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Abstract
We investigate the ability of Diffusion Variational Autoencoder (ΔVAE) with unit sphere 𝒮 2 as latent space to
capture topological and geometrical structure and disentangle latent factors in datasets. For this, we introduce a
new diagnostic of disentanglement: namely the topological degree of the encoder, which is a map from the data
manifold to the latent space. We derive and implement an algorithm that computes this degree, and we use it to
compute the degree of the encoder of models that result from the training procedure. Our experimental results
show that the ΔVAE achieves relatively small LSBD scores, and that regardless of the degree after initialization,
the degree of the encoder after training becomes −1 or +1, which implies that the resulting encoder is at least
homotopic to a homeomorphism.
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1. Introduction

A data representation is often desired to capture or “disentangle” the explanatory factors of the dataset
[1]. Although there is still no agreed definition for disentanglement, mathematical definitions and
measures do exist, such as Linear Symmetry Based Disentanglement (LSBD) [2] and the LSBD score [3].

Besides formal definitions of disentanglement, there are desired characteristics for disentangled latent
factors, for instance that nearby points in the dataspace should correspond to nearby points in the latent
space representation. This could lead to a requirement that the encoder should be a homeomorphism
[4, 5].

Given that an agreed definition of disentanglement does not yet exist, we consider it desirable to
develop a wide range of diagnostics that are somehow related to the intuitive concept of disentanglement.
Moreover, in practice it can be difficult to test whether a given encoder is a homeomorphism. Therefore,
we introduce the topological degree as a discrete diagnostic for disentanglement. A homeomorphic
encoder always has degree +1 or −1, whereas an encoder with degree ±1 is at least homotopic to a
homeomorphism.

To achieve a homeomorphic encoder, or to get an encoder with degree ±1, one needs to choose
a latent space that matches the topology of the dataset, otherwise one will encounter the manifold
mismatch problem [6].

In order to have a wider range of latent spaces and solve the manifold mismatch problem [6], Pérez Rey
et al [7] developed the Diffusion Variational Autoencoder (ΔVAE) that allows for any closed Riemannian
manifold as latent space.

We immediately apply the degree as a diagnostic for disentanglement in an evaluation of the ΔVAE,
in which we test the ΔVAE with a spherical latent space on data which naturally has a spherical latent
structure.
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It can be challenging to train a ΔVAE, and we wondered whether this was due to the initialization and
topological obstructions, see also [8, 4]. Indeed, if training corresponds to a continuous deformation of
the encoder and decoder, if the degree would not be initialized at 1 or −1, the encoder would have no
chance to reach suitable disentanglement.

Our experiments show that regardless of the initial model weight, the topological degree of the
encoder can change to become eventually constant equal to +1 or −1, after some epochs of the training
process. We perform the same experiments for the 𝑆-VAE [6] and compare the results. The code that
we used in the experiments can be found at https://gitlab.tue.nl/diffusion-vae/degree.

2. Related work

The VAE [9, 10] and its extensions are among the most used models when it comes to learning disentan-
gled representations [11, 12, 13]. Some VAE extensions propose the use of more complex prior distribu-
tion other than the Gaussian in order to better match the distribution of the latent code [14, 15, 16, 17].
Some extensions propose independence of each latent dimension by modifying the VAE loss function
[11, 13]. Other extensions use more geometric approaches to make the latent space itself match the
geometry of the dataset [18, 6, 19, 4, 20, 7].

Intuitions and some aspects of disentangled representation are presented in [1, 21, 22], while overviews
of several disentanglement metrics are given in [23] and [24]. Disentanglement is originally assessed
with visual inspections and performance on downstream tasks [23]. Efforts have been devoted to propose
metrics to evaluate different aspects of disentanglement [8, 25, 26, 27, 3]. The disentanglement metrics
derived in these works do not check geometric aspects of disentanglement such as homeomorphism
and topological degree according to the original mathematical definitions of these aspects. The degree
was mentioned as a topological obstruction to homeomorphic autoencoding in [8].

