
MID: A New Strategy for Learning Optimal Decision Trees
on Continuous Data
Antonio Dal Maso1,∗, Harold Kiossou2 and Siegfried Nijssen2

1Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
2ICTEAM, UCLouvain, Place Sainte-Barbe 2, bte L5.02.01, B-1348 Louvain-la-Neuve, Belgium

Abstract
Existing Optimal Decision Tree (ODT) algorithms, which are designed to find the best decision tree on training
data, predominantly work on binary features and require the use of discretization algorithms to preprocess
continuous ones. In most cases, these techniques make it unfeasible in practice to find an ODT. We propose a
new approach for learning decision trees on continuous data by combining a new discretization algorithm, MID,
with ODT algorithms. Given infinite time, this allows the ODT algorithm to find an ODT, but if interrupted early,
the approach still produces a good decision tree. Experiments on 14 datasets provide evidence of the effectiveness
of this method.

Keywords
Supervised Discretization, Impurity Metrics, Optimal Decision Trees

1. Extended Abstract

Decision tree learning algorithms are among the most widely used machine learning methods today,
thanks to the predictive power and interpretability of the learned models. Since finding an optimal
decision tree (that minimizes the training error) under constraints is NP-hard, greedy algorithms like
CART [1] and C4.5 [2] have long been the preferred methods for this task. These algorithms are fast and
can handle all types of data, from binary to continuous, without the need for preprocessing. However,
they often find suboptimal trees that do not minimize error across the entire dataset. In recent years,
advancements in optimization solvers and novel algorithmic concepts have led to the development of
new methods for inferring decision trees that are optimal on training data (ODTs). Various approaches
have been proposed, including mixed integer programming [3, 4, 5, 6], constraint programming [7], and
SAT solvers [8]. Among these, dynamic programming methods like DL8, DL8.5, and MurTree [9, 10, 11]
have emerged as particularly effective, offering both accuracy and efficiency in depth-constrained
settings. These methods leverage advanced optimization techniques to explore the search space more
thoroughly than traditional greedy algorithms. As these techniques are typically designed for binary
datasets, they often require continuous features to be discretized before the learning process – a step
that can significantly impact the quality and efficiency of the resulting decision tree. As a consequence,
there is no assurance that such a tree is optimal with respect to the training data.
A number of discretization techniques have been proposed in the literature. Straightforward tech-

niques, such as equal-width and equal-frequency binning, often lead to suboptimal trees because they
fail to capture the underlying structure of the data effectively. More sophisticated methods, like the
MDLP discretizer [12] or ChiMerge [13], use heuristics to select the most informative cut-points, offering
better results in practice.
All these discretization techniques share the following characteristics: (1) they operate on each

continuous feature individually; (2) they offer parameters to determine the number of discretized
features generated per continuous feature. In general, depending on the choice of parameters, these

Discovery Science - Late Breaking Contributions 2024
∗Corresponding author.
Envelope-Open s311444@studenti.polito.it (A. Dal Maso); harold.kiossou@uclouvain.be (H. Kiossou); siegfried.nijssen@uclouvain.be
(S. Nijssen)
Orcid 0000-0001-6972-9885 (H. Kiossou); 0000-0003-2678-1266 (S. Nijssen)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:s311444@studenti.polito.it
mailto:harold.kiossou@uclouvain.be
mailto:siegfried.nijssen@uclouvain.be
https://orcid.org/0000-0001-6972-9885
https://orcid.org/0000-0003-2678-1266
https://creativecommons.org/licenses/by/4.0/deed.en

discretizers can either produce too many binary features, increasing the number of trees that optimal
algorithms have to consider, or oversimplify the data, leading to a loss of accuracy and learning trees
that are far from optimal.

In this paper, we introduce the Minimum Impurity Discretizer (MID) as a new technique to address
these weaknesses. MID distinguishes itself by combining several characteristics: (1) it generates a set of
binary features using an iterative approach that starts with an empty set and adds new features to it at
each iteration; (2) it considers all input continuous features jointly when creating the new binary ones,
allowing some features to be discretized more finely than others; (3) it can be used with ODT algorithms
in an anytime manner, where the learner is run iteratively over data of increasing dimensionality, and
the search process stops when resources are no longer available; (4) it allows one to find good decision
trees even when a small set of binary features is used for training.

