site, Smogon, were constructed,
and pointed to differences between individual battle prowess
and utility of individuals in teams. Nonetheless, the Smogon
tier list had very few significant instabilities, indicating that
there’s a strong correlation between individual win rates
and usefulness in teams of Pokémon.

Pokémon is a game in which users construct a team of
six combatants, the titular Pokémon, to do battle against
an opponent’s team of six Pokémon. For this game, the
player community often designs tier lists to rank the rela-
tive strength of each Pokémon, which primarily serves as
a reference tool for team construction. These tier lists take
into account various factors, including but not limited to
the Pokémon’s stats, their observed usage in tournaments,
how well they synergize with other Pokémon, and how well
they perform against other commonly used Pokémon. Ul-
timately, these tier lists aim to reflect the usefulness of a
given Pokémon when played on a team that maximizes its
potential against teams that one would expect to see used
competitively, where each team consists strictly of Poké-
mon in or below the assigned tier. The team-based nature
of this game makes examining the properties of these tier
lists interesting compared to other games, such as fighting
games, where tiers are assigned based only on each char-
acter’s ability to defeat any other character in an isolated
environment. This paper highlights the difference between
these two approaches to tier assignments.

For a tier list to be useful, one would expect that all mem-
bers of a tier are correctly represented in terms of their
power level. Formally describing such a tier list, however,

11th Experimental Artificial Intelligence in Games Workshop, November
19, 2024, Lexington, Kentucky, USA.

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

can be challenging. To do so, we choose to frame the for-
mation of a tier list as a coalition formation game. A coali-
tion formation game is a game in which agents form or are
assigned to coalitions with other agents in order to maxi-
mize some measure of utility. For tier list formulation, the
coalition is a tier, and the utility is some measure of win
probability against members of their current tier and below.

If we formulate tier list formulation as a coalition forma-
tion game, then a useful tier list is one that is stable. The
notion of stability is central to coalition formation work
[1]. The key idea is that agents that are assigned to a stable
coalition structure have no motivation to change to another
coalition.

There are many notions extant for stability in coalition
formation games. They differ in what it means for one or
more agents to have motivation to block a coalition structure
— to destabilize it. One motivation for Pokémon to change
tiers would be that their win probabilities, computed over
their own and lower tiers, would be higher from another
tier. In the work presented here, motivation to change tiers
requires not only that the individual Pokémon’s win proba-
bility (over opponents in its own and lower tiers) goes up,
but that no other Pokémon’s win probability goes down on
account of that move. Thus, the moves that are allowed here
appear to be win-win (so to speak).

In this paper, we investigate how stability can be used
to describe the quality of tier lists for the game, Pokémon.
As a case study, we specifically investigate the Smogon tier
lists for generation 1. Smogon is a competitive Pokémon
community which hosts tournaments, resources on compet-
itive battling, and more. For each generation of Pokémon,
Smogon constructs tier lists based on Pokémon stats, tour-
nament performance, and various other factors. These tier
lists are highly regarded in the competitive Pokémon com-
munity, which makes them an ideal candidate to analyze in
terms of their stability.

The remainder of this paper is organized as follows. First,
we present a definitions of coalition formation games and
stability that we will use for the rest of the paper. We then
provide more details on the Smogon tier lists that we will be
using in this paper. We then outline how we choose to model
the utility of a coalition. Next, we describe our experiments
in modeling the stability of the Smogon tier list and the
results of those experiments. Finally, we discuss factors
that might explain the difference between tiers based on
1v1 battles and tiers generated by the Smogon community

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

https://creativecommons.org/licenses/by/4.0/deed.en


based on the Pokémons’ performance in 6v6 battles.

2. Coalition Formation Games
Coalition formation games are a mathematical formalism
for various ways to partition agents into coalitions in order
either to optimize utility or to provide stability, as explained
below. They are used as a formalism in the businesss world,
the world of communication networks [2], for multi-robot
team formation [3], and for modeling good partitioning of
gamers or game agents into disjoint groups.

