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Abstract
Generative Artificial Intelligence (AI) encounters limitations in efficiency and fairness within the realm of Procedural
Content Generation (PCG) when human creators solely drive and bear responsibility for the generative process.
Alternative setups, such as Mixed-Initiative Co-Creative (MI-CC) systems, exhibited their promise. Still, the potential
of an active mixed initiative, where AI takes a role beyond following, is understudied. This work investigates the
influence of the adaptive ability of an active and learning AI agent on creators’ expectancy of creative responsibilities
in an MI-CC setting. We built and studied a system that employs reinforcement learning (RL) methods to learn the
creative responsibility preferences of a human user during online interactions. Situated in story co-creation, we develop
a Multi-armed-bandit agent that learns from the human creator, updates its collaborative decision-making belief, and
switches between its capabilities during an MI-CC experience. With 39 participants joining a human subject study,
Our developed system’s learning capabilities are well recognized compared to the non-learning ablation, corresponding
to a significant increase in overall satisfaction with the MI-CC experience. These findings indicate a robust association
between effective MI-CC collaborative interactions, particularly the implementation of proactive AI initiatives, and
deepened understanding among all participants.
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1. Introduction
Recent advancements in Machine Learning (ML)–
powered Artificial Intelligence (AI), such as large lan-
guage models (LMs) [1] and diffusion models [2], have
made a new class of tools for Procedural Content
Generation (PCG) available to game creators. The
dominant contemporary way for the creators to con-
trol such generative AI models is via prompting—the
issuing of textual instructions for the model to inter-
pret and respond to [3]. That is, the user is tasked
with the responsibility of issuing clear “prompts” to
contextualize the AI system and make them aware of
their intents. The AI is tasked to follow and fulfill
the request strictly based on it. If the system does
not respond with an output that satisfies the creators’
wants or needs, it is incumbent upon the creators to
modify the prompt and try again.

The paradigm of human creators working with gen-
erative AI via prompting is just one of many theo-
retical ways for a human creator and an AI system
to interact [4]. There is evidence that prompting is
not necessarily the best interaction paradigm; users
indicate an appreciation for more varied ways of in-
teracting with AI creative systems [5]. Other config-
urations of human-AI collaboration creative systems
are possible that promise to reduce cognitive load,
frustration, and system abandonment [6], and make
these systems more casual and enjoyable [7]. These
include Mixed-Initiative (MI) systems and Co-Creative
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(CC) systems. Mixed-Initiative systems are those in
which both human and AI systems can initiate con-
tent changes. Co-Creative systems are those in which
both human and AI systems can contribute to content
creation. In particular, MI-CC systems have been
demonstrated in game design [8], drawing [9], and sto-
rytelling [10], that benefits from both human and AI
possessing the ability to take creative initiative. While
the broadest definition of co-creative systems might
include any human creators working with a generative
AI, the vast majority of them have not investigated
the role of mixed-initiative, especially a more active
AI initiative.

At the heart of MI-CC systems is the question of
whether and how the AI creative agent knows and
understands (a) the intentions and goals of the human
creator and (b) how the user wants to work with the
AI system. These questions pose significant challenges,
especially within domains critical to game designers
utilizing AI, such as Computational Creativity and
PCG. In other domains, the goal may be provided to AI
in advance, making it easier to identify opportunities
to take the initiative with respect to contributing to a
solution—the extreme of which is the AI system know-
ing the goal and solving the goal completely on its own.
When it comes to creating games, however, the human
creators’ intent is harder to articulate completely[11].
The human creator’s goals are also non-stationary and
may evolve during the creative process[12, 13]. The
human creator might also have a preferred working
style that the agent should conform to in order to
take the initiative while minimizing disruption. Once
we overcome these challenges, researchers have shown
that such ambiguity and instability link to improved
outcomes of the creative activity[14], thus benefiting
the MI-CC interaction.

In this paper, we examine Co-Creative systems in
a mixed-initiative setting and study the dynamics of
managing creative responsibility between human and
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Figure 1: Screenshot of our system in action.

AI initiatives. We ask: What influence does an AI
agent’s ability to actively adapt to creators’ expectancy
of creative responsibility in an MI-CC system have on
creator experience and perception?

In particular, we make the assumption that the AI
agent is capable of working in the creative domain if
given explicit prompts but is unaware of the human
creator’s preferences for distributing creative respon-
sibility between humans and the AI. We explore the
usage of Reinforcement Learning (RL) methods in
this setting and demonstrate that the creative respon-
sibility learning challenge in MI-CC systems can be
addressed by a multi-armed bandit (MAB) algorithm
that observes feedback from users iteratively, updates
its beliefs, and carries out its capabilities to facilitate
the MI-CC collaboration. The learning is done online
in real-time during the MI-CC process, and the human
creator is not expected to have previous knowledge
of the AI agent or time to pre-train it with regard to
their collaboration style.

