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Abstract
Seeking to leverage Expressive Range Analysis (ERA)- a method of characterizing generative systems- for analysis of generative AI
(GAI) systems and their outputs, this paper categorizes the approaches that have been used for ERA. We present a taxonomy with five
axes of characterization that may be applied to ERA methodologies: content agnostic vs semantic; quantitative vs qualitative; product
vs process; objective vs subjective; and automated vs manual. While ERA has traditionally been limited to the domain of Procedural
Content Generation (PCG) in video game development, we recognize parallels between PCG and GAI and hope to see an expansion of
the application of ERA into the domain of GAI. Serving this goal, these axes provide metrics through which to categorize, compare, and
explore approaches.
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1. Introduction
Expressive Range Analysis (ERA) is a method of character-
izing the nature and shape of a generative model in terms
of its outputs. What sorts of outputs is a generator capable
of? What impact does changing inputs of a generator have
on its outputs? How do biases manifest in the generative
outputs, and how do the inputs influence these biases? ERA
is well suited for answering these questions [1]. ERA comes
from the domain of Procedural Content Generation (PCG)
in video game development: the practice of leveraging algo-
rithmic methods to design and produce artifacts for use in
games across a variety of contexts, such as levels or maps
[2].

We recognize common threads between PCG and genera-
tive AI (GAI) systems- defined here as the process of using
generative technologies such as large language models to
produce content, often using natural language prompts as
human-provided input- including high-level functionality,
motivations, use cases, and shortcomings of both domains
(for details, see Section 2). Because of these similarities,
we seek to expand and leverage ERA—which has not only
proven useful for recognizing bias within, and categorizing
generative outputs of PCG systems, but also resembles some
existing approaches for GAI analysis [3]—for analysis of GAI
system outputs, especially text-to-X, large language model
(LLM)-based applications (such as the text-to-text Chat GPT
[4], text-to-image Stable Diffusion [5], and text-to-speech
ElevenLabs [6]).

The application of ERA in the domain of GAI is not a one-
to-one translation from how the method is used in PCG. Use
of GAI tools commonly requires more complicated, varied,
and linguistic inputs than PCG, which tends to operate from
numerical randomization as a starting point for much of its
generation. Because these inputs have a major impact on
the outputs of GAI systems [7], selection of these inputs
is an important consideration for applying ERA to GAI—
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e.g. some decision points for input selection could include
whether to handcraft inputs or sample the latent space, and
whether the inputs should be restricted in a way that targets
a specific domain of outputs (i.e. a prompt to output a
haiku would be very different from one that might produce a
cooking recipe). Furthermore, ERA requires the application
of metrics to large quantities of content outputted from the
system in question. What metrics are used and how they
are determined is a major component of ERA, often directly
determining the value provided by the analysis. Because
GAI outputs tend to occupy a broad domain of applications
and mediums, unique challenges arise when considering
these metrics, further complicating the application of ERA
in this context.

Responding to 1) these parallels between PCG and GAI,
and 2) the massive increase of scope presented by GAI, this
paper presents a taxonomy for categorizing approaches to
ERA. This taxonomy includes vocabulary to better distin-
guish examples from existing work in PCG, as well as a
compass to guide further exploration of using this method
in the rapidly expanding domain of GAI. The goal of this
taxonomy is to push the boundaries of what ERA may be
used for and how it may be applied.

2. Related Work
This work operates in the intersection of procedural content
generation and generative AI. Guzdial provides a valuable
bridge between these domains with the lens of human-AI
interactive generation [8]. While Guzdial uses this lens to
frame PCG and GAI as essentially the same process, we view
PCG as a broader term describing the process of content
generation at its highest level, and GAI as a more descriptive
term identifying a subset of generative practices that use
specific technologies. Framing GAI as a subset of PCG—or
using Guzdial’s lens of human-AI interactive generation
[8]—broadens the scope of understanding for both domains
and allows the application of evaluation methods of PCG
for analysis of GAI systems.

Particularly, we are interested in leveraging expressive
range analysis for evaluation of GAI systems [1]. Withing-
ton et al. list expressive range analysis as one of 12 "features"
used for comparison of PCG systems [9]. We consider ERA
a promising method of GAI analysis compared to alternative
PCG-evaluation practices due to its flexibility in applying
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a broad range of analysis metrics to its evaluated systems,
particularly highlighting its strength of identifying bias and
system tendencies- including as influenced by user input
[1]. Withington et al. identifies weaknesses with current
evaluation methods for PCG systems, suggesting they could
be mitigated by diverse research frameworks and promoting
the reuse of methodology where possible [9]. This paper
seeks to answer this call by broadening the applicability of
ERA.