More formally, a coalition formation game (CFG) consists
of a set of agents that are to be partitioned into coalitions
according to their preferences over partitions. This is consid-
ered a cooperative game, because the agents are not assumed
to be in competition with each other. One well-studied
family of CFGs are the hedonic games [4], where players’
preferences concern only their own coalition. The CFG of
interest here is not hedonic: agents have preferences over
their own and a subset of other coalitions, known as tiers.

Coalition formation games have a rich history of applica-
tions to gaming, see, e.g., [5, 6, 7, 8, 9, 10, 11, 12, 13, 14]. In
most of these cases, the goal is to divide human players into
groups for the purpose of gaming. For instance, Roles and
Teams Hedonic Games allow League of Legends players to
specify both the role(s) or champions they prefer and the
team compositions [5]. Anchored Team Formation Games
are focused on interpersonal preferences in settings with a
game manager or other anchor [10]. There, it is assumed
that preferences include information about whether another
gamer will be GM or player, and allow for preferences over
pairs of players that are unpleasant together, or achieve
synergy together.

Unlike the previously mentioned CFGs, Tiered Coalition
Formation Games (TCFGs) [9] were inspired by the group-
ings of Pokémon into tiers on the Smogon website. We
initially assumed — going back to the original paper on
TCFGs [9] — that the tiers were based on the ability of the
Pokémon in that tier to defeat other individual Pokémon
in their own and lower tiers. The Pokémon do not, in most
of the work on TCFGs (see also [15, 14]), express prefer-
ences, per se. Rather, the value they have for a partition is
a function of the likelihoods that they will beat the other
Pokémon in their own and “lower" tiers.

Definition 1. A tiered coalition formation game [9]
is a coalition formation game (𝑁,⪰), where 𝑁 =
{𝑎1, 𝑎2, ..., 𝑎𝑛}; an outcome, or tier list, is a totally or-
dered spanning set of disjoint coalitions [𝑇1, 𝑇2, ..., 𝑇𝑘];
Seen(𝑎𝑖, 𝑇 ) for tier list 𝑇 denotes the set of all agents that
are in the same tier as 𝑎𝑖 or are in a lower (prior) tier; and the
preferences for each agent 𝑎𝑖 in each possible tier list 𝑇 are
determined solely by the set of agents 𝑎𝑖 “sees" in 𝑇 .

Since we are investigating the stability of the Smogon
tier list, we can expect a fixed, finite number of tiers. This
enables us to utilize a 𝑘-tiered coalition formation game to
model tier list formulation.

Definition 2. A 𝑘-tiered coalition formation game [16]
is a coalition formation game (𝑁,⪰, 𝑘), where 𝑁 =
{𝑎1, 𝑎2, ..., 𝑎𝑛}, 𝑘 ≤ 𝑛 is in N and an outcome is a span-
ning, totally ordered tier list of exactly 𝑘 disjoint nonempty
coalitions, and 𝑆𝑒𝑒𝑛(𝑎𝑖, 𝑇 ) for tier list 𝑇 is defined and deter-
mines preferences as in a standard tiered coalition formation
game (𝑁,⪰).

There are many potential solution concepts for coalition
formation games, such as optimization over agents’ satis-
faction (here, measured for each agent as the average win
values over all seen agents). Even this must be modified
with some form of optimization, such as total satisfaction,
or maximin satisfaction [17], or perhaps Pareto optimality
[18]. However, we are interested stability here, particularly
Nash stability: the notion that, given a 𝐾-tier list 𝑇 , each
agent is in the tier that is best for them.