Working in the domain of structured story co-
creation, we invite 39 participants to a human subject
study. We quantitatively measure the human creator’s
perceived learning performance of the agent and the
overall level of satisfaction with the collaboration. We
use the Creative Support Index (CSI) [15] to study
the implications of a learning and evolving AI agent.
We also report on qualitative data collected from par-
ticipants, using a grounded theory [16] approach in
which we identify thematic patterns in users’ subjec-
tive reports of their experiences. This study reveals
a higher degree of participant recognition regarding
the learning capabilities of our agent, compared to the
ablation, which in turn corresponded to a significant
increase in overall satisfaction with our agent. 1

1https://github.com/xxbidiao/beyond-following-experiments

2. Background and Related Work
The procedure of an MI-CC system learning its cre-
ative responsibilities can be described as a decision-
making process, where the agent communicates with
the human creator, gathers information, and chooses
among its capabilities. This is not as straightforward
as asking human creators to prompt AI agents because:

• Just like the Cold Start problem experienced by
AI agents lacking prior preferential knowledge
from their creators [17], human creators, even
experts, may struggle to make inferences about
the behavior of AI systems they initially face;

• The ability of human creators to effectively con-
vey information to AI depends on their com-
munication skills, which can be a significant
obstacle even in human-to-human interactions
[18].

• Enforcing this AI-centric method of input re-
quires a profound mechanical understanding of
the AI system from the human creators, where
this knowledge does not necessarily intersect
with their expertise. This marginalizes creators
who do not possess the requisite expertise in
utilizing AI.

For these reasons, relying solely on human creators
for direct collaborative prompting, regardless of the
capability of the AI models, has its limitations, leading
to efficiency, cognitive load, fairness, and equity issues.

Alternatively, a model can be built on human feed-
back without users directly communicating their goals.
Researchers demonstrated their potential in transfer-
ring human knowledge to AI [19, 20] and making AI
learn more efficiently [21, 22]. When it comes to gener-
ating contents, this is the foundation of methods such
as RL from human feedback [23], that has proven to



drastically improve the quality of generated text in
state-of-the-art models such as GPT-4[1]. Yet, they
are designed to exclusively optimize for a static, known-
from-data objective. They are not designed for online
implementation where pre-training is not feasible, and
the system lacks prior knowledge of new creators and
needs to actively probe them.

To focus on the active probing challenge, we formal-
ize it as a Multi-Armed Bandit (MAB) problem [24]
above generative abilities, where an AI agent needs to
actively choose under uncertainty from their library
of capabilities based on their understanding of their
human creator teammate, to minimize total regret and
maximize rewards from their teammate. Multi-Armed
Bandit systems have been employed in the context
of resolving how to make progress in an interactive
creative experience. Koch et al. [25] discussed a de-
sign ideation framework that suggests images that a
designer may like by exploring and exploiting in the im-
age embedding space with a variant of MAB; Gallotta
et al. [26] applied MAB in the context of generating
“in-game spaceships” by enabling creator-guided latent
space walk in the feature embedding space represent-
ing such spaceships. These works focused on a single
type of action in the content space, and concentrated
on expanding the generative space of such content;
Lin et al. [27, 5] explored instead the action space,
characterized as types of Communications represent-
ing information exchange between human and AI used
in the co-creative process; As to the idea of switching
between different high-level actions beyond the content
level, Building a model of the user has been proven
to help in a CC setting, specifically in the domain of
storytelling. Yu et al. [28] demonstrated its potential
to generate stories that bring “an enjoyable experience
for the players”; Gray et al. [29, 30] further demon-
strated how MAB agents help to capture this player
model. Vinogradov et al. [31] showcased a framework
where the agent explores the creators’ “player” model
vigorously by directly generating “distractions”, ob-
jects designed to probe into players’ preference instead
of providing utilities in finishing a certain task; They
proposed using MAB for this task for its promises in
“balancing the act of gathering information about the
payout associated with each arm (exploration) and
maximizing reward given the current known informa-
tion (exploitation)”, dynamically updating the model
in the process towards assigning tasks that the play-
ers feel more interested in tackling. They inspire our
method, as its approach of adding distractions is well
comparable to the agent carrying out its initiative
while directly changing the creative content.

3. Study Design
In this section, we present the study we designed
to examine the AI agent we created that adapts to
creators’ expectancy of creative responsibility. We
seek to determine how this changes the perception of
the creators toward the AI and the creative experience
the system supplies to the human creators.

