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Abstract
The video game Armed Assault 3 (often shortened to ArmA 3) is part of a popular series of online military simulation role-playing
games by Bohemia Interactive. Many players take part in cooperative organizations, with larger communities hosting 50–100 players
simultaneously on dedicated servers. Prior to hosting a game session, players are assigned to roles corresponding to positions in a
rank-based tree structure. Assigning players (“billeting") to the game-specific hierarchy happens before play, but billeting can take
enormous effort and time to satisfy individual players’ preferences over roles, levels of the command hierarchy, and individuals with
whom they will interact. A stable assignment of players to their teams is integral both for their enjoyment of the game and the overall
effectiveness of the team. Inspired by the existing coalition formation literature, we re-cast that pre-play activity as a coalition formation
game and explore how various coalition formation algorithms perform on the billeting process using synthetic data.
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1. Introduction
The 2013 video game Armed Assault 3 (usually shortened to
ArmA 3) by Bohemia Interactive is a realistic military simula-
tion game, or MilSim, which gives players an online sandbox
to role-play in military settings. Realistic MilSim communi-
ties in ArmA 3 have large organizational structures which
emulate real-life chain of command, but these communities
often have difficulty assigning players to different in-game
roles. This process, called billeting, is especially difficult in
large MilSim communities because they, especially in ArmA
3, often have hundreds of members, with anywhere from 50
to 100 people trying to play in a cooperative game instance
all at once. The first author reports that it takes several days
for billeting, and that process often leads to acrimonious
disputes, in part driven by interpersonal tensions between
players who do or do not wish to interact with each other
in fire teams or in adjacent roles in the chain of command.
In order to form stable teams, i.e., teams where no players
have incentive to change their assignment, we define this
more formally in the section on coalition formation games.
community leadership has to spend a lot of time and energy
on team formation, often with mixed success. Given the
time and effort required to find these solutions, utilizing
algorithmic methods for finding stable teams would greatly
reduce the burden on community leadership.

In this paper, we explore how algorithms for forming sta-
ble coalitions in coalition formation games can be applied
to team formation in ArmA 3. Using stability as a measure
of goodness or utility, we examine a number of coalition for-
mation algorithms and evaluate them based on the overall
utility (stability) of the billets that they generate. Specifi-
cally, we explore how various simulated annealing and local
search methods can be used to billet a set of synthetic ArmA
3 users based on a set of known preferences.

The remainder of the paper is organized as follows. In Sec-
tion 2 we describe related work about coalition formation,
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and about other games with similar billeting/assignment
problems. In Section 3 we provide an overview of both
ArmA 3 and the billeting process. We then describe the
coalition formation algorithms that we will investigate in
this paper and outline our experiments and results.

2. Related Works
We observe billeting problems arising in large-scale online
community games, most notably in roleplay settings which
require individuals to be divided into teams with a clear
structural hierarchy. One example case is for the game
EveOnline (https://www.eveonline.com/), in which players
and their ships are assigned to fleet formations based on the
intrinsic rank and skills of their in-game character. Outside
of strictly video games, we note billeting problems being
relevant for many other large-community structures, such
as coordinating text-based roleplay communities.

A coalition formation game is a cooperative multi-game
agent game. The input is a set of agents and their prefer-
ences or utilities over coalitions they might be assigned to;
the output is a partition of agents into coalitions. The com-
putational goal of a coalition game problem might be to find
an optimal or near-optimal partition, as we do here, or to
find a stable partition for some notion of stability, or to de-
termine if such a stable partition exists. We are particularly
interested, here, in hedonic coalition formation games[1, 2],
also known as hedonic games, where agents’ preferences or
utilities are defined only over each coalition they might be
assigned to. If we interpret the billeting problem for ArmA
3 as the problem of finding a single (or “grand") coalition
with optimal total utility, we do not consider the effects of
other teams’ billeting, so we are in the hedonic setting.

3. ArmA 3
In this section we describe ArmA 3, and mention the ways
in which we codify rules that are left to individual gaming
communities.