Definition 3. A Nash stable 𝑘-tier list is a 𝑘-tier list 𝑇 such
that there is no agent 𝑖 in a tier with other agents that can
move to another existing tier such that it gains utility, and
there is no agent 𝑗 in a tier by itself that can move its tier
to a different position in the order such that it gains util-
ity. Equivalently, 𝑇 is Nash stable if there is no 𝑘-tier list
𝑇 ′ that differs from 𝑇 in the tier of one agent 𝑎𝑖 such that
Seen(𝑎𝑖, 𝑇

′) ≻𝑖 Seen(𝑎𝑖, 𝑇 ).

3. The Smogon Tier List
The following is a brief overview of the Smogon tier list on
the fully evolved Pokémon in RBY, as of 2024.

The list divides the agents into eight categorizations: in
order from lowest to highest, they are ZU, ZUBL, PU, NU,
UU, UUBL, OU, and Uber. However, in the context of RBY,
the labels ZUBL, UUBL, and Uber are not considered tiers;
rather, these are Pokémon who would otherwise belong to
the tier immediately below, but are considered too powerful
for balanced matches in that tier [19]. It is computationally
less accurate to describe the Smogon list as an 8-tier list
than it is to regard each of these three tiers as a subcategory
of the one below it. We therefore list the membership of
each tier combining ZU with ZUBL, UU with UUBL, and
OU with Uber. This tier list is shown in Table 1, with the
names of members of ZUBL, UUBL, and Uber italicized.

ZU+ZUBL

Butterfree, Flareon, Hitmonlee, Lickitung,
Magneton, Marowak, Muk, Onix,

Parasect, Pidgeot, Primeape, Sandslash,
Weezing, Beedrill, Ditto, Farfetch’d,

Golbat, Hitmonchan, Arbok

PU
Arcanine, Fearow, Machamp, Magmar,
Nidoqueen, Pinsir, Porygon, Rapidash,

Scyther, Seaking, Vileplume

NU

Aerodactyl, Blastoise, Charizard, Golduck,
Kabutops, Kingler, Moltres, Mr. Mime,
Nidoking, Poliwrath, Raticate, Seadra,

Venomoth, Venusaur, Wigglytuff

UU+UUBL

Articuno, Clefable, Dewgong, Dodrio,
Dragonite, Dugtrio, Electabuzz, Electrode,
Golem, Gyarados, Kangaskhan, Ninetales,

Omastar, Persian, Raichu, Tangela,
Tentacruel, Vaporeon, Hypno, Lapras

OU+Uber

Alakazam, Chansey, Cloyster, Exeggutor,
Gengar, Jolteon, Jynx, Rhydon,

Slowbro, Snorlax, Starmie, Tauros
Victreebel, Zapdos, Mew, Mewtwo

Table 1
Smogon’s tier list on RBY fully evolved Pokémon, 2024



4. Modeling Utility
In order to analyze the stability of a tier list, we need to
model the utility of an agent based on an assigned tier. In a
TCFG, agent 𝑎𝑖 gains utility based on the set of agents in its
own tier and in all lower tiers. For Pokémon battles, this set
of seen agents represent what Pokémon it could possibly
have on its team or play against. This means that the utility
of seeing each agent would ideally reflect the advantage or
disadvantage of seeing the Pokémon.

However, this change in advantage cannot be perfectly
represented in terms of pairings of Pokémon, evidenced by
the fact that a combination of three particular Pokémon on
a team might yield a notable advantage. However, any other
approach would likely involve a lot more computation and
make the data harder to analyze.

To simplify this, we choose to examine 1v1 battles to
determine the utility of each pair, using a measure based
on pairwise matchup outcomes. We give Siler’s original
definition, and Arnold’s probabilistic variant.

Definition 4. A deterministic matchup-oriented prefer-
ence framework [9] is a framework in which an agent’s utility
is equal to the number of favorable matchups minus the num-
ber of unfavorable matchups among its seen agents. In other
words, an agent derives a utility of 1 from each seen agent it
is projected to win against, and a utility of −1 from each seen
agent it is projected to lose against.

We note that Pokémon battles are not determined, even
given identical timings, due to the probabilities associated
with attacks.