3.1. Task Setup
The Delegation Setup. For the experiments, we spot-
light a specific but generalizable collaborative setup:
Learning a delegation. In this setup, both parties take
a subset (or entirety, if preferred) of responsibilities
in an MI-CC activity towards the common goal. The
human creator concentrates on specific parts of the
creative task while not losing control of the other parts;
the AI agent needs to strategically shift its focus to-
wards the parts that the human creator is not focusing
on and actively determine how to make improvements.
Furthermore, as these interactions are not without
cost, such as creators’ cognitive load, it is also im-
portant to minimize such costs towards learning these
responsibilities. We denote the expected and delegated
responsibility that the AI agent needs to learn during
the interaction preferred work style for a particular
human creator.

Domain: Storytelling. Given the mounting interest
in co-creative storytelling [32] and established research
foundation within story generation, its high relevance
to game development, and its inherent complexity with
regard to PCG, we select story generation as a proving
ground for our proposed method. The expertise of
the team and advancements in open-source Large LMs
readily available to us facilitated implementation; This
allows us to focus on the human factors of the MI-CC
experience and the AI agent itself.

For our experimental system, We use Llama2-13b-
chat [33] as the LM, readily available at the time of
the study while very responsive for the interactive
experience.

3.2. Experimental AI System overview
We now describe the AI system we built for the purpose
of the study. The experimental system is based on
the Creative Wand framework [27], containing the
following four components:

3.2.1. Creative Context

The Creative Context is the abstraction of generative
models for this system.

In this paper, we study stories containing four com-
ponents inspired by the Narrative Arc theory: the
beginning, development or rising action, climax, and
conclusion. We design an AI framework that writes
each component of the story using language models
and prompt engineering (See Appendix C for more
details). Both the human participant and the AI are
instructed to write about 20 to 30 words per com-
ponent, and the target length of the whole story is
around 100 words.

Once we set up the model, it will take requests from
Communications.

3.2.2. Communications

Communications describes the interactions between
the human creators and the AI; they also double as
the capabilities the AI agent possess. To focus on how
the agents would choose their creative responsibili-
ties, we implement a minimalistic yet complete set of



Figure 2: One round of interaction of our experimental system. Each participant will experience multiple turns per session.

capabilities for the creative experience. This allows
us to focus on research questions about the creative
experience while minimizing the cognitive load of the
participants. Our agent possesses the following capa-
bilities, implemented as prompts to the LM describing
the responsibilities (See Appendix C for details):

• (Re)write the beginning and development;
• (Re)write the climax and conclusion;
• Write a review of the story, one sentence posi-

tive, one negative, and one suggestion for im-
provements.

3.2.3. Experience Manager and Frontend

These two modules manage the interactive experience
and workflow.

We implement a Finite State Machine to manage
the experience. Figure 2 shows the states with the
overall flow of interaction each participant experiences
in one experiment session. One session of the MI-CC
experience is separated into multiple “turns”, where
both parties iteratively improve the story, sharing the
same text fields in the editing process. The partici-
pants are not directly notified of the internal states of
the system.

Human Initiative. During this phase, human creators
contribute to the story by making edits in any of
the four text fields. This phase ends when the agent
decides to take the initiative. We implement a point-
based heuristic based on pilot studies: the agent would
assign points for changes it observes, and will take
initiative whenever enough points are accumulated,
signifying substantial edits from the human creators,
in the following criteria:

• Each new character would add 5 points;
• Each time the human creator switches between

fields after any changes, 100 points are added;
• Whenever the human creator leaves a text field

with 200 points accumulated (roughly one full
sentence or two minor changes), the agent will
take the initiative by locking the editing inter-
face and resetting the counter.

This heuristic provides two advantages compared to
other ways this decision can be made: First, this

heuristic is computationally fast and enables respon-
sive interactions; Second, it additionally provides vi-
sualization for the users. As shown in Figure 1, we
present this right above the text boxes for the stories,
with a text hint and a progress bar representing the
ideation process of the agent. We additionally provide
a “skip” function that forces agent initiative.

Agent Initiative. In this phase, the agent decides
which capability best fosters the collaborative experi-
ence and carries out the corresponding Communication.
We build a Multi-Armed Bandit-based agent in our
system that is responsible for choosing which Commu-
nication to invoke, with Thompson Sampling as the
chosen algorithm for the experimental system within
the AI agent. Formally, an agent 𝐴 interacts with a
set of 𝐾 arms 𝑎1 · · · 𝑎𝑘, each of which is associated
with Communication and underlying capabilities and
an unknown reward distribution. Whenever an arm
is pulled, the agent seeks feedback from the human
creator on the initiative, which is treated as a reward
signal. (See next paragraph.) The goal of the agent
is to maximize the total reward obtained by repeat-
edly pulling arms during the session. See subsection
A for more details on the design choices of the MAB
agent. Once an arm is pulled, the agent executes a
Communication, interacts with the user, and updates
the story as needed.