We seek to do so by presenting a taxonomic framework
for categorizing approaches used for ERA, drawing from
similar work in PCG such as Togelius et. al. [10] and Smith’s
[2] taxonomies of PCG, as well as Withington et al.’s modern
taxonomy of available evaluation approaches [9].

Further outlining the connection between GAI and PCG,
we consider the motivations and use-cases for such sys-
tems. PCG and GAI are both used to automatically generate
large amounts of content, and to increase variety of content
[11, 12]. PCG is also used for assistive tools, helping with
tasks such as level creation [13], and support tools have
emerged to make these systems easier to understand [14].
LLM applications like ChatGPT [4] and Stable Diffusion
[5] are promoted for their potential to reduce labor costs,
enable new business models, and increase access to content
creation– Cook claims all of these as common motivations
for studying AI in games [15]. We also acknowledge the
use of machine learning in PCG [16, 17] as a point that
highlights the connection between PCG and GAI.

We also recognize parallel claims of GAI and PCG
capabilities—and shortcomings thereof—that may provide
useful points of interest for continuing this investigation.
Developing a useful PCG generator often takes just as much,
or more, effort than hand-crafted alternatives [18], despite
the allure of rapid content production. Furthermore, the
variety content generators are able to produce can be lim-
ited, as players are often capable of identifying patterns
between generated content [19]. While Generative AI of-
fers potential to expand the type of content that can be
generated—such as more complex generative audio and mu-
sic used to increase variety and interactivity of game music
compared to non-generative methods [20], as well as the
range of users that can make use of generators—we also
view the drawbacks of PCG as rich sites of investigation in
GAI. ERA has proven a useful method for identifying such
weaknesses in the domain of PCG, and we hope to see its
effectiveness applied to GAI as well.

GAI technologies have prompted significant concern—i.e.
regarding its social and environmental impact, underlying
politics of AI design, implementation, and advocacy [21].
Additional concerns include embedded systemic biases, risk
of plagiarism and misinformation, and human and environ-
mental costs [22]. Jiang et al. find that artists, in particular,
identify harms to professional reputation, intellectual prop-
erty, and financial risk [23]. Because of GAI’s recognized
potential for harm, we value tools and methods for under-
standing and analyzing these systems and their outputs.

3. The Problem Space
Summarizing the process of Expressive Range Analysis, this
form of inquiry operates in three steps [1]:

• 1) Start with a set of images or similar data (i.e. lev-
els, maps, etc.) produced by the generator being
analyzed.

• 2) Determine useful metrics for the goal of analysis
(i.e. linearity or leniency of a level) and apply them
to the data.

• 3) Produce a visualization of the metered data space.

Two challenges arise when considering this method for
GAI-generators as opposed to PCG-generators. First, pro-
ducing a set of data to analyze tends to be more complicated.
GAI text-to-X applications require linguistic input, leading
to larger variance of the input space in terms of both quan-
tity and meaning. Further complicating the issue, PCG tools
are typically custom-made for specific use-cases [18], where
GAI tools (such as ChatGPT [4] or Google’s Gemini [24])
are commonly presented as general-purpose—while random
inputs could be provided in place of handcrafted ones or the
latent space could be randomly sampled, these approaches
would provide undesirable outputs, lacking the targeted fo-
cus of a particular use-case. The general-purpose nature of
GAI systems adds noise to the output space when looking
at these tools for specific use-cases, since outputs that don’t
fit the specific use-case become irrelevant. Guzdial summa-
rizes this aspect as GAI tool developers seeking to expand
the possible valid outputs for a particular tool to include all
possible valid outputs for every tool [8]. This noise presents
additional challenges: how do you narrow the scope of the
output to only match the relevant use-case? What prompts
do you provide as an input to produce a suitable set of data
to categorize the generator as a whole? Guzdial’s human-
centered input alignment [8] may prove a useful attribute
of consideration to respond to this challenge.

The second challenge that arises from considering ERA
for use in analyzing GAI systems comes from the metrics of
analysis. ERA can be used alongside any metrics, depending
on what a generative system is being analyzed for. These
metrics must be applied to large quantities of data, in some
cases encompassing the entire generative output of a system
[1]. Furthermore, many examples of ERA employ automatic
processing of data, but not all data and research goals bene-
fit from automatable metrics- which tend to be quantitative
in nature. The challenge here is twofold: how do you de-
termine semantically meaningful metrics for increasingly
variable data? And, accounting for practical workload and
feasibility, how do you apply these metrics to increasingly
multitudinous data?