Definition 5. A probabilistic matchup-oriented preference
framework [16] is a preference framework in which, for agents
𝑖 and 𝑗 such that 𝑖 has a probability 𝑝 of winning against 𝑗,
0 ≤ 𝑝 ≤ 1, Win[𝑖, 𝑗] := 2(𝑝− 0.5).

Using reliable open source tools (see Section 5.1.2), we
are able to quickly and accurately simulate 1v1 battles, and
all state information can be observed and modified in a way
that allows for the implementation of a large number of ma-
chine learning techniques. In order to collect win rates for
all 1v1 battle combinations for the 81 fully evolved Pokémon
on the Smogon tier list (excluding agents playing against
themselves), we would simulate the 3240 unique battle con-
figurations, where each agent learns a policy to optimize its
chances of winning. The resulting win percentages using
the policies can be linearly translated into the value of each
agent seeing each other agent, where 0 represents a 50%
chance of each Pokémon winning the battle. These win rates
were then used to construct a Nash stable tier list, using the
work of [14]. They were also used to assess the stability of
Smogon’s tier list.

5. Experimentation
In this section, we describe in detail the processes we used
first to determine win percentages through simulated battles
and second to test the stability of the Smogon tier list.

5.1. Calculating Win Percentages
5.1.1. Pokémon Used

We set the stat values for each Pokémon to the highest
value that the games allow, as is done by default in most

tournaments. To avoid overcomplicating the nature of our
experiments, we determined that each Pokémon would have
a single moveset for all battles. This is a reasonable repre-
sentation of competitive play since players do not know in
advance what Pokémon their opponent will use and have to
configure their movesets in advance. For each Pokémon, we
used the most common moveset according to usage statistics
on Pokémon Showdown [20].

While variations from this most common moveset for
a given Pokémon may be employed for counter-selection
or team cohesion, we suspected that this decision would
equate to each agent playing optimally against the sum of
other agents, within the space of its available actions. As
later described in our Results section, we found that some
of the movesets used by the Pokémon in our experiment
seemed less optimized for 1v1 matches than others. Opti-
mizing the movesets ourselves could have prevented this,
but we preferred not to stray from normal usage or risk
manipulating our results with any kind of bias.

5.1.2. Software Used

To simulate Pokémon battles, we used the pkmn engine,
a Pokémon battle simulation engine optimized for perfor-
mance in larger scale projects [21]. This open source tool
accurately implements battles as done in the original game
code and the popular simulator Pokémon Showdown. Poké-
mon Showdown is sponsored and endorsed by Smogon for
competitive battles, as it provides practical implementations
of battles for all Pokémon generations and a practical inter-
face for playing online. The pkmn engine currently only
fully supports the first generation of Pokémon, but it is able
to run faster than Showdown while having less unneeded
overhead.

We also used and credit another open source project,
Wrapsire, which provides a C++ interface for the compiled
library produced by the pkmn engine [22]. We opted to use
C++ for this project because of its advantages for memory
management, multi-threading, and compiler optimizations.

5.1.3. Monte Carlo Tree Search

Pokémon is a stochastic turn-based game, where a turn is
initiated by both players selecting an action independently
but concurrently. In order to collect win percentages that
are consistent with the skill expected of competitive players,
action selection must be mindful of what gives the highest
chances of winning. We used Monte Carlo Tree Search
(MCTS) to do this.

We chose to use MCTS primarily because of its ability to
handle uncertainty and large state spaces. Additionally, we
expected that the average number of turns for a 1v1 battle
would be under six. This makes it very easy to repeatedly
simulate games to the end state and back-propagate values
until one of four actions is seen as the most reliable.

Pokémon uses a random seed as a factor in many different
calculations, most notably in standard damage calculation
and secondary move effects. Because of this, it is possible
that a turn initiated from a given game state by given ac-
tions has hundreds of possible unique resulting game states
depending on the seed. This is not problematic for MCTS
because it naturally weighs the value of an action based on
the frequency that different states result from it, and these
states similarly develop better heuristics for move selection
as the search continues.