Learning from human. The system will ask about
(Action Feedback) the way they just worked and (Con-
tent Feedback) the updates and content changes. The
participants choose between “Good” (Reward of 1)
and “Bad” (Reward of 0). “Bad” feedback on gener-
ated text leads to a reversion to the original content,
though it is not used to improve the LM in any way.

A weighted mean is employed to integrate both types
of feedback into a singular reward signal. For the study,
a weight hyperparameter of 80% is applied to the Ac-
tion Feedback and 20% to the Content Feedback. This
prioritizes learning action-level responsibilities rather
than the preference for LM-generated text, in which
the full system and the baseline share implementation.
This reward signal is then used to train the agent.

For this experiment, an MAB agent with Thompson
Sampling is used in the experimental system. See
Appendix A for a discussion and experiments related



Figure 3: Participants’ experience during the study.

to this choice.
Once the learning process is complete, “human ini-

tiative” starts again. To maintain user engagement,
text responses are morphed each time to avoid repeti-
tiveness, while contextual hints are also strategically
provided throughout the experience. Figure 1 shows
the user interface.

3.3. Study Methodology
To study the perception of human creators towards MI-
CC systems equipped with these learning capabilities,
we conduct a study summarized in figure 3 on the AI
system.

We compare our system, the “Full” system, with an
ablation named “baseline”. The “baseline” ablation
does not learn. It chooses each of the 3 Communica-
tions with a 1/3 probability at all times and provides
only a reverting option when “asking for feedback”.
These systems are codenamed “Echo Wand” and “Har-
mony Wand” respectively, not to reveal the details of
the systems to the participants during the study.

We recruited 39 United States participants 2 on
Prolific3 with adequate English proficiency. Each ex-
periment session lasted for approximately 40 minutes,
and we paid the participants $15 per hour for perfect
completion of the study.

Pre-study. Before the experience, participants answer
four 5-point Likert-scale questions on (Q1) Expertise in
Computer-Assisted Designing (CAD), (Q2) Expertise
in writing stories, (Q3) Frequency using AI, and (Q4)
Understanding of AI. 4

We then present instructions to familiarize the par-
ticipants with our systems by providing annotated
screenshots of the interface, which is a copy of Figure
1, but with additional numeric overlays, descriptions of
components, and a brief introduction to the workflow
of co-creating a story.

They are then assigned the delegation task to focus
on writing the beginning and the development of the
story while leaving the other parts of the story to AI
as much as possible. They are also made aware that
the AI does not know this setup in advance.

Experience. Participants are assigned to interact
with the full system and the baseline ablation, pre-
sented in random ordering, counter-balanced. They
are given 10 turns per each of the 2 sessions.
2Only counting participants who finished the whole study with
valid sessions and responses.

3prolific.co
4See Appendix B for the full question text.

Post-study. After participants finished two sessions
using our system, they were asked about the process
they had just experienced. inspired by Creative Sup-
port Index (CSI) [15] used in the previous studies,
We ask questions based on dimensions related to the
creative support perception and overall collaborative
experience, grouped to facilitate richer responses from
the participants while maintaining their engagement
in the survey.

Specifically, we ask which system(s), are (Q5, Learn-
ing, Collaboration) learning to collaborate, (Q6, En-
joyment, Immersion) more capable and easy to work
with, (Q7, Expressiveness, Exploration, Results worth
effort) enabling better stories; For Q5 through Q7,
participants can choose either system, both systems,
or neither to be chosen, leading to a potential total
exceeding 100%. We ask one final question (Q8) on
which system will they recommend more, framed in a
win-draw-lose format.

Although these questions are presented in the same
order for all participants, the order of the options is
randomized to reduce bias towards any system. All
questions are followed by an open-text question pre-
pared to collect justifications from the participants.

4. Quantitative Results
4.1. Creative background
Table 1 shows a summary of the creative backgrounds
of the participants. Although a median of 4 on all
questions implies that participants are familiar with
the recent advancement of AI, when specifically ask-
ing whether they can build one, only 1 participant
answered “yes” (5 in Q4), meaning that most of the
participants do not have a technical background.

However, comparing to 26% reported in [5], we
observed 87% of the participants at least being “some-
what familiar” (3+) with recent AI technologies, and
51% being “familiar” (4+); The experience of using
commercially available Large LM-based agents may
have a profound effect on how participants, in general,
would collaborate with AI systems.

4.2. Quantitative Results
We commence by presenting the quantitative results of
the study through the choices made by the participants
in the multiple-choice questions.