3.1. Overview
ArmA 3 is a highly diverse community with many different
play-styles, game-modes, and levels of realism. For the pur-
pose of this paper, we construct a coalition formation game
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for a “realism"-focused MilSim community.1 Like many
popular communities, we will primarily base our coalition
game’s structure off of North American Treaty Organization
(NATO) protocol and procedure.

There are no formal rules from the game developers, as
each community gets to choose their own organizational
rules. Most realistic ArmA 3 units attempt to follow the
standard NATO ORBAT that is used by modern Western mil-
itaries. (https://web.archive.org/web/20070826233341/http:
//\orbat.com/site/toe/toe/usa/platoontoe.html) We therefore
mimic this structure as well.

3.2. Billeting
The formation of an instance of an ArmA 3 mission (hence-
forth for simplicity just “mission") first requires each player
to be assigned a role for that mission’s “billet" before the
mission is hosted at some fixed time. The role a player is as-
signed is based on several factors, including but not limited
to:

1. Player preferences towards working with certain
individuals.

2. The player’s rank in the unit.
3. The player’s qualifications earned from training.

The billet is constructed as a tree of players, where each
player node has command and authority over every player
in each child branch, and has most direct authority over
the immediate children to the player. The tree is composed
of different nested coalitions, in which players are part of
these coalitions depending on where in the tree they are
located. For the purpose of this research, we ignore any
attached “support companies" with their own parallel but
separate command, and instead focus on the main tree of
standard infantry. We do this because this main tree is the
largest and most complex.

3.3. Tree Structure
The billet hierarchy tree is composed of the following nested
coalitions:

A Fireteam is a small team of infantrymen (players) and
is the lowest in the hierarchy at the leaf nodes of the tree.
A Fireteam is a strict unit composition that must adhere to
the following criteria to be considered valid:

1. Must be made of exactly 4 players.2

2. The Fireteam consists of four roles, of which each
member must have the proper qualifications to be
assigned the role. These roles are:

a) Team Leader (TL)
b) Autorifleman (AR)
c) Grenadier (GRN)
d) Rifleman (RFL)

3. The Team Leader is a special role, and requires play-
ers to have a high enough rank (e.g. Corporal or
Sergeant) in order to occupy.

1The official ArmA 3 community website, units.arma3.com, allows com-
munities to identify with the tags of “realism", “semi-realism," and
“relaxed." The latter of these two are much less likely to have a rigid
billet structure, so we will not consider them for this paper.

2In practice, team sizes can vary to account for different organizations
or numbers of players, but for this paper we are only interested in the
case where team sizes and roles are fixed.

A Squad is the next level above a Fireteam. Squads are
composed of a Squad Leader and exactly 2 distinct Fireteams.
The Squad Leader must have a higher minimum rank and
additional leadership qualifications.

A Platoon is the next level above a Squad. Platoons are
led by a Platoon Leader and a Platoon Sergeant, the latter
acts as the second-in-command to the former. Both must
have additional rank and training qualifications. Platoons
are themselves composed of anywhere from 1 to 4 Squads,
offering some flexibility to the command structure.

At the highest level is the Company, which consists of
the Company Leader, and they are in charge of all Platoons
under their command. In practice, there is little reason
to go higher than this as ArmA 3 servers usually do not
have enough player slots to necessitate larger structures,
but actual NATO unit organization can be expanded much
further if needed.

3.4. Ranks
A player agent will have a rank that represents their time,
experience, and recognition of merit within a community.
The ranks that we use in this paper are based on the list
of ranks used by the United States Army. Each role within
the hierarchy tree has a minimum rank requirement, and
players cannot be assigned a role outside their rank. Play-
ers usually are assigned to the highest-ranking role that
they are qualified for in order that individuals best qualified
to lead may do so. However, players of a higher rank can
choose to move down the hierarchy tree. This is an action
we call self-demotion, and happens in some uncommon cir-
cumstances to fill in gaps lower in the tree, or to fulfill a
player’s preferences if they would rather not lead for the
day.