The primary problem we faced with implementing MCTS
for Pokémon battles was with determining how to handle
concurrent action selection. Minimax trees are commonly
used for turn-based games like chess, but these assume that
players alternate turns and know what the enemy previ-
ously selected. This assumption contradicts the nature of
competitive Pokémon battles, as it almost always involves
players intentionally being unpredictable. This is due to a
natural rock-paper-scissors-like relationship among strate-
gies. For example, recovery may counter gradual damage,
while applying buffs or statuses may counter recovery, and
the right damaging move may yield an enemy’s buffs inef-
fective or make them lose before they gain the longer-term
benefits.

To address this issue, we randomly determine, at every
simulation of a turn, who will select their action first, and
who will pick based on that selected action. While this does
not perfectly represent the distribution of move combina-
tions used in competitive games, it effectively balances the
scenarios where a player either picks their safest action or
correctly predicts that their opponent is picking their safest
action. This gives an equal advantage to each player, while
also producing more consistency in game outcomes, which
is helpful for assuring the integrity of our results. It is also
significantly less computationally expensive than develop-
ing stochastic policies, which makes it easily applicable at
all frequently visited states during a search.

Other design notes had a lesser effect on the results. Pri-
marily, since total health points and amounts of damage
dealt are rather inflated, we bucketed states together when
counting visits and related information, ignoring the bottom
five bits of both Pokémon’s health points when identifying
a state during a search. This allows for much quicker con-
vergence in almost all matchups and is easily modifiable in
our code.

5.1.4. Simulating All Battles

To get reasonable precision on our collected win percent-
ages, we aimed for 1,000 battles of each matchup, using
MCTS at each turn. Noting that states are often visited
many times over the course of this many battles, including
the guaranteed start state, we stored actions returned by
the algorithm for use in the remaining battles.

We did extra iterations of MCTS for the first turn, as
the result would be used in all 1,000 battles. We did fewer
iterations as the turn count increases, as these states were
expected to have smaller search spaces and be visited in
fewer of the battles. For each pair, we did 5,000,000 iterations
for the first turn, 500,000 for the second turn, and each
following turn had half the iterations of the previous turn,
to a minimum of 10,000 iterations. This also helped combat
the problem of some battles carrying on particularly long
due to recovery moves.

Unfortunately, some matchups required more memory
than expected to maintain search data across this many bat-
tles. To keep run times reasonable while running multiple
battles in different threads, we terminated a small portion
of the matchups while their battle count was between 100
and 1,000. We considered 100 battles to be a sufficient num-
ber that would not compromise the integrity of our results,
but we performed 1,000 battles for a large majority of the
matchups.

The code iterated through all unique combinations of the
81 fully evolved Pokémon and output the number of times

the Pokémon coming first alphabetically won. Because ties
only occurred in a small number of matches, we handled
them by simply counting them as half of a win, which can
be seen as the match not favoring either side.

6. Results
The full 81 × 81 Win matrix is too large to be shown here.
We used this resulting matrix to consider the 5-TCFG with
the Smogon tier list as a partition.

First, in Table 2, we show the Nash deviations from the
Smogon list, assuming that the agents’ power network is
accurately represented by our produced Win matrix. Non-
deviating agents are shown in black text. Agents deviating
to an adjacent tier for a utility improvement not exceeding
5 are in gray text. Agents deviating to a non-adjacent tier
are in cyan text, agents whose deviation would improve
their utility by more than 5 are in orange text, and agents
with both properties are in magenta text.