When asked which system(s) learned to collaborate
with them under the delegation arrangement (Q5),
the “Full” system is chosen 69% (𝑛 = 39) of the times,
compared to 51% for the baseline (𝑝 < 0.018, under a

prolific.co


Q (See Appendix B for full questions) 1 2 3 4 5 Average Median
Q1: CAD skills 1 1 2 19 16 4.23 4

Q2: Writing skills 1 0 7 20 11 4.03 4
Q3: Frequency of using AI 0 0 16 11 12 3.90 4

Q4: Understanding of AI Tech. 0 5 14 19 1 3.41 4

Table 1
Creative background of the participants. 1 = Most Negative, 5 = Most Positive.

binomial test where 𝐻0 := no observable difference in
distribution; The same for all p-values in this section).
We clearly see the “Full” system with learning capa-
bilities enabled being perceived significantly better at
learning the delegation than the baseline, demonstrat-
ing the effectiveness of the MAB-based model From
the human creator perspective learning from their feed-
back.

When asked which system to recommend, this trend
also persists: Our system is preferred (wins) 43.6%
of the time, versus 20.5% (loses) for the baseline
(𝑝 < 0.001); 35.9% of the participants do not have a
preference (draw). The “Full” system is only different
from the baseline system with the learning capabilities
and corresponding frontend elements, yet we see a sta-
tistically significant improvement in preference towards
our “Full” system, illustrating the potential of our
method in enhancing MI-CC experience and making
such system better for human creators.

When it comes to which system(s) gave a good story
(Q7), 72% of the participants agree that the “Full” sys-
tem made a good story, while 69% selected the baseline
system (𝑝 > 0.05). We were unable to statistically
determine whether an agent learning the delegation
would produce a better story; This is expected, We
focused on studying the sharing of responsibilities and
enforced a delegation setting. In an actual MI-CC
experience, without such a prior, A human creator
would utilize the agent’s learning capability to pro-
mote their strengths and discourage their weaknesses,
and an improvement in perceived performance is more
likely to be observed in that setting.

Finally, when queried about the collaboration itself
(Q6), 62% of the participants think the “Full” system
is capable and made the collaboration easy, while 56%
voted for the baseline system (p>0.05). We also were
unable to statistically determine whether the “Full”
system is more enjoyable and immersive. Although the
difference between the “Full” system and the baseline
is substantial enough both implementation-wise and
towards the perception of learning, from the angle of
the user interface, the only difference is 10 additional
questions from the “Full” system per session. Previ-
ously, Larsson et al. [34] reported that “there was a
clear trend that the visual ... was rather important to
the subject’s relationship towards the MI-CC.” while
these “relationships” are directly linked to creators’
perception of immersion of the experience; Ehsan et
al. [35] additionally pointed out that even when an AI
system presents the same underlying information, how
it is presented influences the perceptions of human
users. We may have observed this effect from a differ-
ent angle, where a lack of differences in presentation
may have caused the indifference of the participants.
To that end, the difference between the two systems on

these creative support dimensions may be too minor
when it comes to how they are presented visually; The
effect of user interface used to present the results in an
MI-CC system is out of the scope of this work, though
these findings illuminated a potential path for future
research.

5. Qualitative Results
We now show the results from the open-ended ques-
tions following each multiple-choice question. Open-
ended justifications participants provided for each of
the four questions are evaluated with thematic anal-
ysis [36], based on grounded theory [16]. Taking an
inductive approach, we started the process with an
open-coding scheme and iteratively produced in-vivo
codes (generating codes directly from the data). Next,
we analyzed the data using axial codes, which in-
volves finding relationships between the open codes
and clustering them into different emergent themes.
Through an iterative process performed until consen-
sus was reached, we share the most salient themes that
emerged from axial codes.

A MI-CC system that understands the intents of
the human creators and follows them by learning is
overall favored and collaborates well with the cre-
ators. Participants demonstrated their observation
of the learning capabilities of the “full” system, identi-
fying them as “better about learning that I specifically
wanted help with” (P34) and “listened to my feed-
back.”(P39). In comparison, the baseline system is
identified as “did less of the work ... did not necessarily
learn what its role was expected to be” (P19). this
resulted in a preference for the Full system for P32,
as the Full system is quoted as a “more useful helper".
This aligns with the quantitative observations.

Good content suggestions may give people the feel-
ing that the system is learning how to collaborate
with them, regardless of how AI is actually doing
so. Despite specifically asking participants to discuss
whether the agent has “learned to collaborate with
you under that arrangement” (Q5), Participants are
also rating the system based on the generated content:

(P25, emphasis asked) This one learned
from me because it was able to build off
of my original foundation of my story that
I typed.