3.5. Qualifications
Each role within the hierarchy tree has its own set of skill or
training qualifications that a player must have in order to be
assigned that role. For example, an Autorifleman must have
the training necessary to use their machine gun, and a Team
Leader must have some basic leadership training. These
qualifications are tracked for every player, and a player
must possess all of the prerequisite qualifications in order
to be assigned to a role. These qualifications are Boolean,
as players will either have a given qualification or they will
not.

Many ArmA 3 realistic MilSim communities have a large
number of available qualifications to train for, many of
which require prerequisite qualifications themselves. In
general, the leadership of many ArmA communities elect to
have simple skill trees with no more than one prerequisite
per qualification whenever possible. This is to keep progres-
sion simple for players to understand and for leadership to
keep track of. Our algorithms allow for the dynamic creation
of a qualification tree with any number of prerequisites to
explore more complicated assignments.

Gaming-based or game-inspired coalition formation
games has been explored. We mention a few here, from
which AACFGs take elements. The first are Anchored Team
Formation Games [3, 4], which (a) assigns players to coali-
tions to play TTRPGs, and (b) also makes use of roles (GM
and players). More relevant, perhaps, are Role Based Hedo-
nic Games [5, 6], introduced to model preferences of League
of Legends players, in which players express preferences
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over their own champion (role) and the champions that
make up the team. In addition, Tiered Coalition Formation
Games (TCFGs) [7], introduced to model the stratification
of Pokémon by the fan site Smogon, has some of the flavor
of the role hierarchy of AACFGs. We later give a formal
definition of TCFGs and of the related notion of socially
conscious stability, as we build on that stability notion.

In summary: each player has a maximum rank they can
be assigned, and a set of qualifications that enable particular
billets. Each player has utilities for each other player, though
the inter-player utility within a given billet is scaled so that
it decreases geometrically with the branch distance in the
hierarchy tree. Players on separate branches do not contribute
to each other’s utility.

Armed Assault Coalition Formation Games (AACFGs) are
similar to Anchored Team Formation Games (ATFGs), which
were designed to capture table formation for table-top role-
playing games [3, 4]. AACFGs and ATFGs are both exten-
sions of Additvely Separable Hedonic Games, in which each
agent has utility assigned to every other agent. The agent’s
total utility for a coalition is the sum of the assigned utilities
to each other member of that coalition.

Definition 1. [1] Additively Separable Hedonic Games
(ASHG) are a class of hedonic game where each player 𝑖 ∈ 𝑁
assigns values to each player 𝑗 ∈ 𝑁 , expressed as 𝑣𝑖(𝑗); for all
𝑖, 𝑣𝑖(𝑖) is 0. The utility a player 𝑎𝑖 derives from each coalition
𝑆 ∈ 𝒩𝑖 such that 𝑖 ∈ 𝑆 is defined as 𝑢𝑖(𝑆) =

∑︀
𝑗∈𝑆 𝑣𝑖(𝑗).

An assignment of agents (or here, players) to coalitions is
stable if there is no agent or agents that would have higher
utility in coalition(s) other than those assigned. Notions
of stability in coalition formation games [8] vary in the
number of agents that can move, which agents’ utilities are
considered, and whether those utilities have to be strictly
improved or merely non-decreasing. The two most common
notions of stability are Nash and core stability. The simplest
notion, Nash Stability [? ], holds if no single agent can
increase its utility by joining a different coalition than the
one to which it is assigned. An assignment is core stable [1]
if no group of agents can create a new coalition of their own
such that each agent in the new coalition improves their
utility.

Note that Nash stability is not meaningful in games in
which coalitions have fixed sizes, or have structures driven
by fixed positions and roles; in such settings, an individual
agent typically cannot deviate to or from a coalition with-
out invalidating that coalition. Similarly, core stability has
limited usefulness for settings with fixed positions and roles,
as there may be valid core deviations under the definition
of core stability which would cause agents outside of those
deviations to no longer belong to a legitimate coalition. A re-
lated game, Roles and Teams Hedonic Games, models League
of Legends teams of fixed size and considers swaps of agents
between coalitions as the driver of stability [5, 9].