ZU+ZUBL

Butterfree, Flareon, Hitmonlee, Lickitung,
Magneton, Marowak, Muk, Onix,

Parasect, Pidgeot, Primeape, Sandslash,
Weezing, Beedrill, Ditto, Farfetch’d,

Golbat, Hitmonchan, Arbok

PU
Arcanine, Fearow, Machamp, Magmar,
Nidoqueen, Pinsir, Porygon, Rapidash,

Scyther, Seaking, Vileplume

NU

Aerodactyl, Blastoise, Charizard, Golduck,
Kabutops, Kingler, Moltres, Mr. Mime,

Nidoking, Poliwrath, Raticate, Seadra,
Venomoth, Venusaur, Wigglytuff

UU+UUBL

Articuno, Clefable, Dewgong, Dodrio,
Dragonite, Dugtrio, Electabuzz, Electrode,

Golem, Gyarados, Kangaskhan, Ninetales,
Omastar, Persian, Raichu, Tangela,
Tentacruel, Vaporeon, Hypno, Lapras

OU+Uber

Alakazam, Chansey, Cloyster, Exeggutor,
Gengar, Jolteon, Jynx, Rhydon,

Slowbro, Snorlax, Starmie,Tauros,
Victreebel, Zapdos, Mew, Mewtwo

Table 2
Smogon’s list with Nash deviations highlighted

This tier list is not Nash stable. For example, Hypno’s
utility would increase by 3.74 if it moved to the OU tier. This
increase means that Hypno maintains a higher chance of
winning than losing against the Pokémon of the OU tier,
so it would like to move into that tier. To put this number
into perspective, a utility increase of 16 would result from
a 100% win rate against the new 16 OU Pokémon it sees.
The increase of 3.74 indicates an averaged 61.7% win rate
against the 16.

Arnold et al. [13] introduced a stronger notion of stability,
socially conscious stability, in which an agent may only
move if it does not decrease any other agent’s satisfaction
with the tier list. In fact, Hypno’s move would have the
permission of all affected agents, so Smogon’s tier list is also
not socially consciously stable based on the results of our
1v1 battles.

7. Discussion
Let us assume, for the moment, that the tier list on these
agents held by Smogon is the most accurate list on these



agents in this setting, and that the matchup probabilities
produced by our method are accurate. Then, while we have
seen that this list has several potential deviations under
matchup-oriented preferences, approximately half of the
agents would not deviate, and many of the rest only deviate
to an adjacent tier for a relatively small gain in utility. This
would indicate that matchup-oriented preferences are able
to capture most of the complexities of the Pokémon game.

There are a number of complications and confounding
variables which may have influenced these results. What
follows is an enumeration and discussion of factors that we
are aware of.

Team composition. Matchup-oriented preferences are
concerned only with the outcome of 1v1 matchups. How-
ever, the underlying competitive environment of RBY as-
sumes teams of 6 Pokémon. The use of a Pokémon within
the context of a team with synergy is critical when consid-
ering its strength in competitive games. For example, in our
produced data, the agents Rhydon, Golem, and Dugtrio all
perform significantly worse than usage data would suggest.
However, these three agents are Ground-type Pokémon,
which have several common weaknesses (and therefore
many unfavorable matchups) but can play an important
role on a team, such as covering an Electric-type weakness.

Counter-selection. If a tier contains some dominating
agent, then agents that have a favorable matchup against
the dominating agent are elevated in favorability. For ex-
ample, Articuno is a very commonly used Pokémon in UU
matches [19], and its abundance may increase the frequency
of use in that tier for Ninetales, who according to our data
wins against Articuno 83.1% of the time. However, Nine-
tales’s performance against other Pokémon in UU causes
it to prefer demoting itself to the lower tier PU for a gain
of 0.684 utility. Counter-selection has already been studied
in the context of Pokémon Go [12], and there is a research
avenue to examine counter-selection as a temporal element
of TCFGs.