P18, who rated their familiarity with AI as Familiar
(4 out of 5) and AI usage as “Always / as much as
possible” (5 out of 5), wrote that the “Full” system is
learning from them:



I could see Echo Wand adding more de-
tail and building out more creatively
than with Harmony Wand.

This participant is familiar with recent generative AI
and mentions “adding details” and “building,” which
are traits that these AI are optimized for. As both
the “Full” and the baseline use the same underlying
generative AI capabilities, P18 could not distinguish
between the “improvements” on generated contents
and the performance of the MAB-based agent. The
apparent improvements of generated stories may result
from a wide range of reasons, such as participants
providing different input and LM sampled differently,
unrelated to both the underlying LM and the learner,
creating noises in the perception of participants.

Diversity is also important, it may not be the best
strategy for a learning agent to pick the “best op-
tions”, and sometimes the agent may want to inten-
tionally surprise their teammates. P23 was impressed
by the range of capabilities both agents possess, seeing
“They were both impressive, being able to take my
story and to word it better, or even add things to
change it to make it better”. When asked about the
generated story, P39 mentioned that “ Both of them
gave bad stories.” and “I need much more control and
options”. Curiously, this is the same participant that
enjoyed the agent that “listened to my feedback.”. P36
preferred the baseline system that executes random
actions:

I did all of the work with Echo, despite
my best efforts to get it to collaborate
with me. Harmony had much more inter-
esting suggestions and rightfully pointed
out when a section became too dense.
It balanced the second two sections to
match my intro and build up, unlike
Echo who almost refused to work on
them.

For this study, we assigned delegation tasks to the
participants. This is only a subset of possible respon-
sibilities that the AI agent can take and the human
creators may expect. Lin et al. [5] have shown that a
system with more coverage of the design space, provid-
ing more diversified options, is preferred. Our study
design, which is more focused on studying the learning
process, limited the variety of capabilities the agent
may perform. To that end, once such an MI-CC sys-
tem is put into use beyond research, it is necessary
to diversify both the capability pool and the process
of the AI agent choosing them, potentially providing
surprise and unpredictability to further inspire the
users.

Creator control is important, and creators may want
their ideas to be included even when AI can pro-
vide better candidates. Beyond the need for control
mentioned by P39, P28 mentioned that they were im-
pressed by the capabilities of both systems in “finish
the story that I started with.” (Emphasis added). P27
mentioned further on their justification:

... I was in control of the final text to
accept changes or not, or to make my
own.

In a system involving a creator who wishes to create
content to their liking, it is expected that the creator
wishes to solicit as much control as possible. However,
if the AI agent does not have any final say on the
contents, should we expect it to take any creative
responsibilities? Although we acknowledge that this
is more of a philosophical question, way out of the
scope of our work, what if the agent would understand
what their counterpart is actually seeking and use
this information to determine what contribution they
should stick to by understanding what human creators
are thinking?

6. Discussions
Distilling from these findings ranging from the per-
ception of collaboration, good writing skills, diversity
in capabilities, and creators’ need for control, a com-
mon implication surfaces: Getting the mental model
of the creators right, the system will succeed; Getting
it wrong, failure cases would surface. A mental model
is described by Kieras et al. [37] as “ understanding
... that describes the internal mechanism“ of the sys-
tem a human is operating; Leslie et al. [38] further
point out that a theory of mind is a mechanism that
human expresses naturally, towards an understanding
of thinking, in our context, their teammate AI. The
success of our “Full” system of learning rises from its
ability to learn a model of how the creators wish to
collaborate with them, and the reward given from a
teammate can be otherwise treated as a reward for
correctly understanding their model. The need for di-
versified responses and more respect to control signals
users imposed also fall into this paradigm, but be-
yond; Understanding how these reward signals should
be used beyond “picking the best”, and how to cap-
ture hints for new actions or capabilities needed can
greatly improve collaborations with MI-CC systems.
This falls into the subfield of “novelty detection and
adaptation” [39] situated in RL, which is known to be
challenging, if solvable at all with ML methods, as ML
models can only rely on their extrapolation capabilities
towards the “unknowns”, that may not hold for all
novelties; This will be a rewarding pathway towards
better MI-CC systems if not agentic AI overall.