We treat producing an intended result as the motivation
behind creating and using generators. While some genera-
tors offer promises of increased speed and efficiency, those
claims are not always accurate [18]—despite this, genera-
tors are valued by many as useful tools. We recognize the
purpose of ERA as evaluating the success of that motivation.
Using ERA is akin to asking: has this this generator suc-
cessfully captured what it was designed to capture? With
this framing in mind, our motivation for this paper is to
facilitate the answering of that question in a greater variety
of contexts. The challenge in the case of GAI is, in short:
how?

4. Framework
Here, we present a taxonomy of ERA methods, seeking to
provide language and framing to better address the chal-
lenges of applying ERA to a greater variety of contexts—
especially GAI systems. We have defined five axes for char-
acterizing ERA methodologies: quantitative vs qualitative,



product vs process, objective vs subjective, content agnostic
vs semantic, and automated vs manual.

We considered three factors as a basis for defining these
axes: the origin and definition of ERA, the adopted practice
of this method, and its potential for further expansion and
refinement. We considered the origin of ERA [1], identifying
decision points in how the method may be applied. We
also considered how ERA has been adopted in research
endeavors and sought to challenge assumptions that have
become commonplace. Finally, this taxonomy is also a result
of our efforts to address challenges we faced in applying
ERA to GAI. We hope to further refine these axes and their
definitions in future work.

4.1. Quantitative vs Qualitative
The metrics that are applied to the generator-produced
data may be quantitative, qualitative, or varying degrees of
mixed-method. Many traditional ERA approaches utilize
quantitative metrics, as this approach is often more suitable
for automatically applying metrics to data and producing
a descriptive visualization. Smith and Whitehead use two
metrics for applying ERA to Launchpad- linearity and le-
niency [1]. Both of these metrics are quantitative, because
they are described, measured, and depicted numerically.
Interestingly, Kreminski et al. [25] identify determining
quantitative metrics as an essential step of ERA, which is
consistent with the examples of the method’s initial pre-
sentation [1]- it is therefore unsurprising that Qualitative
metrics are relatively under-utilized in ERA. This taxon-
omy challenges this assumption—which is present across
many ERA-focused research endeavors—instead suggesting
an expansion of valid data collection efforts.

While there is not a strong foundation of qualitative met-
rics applied to ERA in PCG, some hypothetical qualitative
metrics could come from methods like user surveys or inter-
views, such as those found in play-testing efforts to evaluate
elements of a game like challenge or engagement. These
metrics could be visually represented with tools such as
word clouds, affinity charts, or heat-maps that highlight the
frequency of thematic elements within the data, for example.

4.2. Product vs Process
Because our goal is to evaluate if a generator is successful
in capturing what it was designed to do, it is interesting to
consider both the product of a generator and the process
of producing that output. The product of a generator is its
output- an image, the answer to a question, or a video game
level are all examples of this. Analyzing the product is useful
for identifying what a generator is capable of- in terms of
quality, variety, etc.- and what sort of biases are present in
the outputs. Smith and Whitehead [1] present a product-
focused approach, as their linearity and leniency metrics
consider only the levels produced by the generative system.
Withington’s [26] approach is also product-focused, since
this work considers the differences between outputs of a
generator rather than considering the process of producing
those outputs.

The process entails the experience of producing that out-
put. Common narratives of generative systems sell them as
faster and more efficient than manual alternatives. Look-
ing at the process allows us to evaluate those claims, using
metrics such as the time it takes to get a desirable output
or how many iterations of prompts/generations it takes to

produce such an output. Kreminski et al. [25] arguably
present a process-focused approach, because their motiva-
tion for analysis seeks to evaluate the usability experience
of a generative system. However, the metrics used are pri-
marily focused on the product of the generator. A more
process-centric example would include metrics that evalu-
ate procedural aspects such as the time it takes to generate
an output, or the number of generative attempts before a
user finds a suitable option.

Shaker et. al. [11] highlight generator reliability as one
important piece of PCG evaluation. Looking at this aspect
provides a mixed-method approach that tends to use product
to reveal something about the process.

4.3. Objective vs Subjective
This axis is concerned with the nature of the analysis
metric—is a given metric verifiable based on factual evi-
dence, or does it vary with perspective, based in emotion or
opinion? Smith and Whitehead’s two metrics for Launchpad
again provide a useful example: Linearity, as described in
their paper, is an objective metric that describes the factual
"profile" of platforming levels (how well the geometry of
the level fits a straight line) in the evaluated system [1].
Leniency, however, is identified as a subjective score based
on an intuitive sense of how lenient components of a level
are towards a player [1]. Subjective metrics are relatively
underrepresented in PCG, but may prove useful for evaluat-
ing GAI systems– especially as they are applied in creative
domains. We consider user experience analysis a useful
point of reference for how subjective metrics may be used
in data analysis and visualization [27, 28].