Final state of winner. Another consequence of Poké-
mon being a match between teams of six is that an agent’s
state after defeating its opponent is significant to the course
of a match. Two agents may be equally reliable at defeating
the same other agent, but one may often win at low health,
while the other consistently wins unscathed. In fact, the
low health Pokémon could be paralyzed and thus almost
useless to the team, while the full health Pokémon could
have raised its stats to pose an even greater threat to the
opponent’s next Pokémon. Competitive teams often include
at least one such Pokémon that can "sweep" the opponent’s
team under the right circumstances, and their movesets are
usually designed around this playstyle. We note that these
agents may have had their utility underrepresented by the
data we collected. This similarly applies to speedy Pokémon
specializing in finishing off opposing Pokémon weakened
earlier in battle.

Sleep moves. Sleep moves are usually considered the
best moves in the game. Smogon recognizes this and en-
forces a restrictive rule limiting the number of opposing
Pokémon a player can put to sleep to just one at any time.
Our 1v1 battles naturally do not get restricted by this rule.
Additionally, Smogon only puts a few sleep-inducers into
OU because each team usually just has one, making most of
them irrelevant to the highest tier of play.

Changing nature of Smogon’s list. While we consider
Smogon’s tier list on RBY a useful metric to compare against,
it is not necessarily canonical. When this project began,

Smogon only had three categorizations for fully-evolved
Pokémon in RBY: UU, OU, and Uber. The community sur-
rounding this game is alive and active, and the list has un-
dergone many changes in the past several years to better
accommodate the beliefs and behaviors of that community
over time.

Agent flexibility. In our training, we only considered
what we found to be the most common set of known moves
for each agent. For some agents, such as Alakazam and
Slowbro, this is sufficient, as players utilizing those agents
rarely deviate from the most common moveset [19]. Others,
such as Chansey and Snorlax, exhibit much greater flexibil-
ity that players can take advantage of, making them more
favorable for use in a team. Further, we applied an assump-
tion that players have full knowledge of their opponents,
which ignores a potential advantage one could have by us-
ing less common moves. This partial information nature
likely caused the less predictable Pokémon with various
movesets to have a lower measured utility.

Considering all these issues, we are pleased that many of
the agents in the Smogon tier list do not deviate or deviate
by a small amount. This suggest that an individual Poké-
mons’ battle prowess is a decent indicator of its value to
a team. When we take into consideration the above ways
that each Pokémon may have been disadvantaged by our
data collection, we can guess even more accurately what tier
Smogon puts the Pokémon in. Nonetheless, some dynamics
of a Pokémon’s purpose in current competitive games may
only make sense in the context of the current trends.

8. Conclusion
In this paper, we investigate the stability of the Smogon tier
list for competitive Pokémon battling. By casting the tier
list formation problem as a coalition formation game, we
are able to determine if each tier in the tier list is a stable
coalition. This is important because it helps us determine
if a Pokémon would achieve more utility by moving up or
down a tier in the tier list.

Our results show that while many Pokémon are correctly
placed in an appropriate tier, there are several that could
achieve higher utility by moving up or down a tier. This
means that, by considering only 1v1 battles, their power
level is not being accurately described, which could result in
an imbalanced and unfun competitive battling environment.

In short, stability is an interesting measure for tier lists in
competitive play, but it does not capture the synergies that
are possible in teams. On the other hand, the near-stability
of Smogon’s list with respect to 1v1 battles tells us that
individual battles are still a relevant part of team formation.

References
[1] R. J. Aumann, J. H. Dreze, Cooperative games with

coalition structures, International Journal of game
theory 3 (1974) 217–237.

[2] W. Saad, Z. Han, M. Debbah, A. Hjorungnes, T. Basar,
Coalitional game theory for communication networks,
Ieee signal processing magazine 26 (2009) 77–97.

[3] B. P. Gerkey, M. J. Matarić, A formal analysis and
taxonomy of task allocation in multi-robot systems,
The International journal of robotics research 23 (2004)
939–954.



[4] A. Bogomolnaia, M. O. Jackson, The stability of hedo-
nic coalition structures, Games and Economic Behav-
ior 38 (2002) 201–230.