We start to see a consistent narrative: creators are
interpreting the capabilities of our AI agent learning
as an attempt the AI agent made to learn a mental
model of themselves; Because our agent determines
which Communication to use and the effect of it on the
contents being collaborated on, We observe the par-
ticipants treating proper learning of Communication
choices (expected) and the content generated (emerg-
ing) as both evidence that the agent is learning from
them and traits leading to their preferences towards
these systems. This also, to some extent, explains
the placebo effect we observe on the baseline system:
around half of the participants believe that the base-
line system is learning from them, significantly more
than 0, despite the baseline system only making deci-
sions randomly. In this controlled comparative study,



to avoid a bias towards either of the systems, we in-
tentionally did not disclose any difference between the
“full” system and the baseline. This perception may
have arisen from the capability of our agent to gen-
erate part of stories that follow the context that the
participants provided. Although we acknowledge that
these factors are hard to decouple, this finding also
hints at the potential of our methods in understanding
the human creator holisticly. Upol et al. [35] pointed
out that the background of human users determines
their cognitive heuristics, which plays a role in their
expectations beyond what the designer of the systems
expected in the first place. They also realized that if not
treated carefully, AI systems can actually introduce
such placebo effects, as a pitfall [40], by misleading the
human users into appreciating their trustworthiness
and power, without the development of underlying AI
capabilities. Standing on these findings, A promising
direction of research is to carefully identify the effect
of expectations of both parties involved in the MI-CC
process, and how they dynamically change during the
collaboration.

7. Conclusions
In this paper, we showcased how an MI-CC system is
capable of listening to human feedback and improving
itself towards a better understanding of how it should
collaborate with human creators in a storytelling do-
main. Inviting 39 participants and comparing two such
systems with and without these learning capabilities,
we found that this capability was well recognized by
the participants and led to better satisfaction over-
all. To this end, we further encourage the designers
of MI-CC systems to pay attention to both the hu-
man creators and the AI agent, study how each party
should, or is already, adapting to and creating mental
models of their counterpart, based on their creative
roles taken, their previous experience, and capabili-
ties, and most importantly, the wishes of the human
creators.
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Figure 4: Oracle experiment results on MAB algorithms of
the agents performing on various feedback accuracy levels.
Upper Bound performance, where the liked arm is always
pulled, and the Lower Bound, where one not-liked arm is
always pulled, is also presented for reference.

sity Press.
[43] W. R. Thompson, On the likelihood that one

unknown probability exceeds another in view of
the evidence of two samples, Biometrika 25 (1933)
285–294. Publisher: Oxford University Press.

A. Choosing a MAB algorithm
In this section, we provide more information on the
design choice of the MAB agent. Following results
from Vinogradov et al. [31], we looked into three
representative MAB algorithms: 𝜖-greedy, UCB1 and
Thompson Sampling.

𝜖-greedy [41], widely used in RL, works on a simple
principle: The agent has probability 𝜖 (a hyperparam-
eter) to choose a random action (explore) instead of
performing the best action from its policy (exploit).

UCB1, or Upper Confidence Bound 1 [42] instead
takes a more deterministic approach: This algorithm
calculates an “Upper Confidence Bound” for each arm,
considering both the current running average of the
rewards and the uncertainty due to lack of sampling:

𝑎 = 𝑎𝑟𝑔𝑚𝑎𝑥(�̄�𝑎 +
√︀

2 log 𝑡/𝑛𝑎) (1)

where �̄�𝑎 represents the average reward received from
arm 𝑎, 𝑛𝑎 represents number of times arm 𝑎 was pulled,
and 𝑡 the total number of times all arms are pulled.
This makes UCB1 aware of the uncertainty of the
rewards from each arm when the agent makes its deci-
sions. Although probability distributions are used to
calculate these bounds, this algorithm does not sample
at all and provides a deterministic choice for a given
system state.

Finally, Thompson Sampling is a robust Bayesian
approach first introduced by Thompson [43]. It main-
tains a probability distribution over the possible values
of each arm’s reward and uses this distribution to make
decisions. To determine which arm to pull, it draws
samples from a Beta (ℬ) distribution of the number
of successes and failures for each arm, choosing the

sample with the maximum probability, while seeking
a reward between 0 and 1:

𝑎 = 𝑎𝑟𝑔𝑚𝑎𝑥(ℬ(𝛼𝑎, 𝛽𝑎)) (2)

𝛼𝑎 increases by the reward received, and 𝛽𝑎 increased
by 1 minus the reward received. Initially, both 𝛼 and
𝛽 for each arm are set to 1 to establish a uniform
prior distribution. Thompson sampling is designed to
effortlessly transition from primarily exploring in the
initial stages to a more exploitation-oriented strategy
as it acquires more information.

We carried out an Oracle-based experiment to de-
termine the MAB algorithm of choice for the study.
Using an oracle, which simulates a human creator in-
teracting with the system, gives us total control of
their behaviour. We measure the performance of the
agents at various levels of human feedback accuracy,
to seek an agent that generally performs well on all
accuracy levels so that it serves a wider variety of
human creators well.