Algorithm 1 MID training process
Require: Dataset 𝑋, target variable 𝑦, number of output binary features 𝑁
1: 𝑠𝑜𝑟 𝑡𝑒𝑑_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠_𝑝𝑒𝑟_𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 ← empty list []
2: for 𝑥 in columns of 𝑋 do
3: 𝑥 and 𝑦 are sorted based on the values of 𝑥
4: 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ← compute_and_rank_feature_candidates(𝑥, 𝑦)
5: 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 is appended to 𝑠𝑜𝑟 𝑡𝑒𝑑_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠_𝑝𝑒𝑟_𝑓 𝑒𝑎𝑡𝑢𝑟𝑒
6: 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠 ← get_best_thresholds(𝑠𝑜𝑟 𝑡𝑒𝑑_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠_𝑝𝑒𝑟_𝑓 𝑒𝑎𝑡𝑢𝑟𝑒, 𝑁)
7:

8: Procedure get_best_thresholds(𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠_𝑝𝑒𝑟_𝑓 𝑒𝑎𝑡𝑢𝑟𝑒, 𝑁)
9: 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠 ← empty list []
10: while length(𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠) < 𝑁 do
11: 𝑖𝑑𝑥, 𝑚𝑎𝑥_𝑖𝑚𝑝𝑢𝑟 𝑖𝑡𝑦_𝑔𝑎𝑖𝑛 ← −1, −∞
12: 𝑒𝑚𝑝𝑡𝑦 ← 0
13: for (𝑖, 𝑙𝑖𝑠𝑡) in enumerate(𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠_𝑝𝑒𝑟_𝑓 𝑒𝑎𝑡𝑢𝑟𝑒) do
14: if length(𝑙 𝑖𝑠𝑡) > 0 then
15: if 𝑣𝑎𝑙𝑢𝑒 < 𝑙𝑖𝑠𝑡[0][1] then
16: 𝑖𝑑𝑥 ← 𝑖
17: 𝑚𝑎𝑥_𝑖𝑚𝑝𝑢𝑟 𝑖𝑡𝑦_𝑔𝑎𝑖𝑛 ← 𝑙𝑖𝑠𝑡[0][1]
18: 𝑏𝑒𝑠𝑡_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 ← 𝑙𝑖𝑠𝑡[0][0]
19: else
20: 𝑒𝑚𝑝𝑡𝑦 ← 𝑒𝑚𝑝𝑡𝑦 + 1
21: if 𝑒𝑚𝑝𝑡𝑦 == length(𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠_𝑝𝑒𝑟_𝑓 𝑒𝑎𝑡𝑢𝑟𝑒) then
22: break
23: the tuple (𝑖𝑑𝑥, 𝑏𝑒𝑠𝑡_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒) is appended to 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠
24: the head of 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠_𝑝𝑒𝑟_𝑓 𝑒𝑎𝑡𝑢𝑟𝑒[𝑖𝑑𝑥] is popped
25: return 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠

Algorithm 1 outlines how MID computes thresholds for discretizing a continuous dataset. First, each
feature is considered individually: for each of them, potential thresholds are ranked using an impurity
metric, such as entropy or the Gini index (line 4). Each threshold in this list is the one that, if applied to
further split the feature’s range, would minimize the impurity of the class labels, under the assumption
that all higher-ranked thresholds have been applied. The list 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠, introduced at line 4, consists of
tuples in the form (𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, 𝑖𝑚𝑝𝑢𝑟 𝑖𝑡𝑦_𝑔𝑎𝑖𝑛), where 𝑖𝑚𝑝𝑢𝑟 𝑖𝑡𝑦_𝑔𝑎𝑖𝑛 quantifies the reduction in
impurity achieved by applying 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑.