[5] M. Spradling, J. Goldsmith, X. Liu, C. Dadi, Z. Li, Roles
and teams hedonic game, in: International Conference
on Algorithmic Decision Theory, Springer, 2013, pp.
351–362.

[6] M. Spradling, Role Based Hedonic Games, Ph.D. thesis,
University of Kentucky, 2015.

[7] M. Spradling, J. Goldsmith, Stability in role based
hedonic games., The International FLAIRS Conference
Proceedings 28 (2015) 85–90.

[8] M. J. Spradling, Optimizing expected utility and sta-
bility in role based hedonic games, in: The Thirtieth
International Flairs Conference, 2017.

[9] C. Siler, Tiered coalition formation games, The In-
ternational FLAIRS Conference Proceedings 30 (2017)
210–214.

[10] J. Schlueter, C. Addington, J. Goldsmith, Anchored
team formation games, in: The International FLAIRS
Conference Proceedings, volume 34, 2021.

[11] J. Schlueter, Novel Hedonic Games and Stability No-
tions, Ph.D. thesis, University of Kentucky, 2021.

[12] D. Crane, Z. Holmes, T. T. Kosiara, M. Nickels,
M. Spradling, Team counter-selection games, in: 2021
IEEE Conference on Games (CoG), IEEE, 2021, pp. 1–8.

[13] N. Arnold, S. Snider, J. Goldsmith, Socially conscious
stability for tiered coalition formation games, Annals
of Math and Artificial Intelligence (2024). https://link.
springer.com/article/10.1007/s10472-023-09897-4.

[14] N. Arnold, Tiered Coalition Formation Game Variants,
Stability, and Simulation, Ph.D. thesis, University of
Kentucky, 2024.

[15] N. Arnold, J. Goldsmith, Core stability and nash sta-
bility in k-tiered coalition formation games, Under
review (2024).

[16] N. Arnold, J. Goldsmith, S. Snider, Extensions to tiered
coalition formation games, The International FLAIRS
Conference Proceedings 35 (2022). doi:https://doi.
org/10.32473/flairs.v35i.130708.

[17] N. Waxman, S. Kraus, N. Hazon, On maximizing egal-
itarian value in k-coalitional hedonic games, arXiv
preprint arXiv:2001.10772 (2020).

[18] M. Bullinger, Pareto-optimality in cardinal hedonic
games., in: AAMAS, volume 20, 2020, pp. 213–221.

[19] Smogon, RB formats, https://www.smogon.com/dex/
rb/formats/, 2024.

[20] G. Luo, Pokemon Showdown, https:
//pokemonshowdown.com/, 2012-24. Accessed
on May 6, 2024.

[21] K. Scheibelhut, libpkmn, 2021-24. URL: https://github.
com/pkmn/engine.

[22] pasyg, wrapsire, 2023-24. URL: https://github.com/
pasyg/wrapsire.

https://link.springer.com/article/10.1007/s10472-023-09897-4
https://link.springer.com/article/10.1007/s10472-023-09897-4
http://dx.doi.org/https://doi.org/10.32473/flairs.v35i.130708
http://dx.doi.org/https://doi.org/10.32473/flairs.v35i.130708
https://www.smogon.com/dex/rb/formats/
https://www.smogon.com/dex/rb/formats/
https://pokemonshowdown.com/
https://pokemonshowdown.com/
https://github.com/pkmn/engine
https://github.com/pkmn/engine
https://github.com/pasyg/wrapsire
https://github.com/pasyg/wrapsire

	1 Introduction
	2 Coalition Formation Games
	3 The Smogon Tier List
	4 Modeling Utility
	5 Experimentation
	5.1 Calculating Win Percentages
	5.1.1 Pokémon Used
	5.1.2 Software Used
	5.1.3 Monte Carlo Tree Search
	5.1.4 Simulating All Battles


	6 Results
	7 Discussion
	8 Conclusion