4.4. Content Agnostic vs Semantic
This axis is concerned with the data itself and the value
sought from analysis. Semantic approaches seek to find
meaning within the context of the inputs and outputs of the
generator. Smith and Whitehead [1] present a semantic ap-
proach, as their metrics are intended to allow comparison of
the generated content. Lucas and Volz [29] provide another
example of a semantic approach, as theirs is also intended
to compare generated content.

Content agnostic approaches seek to find meaning in
the generator, regardless of its inputs or outputs- though
the inputs and outputs may be useful for analysis. While
Kreminski et al. [25] evaluate the product of the genera-
tor, their interests lie in the users of the generative system-
answering questions such as how thoroughly they explore
the generative range- rather than finding meaning from
the generative output itself, making their approach content-
agnostic. Withington’s exploration of quality-diversity al-
gorithms [26] presents another content-agnostic example
because the focus is not on the details of specific outputs,
but rather measuring the differences between them.

4.5. Automated vs Manual
This axis is concerned with the process of applying metrics
to the data. Automated processes are typically conducted
computationally, making them especially suitable for quan-
titative analysis metrics and often desirable for the promise
of reduced processing time or effort. Smith and Whitehead
[1], Kreminski et al. [25], and Kybartas et al. [30], among



others, all present automated approaches for applying ERA
metrics to their data.

Manual processes require human labor for applying anal-
ysis metrics to each piece of data—while this tends to be
more time-consuming, it also allows closer scrutiny of el-
ements that are difficult to capture without direct human
intervention. Manual processes are often unsuitable for
the large quantities of data that ERA typically processes,
but methods such as crowd sourced photogrammetry—e.g.
as used for identifying information about wildlife popula-
tions [31]—may hypothetically be leveraged to manually
process such data. Human subject experiments, such as
those commonly used in narrative generation projects [32],
are another example of a manual approach.

5. Discussion
Framing GAI under the lens of PCG- or both as the same
process, e.g. through the lens of human-AI interaction gen-
eration [8]- incorporates this new technology into an estab-
lished domain of research that has ERA as a design-focused
method for evaluation. In connecting GAI and PCG, though,
we have identified a need for both an improved vocabulary
for describing ERA and an expanded potential scope for ERA
that challenges existing methods. Thus this taxonomy fur-
ther expands the potential range of analytical applications
for ERA, providing language to better describe and imagine
its use-cases and identify its historical gaps. This expansion
responds to existing weak-points in PCG evaluation—such
as those identified by Withington et al. [9]—by increasing
the diversity and re-usability of ERA as a framework for
generative analysis.

Further, this taxonomy allows for better description of the
flexibility and space occupied by broadly applicable aspects
of evaluation, such as those presented in Guzdial’s human-
AI interaction generation [8]. For example, Guzdial’s call for
human-centered input alignment considers the relationship
between valid system inputs and user-preferences regard-
ing those inputs. Using the vocabulary from our taxonomy,
this is a process-focused, content-agnostic, subjective ap-
proach, because meaning is found according to individual
perceptions without concern for the generative output. Such
a metric could be applied to data quantitatively or qual-
itatively, using either an automated or manual approach.
Guzdial’s adaptability similarly considers the process of
generation and user perceptions [8], and has similar axis
placement to human-centered input alignment– though it
is objective rather than subjective, since adaptability was
a predetermined aspect of the generative process, rather
than a variable expressed by human interpretation. Novelty,
however, is an objective, product-focused metric because it
is based in the observed possible generative outputs.

It is our hope that using the vocabulary of this taxonomy
can provide some clarity to the research community on
how they are using ERA for evaluation, as well as identify
potential new approaches for ERA.

6. Conclusions, Limitations, &
Future Work

This paper explores an avenue for exploring the intersec-
tion of PCG and GAI, using expressive range analysis as a
common method for analyzing generative systems and their

outputs. We present a taxonomic framework for categoriz-
ing existing and imagined ERA inquiries, hoping to allow
more effective navigation of this space and leverage PCG
tools for study of GAI technologies and systems.

This taxonomy opens interesting possibilities for future
applications of ERA. What do qualitative applications of
ERA look like? How would manually applying metrics to
data compare to more commonly applied automated pro-
cesses? These are relatively underexplored areas of ERA,
and the possibility of applying this method to generative
systems makes these questions more compelling.

The scope of this paper is limited to theory. This thread
of research would benefit from a more complete, systematic
review of ERA projects that places existing work on the
axes of this taxonomy and further inform the chosen axes.
As an extension of this research, we also see value in per-
forming ERA on GAI tools using different combinations of
axis placement—especially including qualitative and manual
approaches.
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