Swap exchange stability has a rich history, well surveyed
in [10], for instance. We mention a few additional appli-
cations: kidney exchanges [11] (there is a huge literature
there), in which biologically incompatible donor-recipient
pairs are placed in a cycle or chain3 where donors are
swapped so recipients receive compatible kidneys; marriage
markets where mates are similarly exchanged, perhaps in
sequence [12]; other matching markets [13]; roommate as-
signment problems [14, 12, 15].

3Kidney exchange chains start with a kidney donor who has died.

We now formally define AACFGs. Informally, an instance
consists of the baseline preferences agents have over each
other, and the factors that define agents’ utilities for given
assignments (or billets — we use the terms interchangeably),
namely the structure of the hierarchy, or tree of roles. We
also include the requirements of each role, namely qualifi-
cations.

Definition 2. An instance of an ArmA Coalition Forma-
tion Game (AACFG) consists of

• a preference matrix 𝑃 that implicitly defines the num-
ber of players;

• an array of qualifications for those players;
• a discount 1/𝑠 for utilities as a function of distance in

the assignment tree, or billet;
• the structure of the assignment tree (depth of the tree,

qualifications for each role).

We are interested in assignments, or billets, for AACFGs.

Definition 3. A billet is a mapping from players to roles. A
valid billet is one in which the assigned players each have
the qualifications necessary for their assigned role.

The utility for player 𝑎 for billet 𝐵 depends on 𝑎’s utility for
its descendants, ancestors, and (if 𝑎 is assigned to a Fireteam)
those in its Fireteam. We define 𝐷𝐵(𝑎) to be those players,
and

𝑢𝑎(𝐵) =
∑︁
𝑐∈𝐷𝑎

(𝐵)𝑥𝑎(𝑐).

We define 𝑢(𝐵) = Σ𝑎𝑢𝑎(𝐵).

We borrow heavily from the work on Tiered Coalition
Formation Games to define our notion of stability.

Definition 4. [7] A tiered coalition formation game
(TCFG) is a coalition formation game (𝑁,⪰), where 𝑁 =
{𝑎1, 𝑎2, ..., 𝑎𝑛}; an outcome, or tier list, is a totally or-
dered spanning set of disjoint coalitions [𝑇1, 𝑇2, ..., 𝑇𝑘];
Seen(𝑎𝑖, 𝑇 ) for tier list 𝑇 denotes the set of all agents that
are in the same tier as 𝑎𝑖 or are in a lower (prior) tier; and the
preferences for each agent 𝑎𝑖 in each possible tier list 𝑇 are
determined solely by the set of agents 𝑎𝑖 “sees" in 𝑇 [7].

Note that TCFGs are not hedonic, in that an agent affected
by the assignment of all seen agents, even those not in its
own tier. Thus, when an agent moves from one tier to
another, it potentially affects the utilities of agents in any
intervening tiers.

We are interested in billets that are not only valid, but
stable. We consider two notions of stability based on swaps.

Definition 5. Given an instance 𝐼 of AACFG and valid billet
𝐵 for 𝐼 , 𝐵 is swap stable if there is no pair of agents 𝑎, 𝑏 that
are assigned to different roles by 𝐵, such that swapping 𝑎 and
𝑏 leaves the billet valid, and improves the utilities for both.

The notion of swap stability is appealing, but may not be
achievable.

Lemma 1. Not all instances of AACFGs have swap stable
billets.