We study four different agents and baselines: 𝜖-
greedy, UCB1, Thompson Sampling, and Random
Baseline, where a universally random arm is chosen
each time. We give the agents 3 arms to pull, where
one is “liked” and two others are “unliked”. Each arm
would give either a reward of 1 if liked or 0 otherwise
when pulled, by the oracle; We define human feed-
back accuracy as the probability of the oracle giving
a reward of 1 on pulling the “liked” arm and a 0 on
pulling the “not liked” arm. As this value gets lower,
closer to 50%, the simulated oracle becomes less clear
on which arm it liked and becomes a less efficient feed-
back provider. We simulated 5 levels of this accuracy,
from 60% to 100% with equal intervals.

𝜖-greedy is highly sensitive to its 𝜖 parameter cho-
sen, and we report with the best performing 𝜖-greedy
agent in the with 𝜖 = 0.2. We report the “normalized
rewards”, which is the agent’s reward relative to the
theoretical maximum of always choosing the “liked”
arm. We repeat each experiment condition 100 times
and report the mean normalized rewards after 10 steps
to simulate a scenario where the MI-CC agent has to
quickly learn from their human counterparts, similar
to our actual study.

Figure 4 summarizes the results from the Oracle
experiments. As we only gave these agents 10 steps to
learn the arms, the agent may not have yet converged.
This is expected in a quick-learning scenario. 𝜖-greedy
performed poorly, even worse than the random base-
line, likely due to its inability to quickly change fo-
cus between exploration and exploitation; UCB1 and
Thompson perform at similar levels, demonstrating
their capabilities to calculate an upper-bound reward
and use it in their decision-making process.

Although UCB1 and Thompson performed similarly,
Thompson Sampling is preferred because of its sam-
pling behavior. UCB1 schedules its exploration over a
very long session in a deterministic way (exploring once
after exploiting 𝑛 times). As we aim for quick learn-
ing and adaptation, without sampling, UCB1 risks
showing “stubbornness” to a suboptimal arm without
any probability to unstuck itself, a behavior that is
less preferred from an MI-CC perspective. Thompson
Sampling, on the other side, exhibits its capability



to dynamically change its exploration aggressiveness
based on previous observations, while using a Bayesian
prior instead of greedy sampling, both benefiting its ap-
plication in our experiment MI-CC setup. This results
in both an effectively dynamic “epsilon” compared to
epsilon-greedy and some randomness instead of being
fully greedy per each step, compared to UCB1.

We chose Thompson Sampling as the MAB algo-
rithm used in the experimental system.

B. Questionnaires used in the study
Pre-study. Four 5-point Likert scale questions are
asked:

• Q1: Do you agree that you are familiar with the
process of creating content, such as writing arti-
cles, drawing pictures or creating a video game
stage, using a computer? (Strongly Disagree
→ Strongly Agree)

• Q2: Do you agree that you are good at writ-
ing or telling a story, either real or fictional?
(Strongly Disagree / Never attempted in the
past 5 years → Strongly Agree)

• Q3: How frequently do you use or interface
with artificial intelligence? For example, using
map services to find a route to your destina-
tion, playing a game with a computer-controlled
character, or using a chatbot. (Never used →
Always / For as many things as possible)

• Q4: How much understanding do you have
of the recent developments in Artificial Intelli-
gence technologies? (Very unfamiliar → Very
familiar / I can build one)

Post-study. Four questions are asked regarding the
systems they used during the study.

• Q5-(Learning, Collaboration) You were as-
signed a specific way to collaborate with the
assistant Wands, and the assistant is not in-
formed of this arrangement in advance. Which
assistant wand learned to collaborate with you
under that arrangement? If you have chosen at
least one of the assistant wands, how did you
know they learned from you?

• Q6-(Enjoyment, Immersion) Which assistant
wand is more capable and made the collabo-
ration easy for you? If you have chosen at
least one of the assistant wands, how did the
assistant(s) impress you with their capabilities?

• Q7-(Expressiveness, Exploration, Results worth
effort) With these assistant wands, which col-
laborative experience ended up in a good story?
If you have chosen at least one of the assistant
wands, What do you think helped? If you chose
neither, what went wrong?

• Q8-Lastly, which assistant wand would you rec-
ommend more to a friend or a colleague story
writer? Please let us know if you have any other
message or comment to share.

For Q5 to Q7, Participants may select one, both, or
neither system; For Q8, as it is a comparative question,
the option of "neither" is not available. All questions

are followed by an open-text question prepared to
collect justifications from the participants.

C. Prompting details
Prompts for Communications start with

“You are an AI writing assistant, col-
laborating with a human on the task of
writing a story.You are very concise, and
answer only what is absolutely necessary,
without any explanations or introduc-
tions.You make sure that all your an-
swers are surrounded by an underscore,
such as _My answer_ .”

and are followed by a few examples of the tasks, along
with the constraints, formed in a question-answering
format; The final question does not come with an an-
swer, and the continuation is treated as the response.
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