The lists associated with the individual features are thenmerged together, ensuring that the thresholds
retain their relative order from the original rankings. This is done by get_best_thresholds (lines 8-25),
which also extracts the top 𝑁 thresholds from the resulting global ranking. The procedure iteratively
compares the top thresholds from the lists of all features, selecting and removing the best threshold

Figure 1: Average test accuracies achieved by 10-fold cross validation for DL8.5 and CART on the banknote
dataset using a maximum depth of 3. The numbers of features reported for CART on the continuous data are
not integers because they are average values as well.

at each step. This process continues until 𝑁 binary features are retrieved (line 10) or until no more
thresholds are available (lines 21-22). Each threshold in the global ranking is the one that would reduce
the impurity of the class labels the most if applied to further discretize the corresponding continuous
feature (lines 15-18). We consider this candidate as the optimal choice to continue the discretization.
At this point, a set of 𝑁 binary features representing the dataset can be obtained by selecting the

top 𝑁 thresholds from the global ranking. Let 𝑋1 and 𝑋2 be two sets of thresholds containing 𝑁1 and
𝑁2 elements, respectively. By construction, if 𝑁1 < 𝑁2, then 𝑋1 ⊆ 𝑋2, meaning that the latter set of
binary features is a superset of the former one. If an optimal decision tree learner is trained on both
datasets, its performance on 𝑋2 will be better than or equal to that on 𝑋1. MID makes it straightforward
to represent the observations in a dataset using a small number of binary features. Moreover, additional
features can easily be added if the user has more availability in terms of time and resources. Intuitively,
whenever a new binary feature is needed, MID selects both the best feature to split and the optimal cut
point according to the impurity minimization heuristic.

As anticipated before, MID allows an ODT algorithm to be run repeatedly on input data with growing
dimensionality. If the process is run without a time limit, an optimal decision tree can be found, but the
search process can also be interrupted at any time for a smaller number of features. It is important to
notice that the way in which MID operates is particularly suitable for this approach, as producing more
than one set of binary features starting from the same continuous dataset only requires to train MID a
single time. Moreover, the difference between the binary datasets used in two consecutive iterations
consists in only one feature. Thus, repeating the discretization process multiple times only adds a small
overhead in terms of runtime. An extensive analysis of the pseudocode of MID and its characteristics is
available at https://github.com/antoniodalmaso/MID, together with the Python implementation used in
the experiments and all associated results.
We now discuss the experiments. MID was evaluated using 14 datasets from the UCI Machine

Learning Repository [14], comparing its performance with that of other discretization methods and
greedy algorithms. Our experiments revealed that MID, when combined with DL8.5, consistently
achieves higher accuracy than both CART (trained on both binary and continuous data) and DL8.5
paired with other discretizers, such as MDLP1 or equal-frequency binning. For example, Figure 1 shows

1We used the implementation available at https://github.com/navicto/Discretization-MDLPC.

https://github.com/antoniodalmaso/MID
https://github.com/navicto/Discretization-MDLPC

Figure 2: Number of unique binary features used in the decision trees found by DL8.5 as a function of the
number of features fed to it. The numbers of used features are not all integers because this results are obtained
using 10-fold cross validation. Banknote dataset, maximum depth of 3.

how the test accuracies obtained by DL8.5 and CART on the banknote dataset with a maximum depth
of 3 vary when different numbers of binary features are used for the training. The x-axis represents
the number of binary features fed to the learners. Please note that this axis hence does not indicate
how many features the resulting decision tree model uses. The accuracies achieved by CART on
continuous data are added as dots using the number of unique thresholds tested in the resulting trees as
x-coordinates. The results show that, initially, the test accuracies of CART and DL8.5 sharply increase
with the number of binary features produced by MID. Both then reach a plateau as the number of
features increases. This behavior can be observed in most of the experiments across all datasets, and it
suggests that one could determine how many binary features to use by iteratively adding them until
there is no significant change in the test accuracy (i.e., when the accuracy stops improving or decreases).
Furthermore, when comparing the number of features actually used in the final trees, as reported in
Figure 2 for the banknote dataset, it appears that MID and DL8.5 use less features (at most 6) than CART
on the continuous data. Thus, they manage to achieve higher accuracies while producing smaller trees.
Experiments on the remaining datasets give results consistent with those described above. Moreover,
in terms of run time, the proposed approach is performant: DL8.5’s performance is very good when its
number of input features is small, as is the case here.