Proof. We define an instance 𝐼 = 𝑃,𝑄, 𝑠 of an AACFG,
and a valid billet 𝐵. Let all players have all qualifications
for Fireteam roles, and let there be sufficient other qualified
players to have a valid billet. Let 𝑎 and 𝑏 have no qualifica-
tions for higher ranks. We define the preference matrix 𝑃



by 𝑃 [𝑎, 𝑏] = 5 and 𝑃 [𝑏, 𝑎] = −5. For all other players 𝑥,
𝑃 [𝑥, 𝑎] = 1 and 𝑃 [𝑥, 𝑏] = −1, and otherwise 𝑃 [𝑥, 𝑦] = 0.
Thus, 𝑎 wants to be in a Fireteam with 𝑏, but 𝑏 does not want
to be in a Fireteam with 𝑎. If 𝑎 and 𝑏 are billeted in the same
Fireteam, and any player billeted in another Fireteam (with
utility 0) can improve their utility by swapping with 𝑏. If 𝑎
and 𝑏 are in separate Fireteams, any player in 𝑏’s Fireteam
(with utility -1) can improve their utility by swapping with 𝑎.
Thus, 𝑎 will chase 𝑏 and 𝑏 will run away, ad infinitum.

The problem that arises in our counterexample is that
𝑎 is allowed to join 𝑏’s Fireteam, to the detriment of 𝑏’s
utility. There are a variety of notions of stability that extend
consideration of utility beyond that of the blocking agents.
To help us think about this, we define a notion of stability
particular to TCFGs.

Definition 6. A socially consciously stable tier list is a tier
list 𝑇 in which there exists no agent 𝑎𝑖 that can improve its
utility by moving to a new position in the tier list without
decreasing the total utility of all other agents [16, 17].

We can understand socially conscious stability (SCS) to
require permission from all affected agents before an agent
can move. It generalizes the notions of contractual stability
(which requires that an agent leaving a coalition must leave
behind other agents whose utility is not lowered — “per-
mission to leave") and individual stability (which requires
that an agent joining a coalition cannot lower the utility of
any agent in that coalition — “permission to enter") [2]. We
define a notion of stability that is similar to contractually
individual stability, but is defined in terms of agents trading
coalitions, or swapping.

Definition 7. An assignment 𝐵 is Socially Conscious Swap
Stable (SCSS) if there is no pair of agents 𝑎 and 𝑏 assigned
to roles 𝐵(𝑎), 𝐵(𝑏) such that swapping them creates a new
assignment 𝐵′ with

• 𝑢𝐵′
𝑎 > 𝑢𝐵

𝑎 ;
• 𝑢𝐵′

𝑏 > 𝑢𝐵
𝑏 ;

• ∀𝑥 /∈ {𝑎, 𝑏} 𝑢𝐵′
𝑥 ≥ 𝑢𝐵

𝑥 .

3.6. Computational Complexity of AACFGs
We note that AACFGs generalize Additively Separable He-
donic Games with Fixed-Size Coalitions (AS-HGFSCs) [10].
In particular, given an AS-HGFSCs, we can construct an
AACFG instance by adding players and assigning the unique
roles above the Fireteam level, while treating the input
agents from the AS-HGPSC instance as players fully quali-
fied for Fireteams. (Note that we need to loosen our restric-
tion of Fireteams having exactly four members.)

From this observation, we get all of the hardness results
for AA-HGFSCs and some inspiration for algorithms. For
instance, in what Bilo, et al. [10] call SSS (strictly swap
stability) and what we call SCSS, there is always an SCSS
billet. For our work, this assumes that there is some valid
billet. In the current formulation, it is easy to check for
a valid billet, so we can limit our attention to instances
that have them. However, for their version of the problem
(which fixes the number of coalitions rather than the size,
but can also specify the sizes of those coalitions), finding the
socially-optimal assignment of maximal utility is NP-hard.

4. Heuristic Algorithms
We used local search and simulated annealing. Note that
local search, also know as “hill climbing" [18], can only take
improving moves, which tends to get stuck in local, non-
global optima. Simulated annealing allows for occasional
random “jumps," which have the possibility of jumping away
from sub-optimal hills. Given that the range of values of
pairwise utilities is polynomially bounded in the number of
agents, there is a polynomial upper bound on the utility of
an assignment. Note that, for SCSS, each local improvement
from the local search strictly increases the social welfare
(total utility). Furthermore, finding an improving swap, if
one exists, takes polynomial time. Thus, each run of local
search has a polynomial time bound. For simulated anneal-
ing, we used a pre-set cut-off to deal with the possibility of
super-long runs.

In the simulated annealing, we used the parameter 𝑘
to determine the probability a random swap is accepted
weighted by a temperature value 𝑇 . 𝑇 decays from 1 to .001
by 𝑇 ′ = 𝑇/1.001. This probability is given by

𝑃 (𝑢(𝐵), 𝑢(𝐵′), 𝑇 ) = 𝑒
𝑢(𝐵′)−𝑢(𝐵)

𝑘*𝑇 .

Note that the problem of finding valid billets, ones where
all agents have the qualifications for their assigned roles, is
nontrivial, though we can easily find one such billet. For the
local search and simulated annealing algorithms, we start
all runs from the same initial assignment. The simulated
annealing variants use random number generators, so each
run may find a different stable assignment. However, local
search is deterministic, thus it was only run once.

5. Experiments

5.1. Generator
The generator consists of 𝑛 player structures, each with
their own rank stored as a uniformly-random integer using
the std::rand() function. For the skill qualifications of each
player, each agent runs a series of coinflips against a global
list of qualifications. Each qualification in the list requires
the agent to possess all of the prior qualifications. We kept
the size of the qualifications small, allowing each agent to
hold anywhere from zero to five qualifications.

5.2. Runs
Twenty 50-player structures were generated. The discount
value 𝑠 is set to 2 and the utility one player has for another
is in the interval [0,1]. For each instance, we checked if a
valid billet exists by iteratively assigning the highest ranked
player to the highest remaining position, irrespective of
inter-player preferences. From this initial billet we ran the
deterministic local search, then 500 iterations of simulated
annealing with 𝑘 = 10 and simulated annealing with 𝑘 = 1.

6. Results
For all instances we were able to find stable assignments.
Tables 1, 2, and 3 show the results from running 500 iter-
ations of each algorithm on the 20 instances. The mean
values of the 𝑘 = 10 and 𝑘 = 1 simulated annealing al-
gorithms were significantly different than the local search
values (𝑝 = 4.368𝑒−5, 𝑝 = 3.893𝑒−5).



We observe in Table 1 that the local search algorithm
falls slightly short of the average utility found through the
simulated annealing algorithms in Tables 2 and 3. This is
expected, as the local search executes in a single pass, and
thus does not necessarily find a global optimum. This is a
fair trade-off compared to simulated annealing, however, as
local search is significantly faster, particularly if it’s only
run once.

We also observe that the simulated annealing algorithm
does not significantly vary for different values of 𝑘. We
see in Table 4 that the simulated annealing algorithms for
𝑘 = 10 and 𝑘 = 1 performed extremely similarly across
100 instances, with a very small improvement for 𝑘 = 10,
but not enough that we believe to be statistically significant.

Table 1
Local Search

Instance Value
1 112.252
2 114.603
3 116.402
4 115.416
5 117.228
6 115.788
7 115.678
8 111.833
9 115.508
10 114.291
11 113.775
12 114.92
13 115.663
14 116.937
15 118.35
16 116.643
17 116.479
18 114.154
19 117.611
20 119.229
- 115.638

Table 1 shows the results from running local search on every insta-
nce. The value is the total utility of the billet after the local search
algorithm converges to a local maximum

7. Toy Example
One question that is not answered in the previous section
is whether the maximum-utility billets found by simulated
annealing are actually optimal. To test this, we generated
a 21-agent instance with an initial billet utility of 34.906.
Then, using a branch and bound algorithm, we were able
to compute the global maximum of 41.153, which ran in
3018.43 seconds and checked 24,567,994 nodes.

The local search algorithm converged at a value of 39.826
after seven swaps. Afterwards, we ran 100 iterations of sim-
ulated annealing k=10 and k=1. Given the global maximum,
we can conclude that the local search converged at a local
but not global maximum, while the simulated annealing
algorithms were able to find the global maximum (see Table
4) in a portion of the runs (G Max(%)).