In conclusion, we introduced MID, a heuristic-based, supervised, multivariate discretizer designed to
enhance the performance of optimal decision tree algorithms like DL8.5 on continuous datasets. As a
future work, it could be interesting to develop an MDL criterion similar to the one used by MDLP to
make the finetuning of MID easier for the user, and to explore the effect of other impurity metrics on
its performance.

Acknowledgments

Computational resources have been provided by the supercomputing facilities of the Université
catholique de Louvain (CISM/UCL) and the Consortium des Équipements de Calcul Intensif en Fédéra-
tionWallonie Bruxelles (CÉCI) funded by the Fond de la Recherche Scientifique de Belgique (F.R.S.-FNRS)
under convention 2.5020.11 and by the Walloon Region.

References

[1] L. Breiman, Classification and regression trees, Routledge, 2017.
[2] J. R. Quinlan, C4. 5: programs for machine learning, Elsevier, 2014.
[3] S. Aghaei, A. Gómez, P. Vayanos, Strong optimal classification trees, Operations Research (2024).

doi:10.1287/opre.2021.0034.
[4] D. Bertsimas, J. Dunn, Optimal classification trees, Machine Learning 106 (2017) 1039–1082.
[5] S. Verwer, Y. Zhang, Learning optimal classification trees using a binary linear program formulation,

in: Proceedings of the AAAI conference on artificial intelligence, volume 33, 2019, pp. 1625–1632.
doi:10.1609/aaai.v33i01.33011624.

[6] J. J. Boutilier, C. Michini, Z. Zhou, Shattering inequalities for learning optimal decision trees, in:
International Conference on Integration of Constraint Programming, Artificial Intelligence, and
Operations Research, Springer, 2022, pp. 74–90. doi:10.1007/978-3-031-08011-1_7.

[7] H. Verhaeghe, S. Nijssen, G. Pesant, C.-G. Quimper, P. Schaus, Learning optimal decision trees
using constraint programming, Constraints 25 (2020) 226–250.

[8] N. Narodytska, A. Ignatiev, F. Pereira, J. Marques-Silva, Learning optimal decision trees with sat,
in: International Joint Conference on Artificial Intelligence 2018, Association for the Advancement
of Artificial Intelligence (AAAI), 2018, pp. 1362–1368. doi:10.24963/ijcai.2018/189.

[9] G. Aglin, S. Nijssen, P. Schaus, Learning optimal decision trees using caching branch-and-bound
search, in: Proceedings of the AAAI conference on artificial intelligence, volume 34, 2020, pp.
3146–3153.

[10] E. Demirović, A. Lukina, E. Hebrard, J. Chan, J. Bailey, C. Leckie, K. Ramamohanarao, P. J. Stuckey,
Murtree: Optimal decision trees via dynamic programming and search, Journal of Machine
Learning Research 23 (2022) 1–47.

[11] S. Nijssen, E. Fromont, Mining optimal decision trees from itemset lattices, in: Proceedings of the
13th ACM SIGKDD international conference on Knowledge discovery and data mining, 2007, pp.
530–539. doi:10.1145/1281192.1281250.

[12] U. M. Fayyad, K. B. Irani, Multi-interval discretization of continuous-valued attributes for classifi-
cation learning, in: Ijcai, volume 93, Citeseer, 1993, pp. 1022–1029.

[13] R. Kerber, Chimerge: Discretization of numeric attributes, in: Proceedings of the tenth national
conference on Artificial intelligence, 1992, pp. 123–128.

[14] M. Kelly, R. Longjohn, K. Nottingham, The uci machine learning repository, last accessed: May 28,
2024. URL: https://archive.ics.uci.edu.

http://dx.doi.org/10.1287/opre.2021.0034
http://dx.doi.org/10.1609/aaai.v33i01.33011624
http://dx.doi.org/10.1007/978-3-031-08011-1_7
http://dx.doi.org/10.24963/ijcai.2018/189
http://dx.doi.org/10.1145/1281192.1281250
https://archive.ics.uci.edu

	1 Extended Abstract