Although the mean value of the 𝑘 = 10 algorithm is
slightly higher than the 𝑘 = 1 algorithm, there was no
significant difference between the two algorithms in terms
of their utility (𝑝 = 0.784) We also observe that the low-
est utility found by either of the simulated annealing algo-
rithms was the highest value found by the standard local

Table 2
Simulated Annealing (k = 10)

Instance Min Max Mean Std Dev
1 111.286 118.065 114.748 1.032
2 112.962 119.673 116.303 1.105
3 113.826 119.556 116.825 1.066
4 112.885 119.241 116.138 1.065
5 115.544 121.312 118.327 1.056
6 115.212 122.779 119.589 1.283
7 114.306 120.111 117.15 1.05
8 108.672 113.863 111.156 0.954
9 114.477 120.098 117.485 1.089
10 113.471 120.537 117.453 1.064
11 112.601 118.827 115.579 1.12
12 111.261 118.539 115.899 1.038
13 114.528 121.563 118.374 1.33
14 114.71 121.152 117.759 1.121
15 114.721 121.833 118.512 1.125
16 114.38 121.413 117.723 1.031
17 116.094 121.983 119.206 0.984
18 114.061 120.354 117.346 1.06
19 116.305 122.427 119.51 1.143
20 114.041 121.191 118.102 1.137
- 113.767 120.226 117.159 1.093

Table 2 shows the results from running 500 iterations of the k=10
simulated annealing algorithm. The columns from left to right repr-
esent the instance number, the local maximum with the lowest total
utility, the local maximum with the highest utility, the mean utility,
and the standard deviation of the local maxima for each instance.

Table 3
Simulated Annealing (k = 1)

Instance Min Max Mean Std Dev
1 111.132 117.636 114.859 1.07
2 113.49 119.131 116.409 1.016
3 113.25 119.6 116.831 1.054
4 113.108 119.272 116.043 1.034
5 115.327 121.287 118.331 1.043
6 115.249 122.797 119.399 1.387
7 113.73 119.99 117.182 1.028
8 108.302 113.57 111.138 0.952
9 114.604 120.547 117.462 1.048
10 114.606 120.641 117.416 1.084
11 112.738 118.57 115.632 1.106
12 112.906 118.735 115.946 1.071
13 114.543 122.06 118.374 1.28
14 114.53 120.506 117.782 1.056
15 115.226 122.188 118.451 1.196
16 114.618 120.463 117.655 0.943
17 116.3 122.001 119.346 0.993
18 114.582 120.461 117.423 1.02
19 116.326 123.495 119.65 1.181
20 115.126 121.122 118.179 1.017
- 113.985 120.204 117.175 1.079

Table 3 shows the results from running 500 iterations of the k=1
simulated annealing algorithm. The columns from left to right repr-
esent the instance number, the local maximum with the lowest total
utility, the local maximum with the highest utility, the mean utility,
and the standard deviation of the local maxima for each instance.

search algorithm. This is unsurprising as a smaller instance
size would make the search space for simulated annealing
smaller.

8. Conclusions
ArmA 3 is a popular MilSim that requires a manual billeting
process, which involves assigning 50–100 players into a set



Table 4
Toy Example Simulated Annealing

k Min Max Mean G Max(%)
10 39.699 41.153 40.844 21
1 39.826 41.153 40.83 17

Table 4 shows the results from running 100 iterations of simulated
annealing. k represents the k value used for the accept function. G
Max is the number of times the algorithm found the global maxim-
um value out of 100.

of roles before the game begins. This process can be quite
time consuming, and often involves much trial and error.
In this paper we explore how this problem can be cast as
a coalition formation problem, which enables the use of
coalition formation algorithms to perform billeting auto-
matically. Specifically, we show how simulated annealing
and local search can be used to generate stable billets in
polynomial time.

To our knowledge, this is the first example of using coali-
tion formation algorithms to automate role assignment in a
hierarchical game. We were able to show that simple heuris-
tics do surprisingly well. Future work will entail scaling up
the methods and developing both game-specific and general
methods for billeting, and related activities.
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