3. Topological degree as a diagnostic for disentanglement

The encoder of a VAE can be considered as a continuous map from a dataspace 𝒳 ⊆ ℝ𝑛 to the latent
space 𝑍. Intuitively speaking, its topological degree is the number of times that the encoder wraps the
data manifold around the latent space, counted in such a way that positive cancels negative orientation
(cf. [28, Page 134] and [29, Page 27]). Encoder degree unequal to 1 or −1 indicates that the encoder
cannot be a homeomorphism [29, Page 51].
Computing the topological degree of the encoder Although general methods exist [30], we

developed and implemented a basic algorithm targeted to the case at hand of computing the degree of a
map between spheres. We triangulate the two spheres, and create a “rounding” of the original map that
maps vertices to vertices, edges to collections of edges and faces to collections of faces. We finally count
how many times the faces in the target sphere are covered, taking into account orientation. Using tools
from homology theory we can prove that the algorithm gives the correct result cf. [31].

4. Experiments

We train the ΔVAE with 𝒮 2 as latent space, using a second-order expansion of the heat kernel [32]. We
use a dataset of spherical harmonics as a proxy for a more natural dataset of axisymmetric pictures on the
unit sphere, which naturally has the topology of 𝒮 2 [33, Page 88] [34, 35]. We include a semisupervised
LSBD-loss as in [3] and a semisupervised LSBD loss for the decoder. Also, we evaluate the LSBD score
outlined in [3] with the group 𝑆𝑂(3). The representation of the data given by the models is then good if
the corresponding LSBD score is small. Furthermore, we compute the distance distortion (DD) metric
as given in [7], and the log-likelihood estimate as in [36]; for further details see also [7]. We compare
the result with 𝒮-VAE. The numerical results of the experiments are presented in Table 1.
Evolution of the degree during the training We conducted more experiments for spherical

harmonics of degree 𝐿 = 7, 5, 3 with ΔVAE in order to get insight into the evolution of the degree during
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Table 1
Results for training the ΔVAE and the 𝑆-VAE. The “degree” column reports how often the absolute value of the
degree equaled 1 after training. Each model was trained 5 times.

Model LL ELBO KL RE DD Degree LSBD
Spherical harmonics of degree 𝐿 = 5

ΔVAE −15.92±0.03 6.74±0.01 6.70±0.00 0.01±0.00 0.05±0.01 5 out of 5 0.01±0.01
𝑆-VAE −0.22±0.00 8.41±0.08 8.39±0.08 0.02±0.03 0.00±0.00 5 out of 5 0.00±0.00

Spherical harmonics of degree 𝐿 = 7
ΔVAE −19.72±0.03 6.96±0.03 6.70±0.00 0.27±0.03 0.05±0.02 5 out of 5 0.12±0.06
𝑆-VAE −0.26±0.00 8.33±0.03 7.90±0.03 0.43±0.03 0.09±0.01 5 out of 5 0.20±0.03

Spherical harmonics of degree 𝐿 = 9
ΔVAE −23.32±0.02 6.82±0.00 6.69±0.00 0.13±0.00 0.01±0.01 5 out of 5 0.01±0.00
𝑆-VAE −0.31±0.00 8.23±0.04 7.57±0.31 0.66±0.02 0.12±0.01 1 out of 5 0.29±0.02

Spherical harmonics of degree 𝐿 = 11
ΔVAE −33.06±0.05 12.90±0.04 12.69±0.00 0.18±0.04 0.05±0.02 5 out of 5 0.09±0.04
𝑆-VAE −0.36±0.00 9.07±0.10 8.33±0.11 0.73±0.03 0.15±0.03 1 out of 5 0.35±0.05

the training. We performed 5 experiments where the absolute value of the degree before training was
not 1, whereas the absolute value of the degree after all training was 1. In particular, even though
we share the opinion that topological obstructions might hamper training [8, 4], for the ΔVAE the
obstruction to the degree can be overcome.

5. Discussion

We derive a second order expansion of the heat kernel on the unit sphere 𝒮 2 by using the theoretical
result of [32], and use it as approximation in the ΔVAE loss function. Though the effect of such higher
order approximation in the performance of ΔVAE is not studied yet.

Our algorithm for degree computation could be generalized to higher dimensional sphere 𝒮 𝑑 with
𝑑 > 2, but due to the curse of dimensionality, practical computation is most likely only feasible in very
low dimensions: for a 𝑑-dimensional manifold and a discretization length 𝛿, the number of faces needed
in the triangulation scales as 𝛿−𝑑.

The amount of semisupervision is relatively high in our experiments. For lower degree spherical
harmonics (𝐿 = 1, 3, 5), the amount of semisupervision can be reduced drastically, although we have
not yet performed a systematic study.

6. Conclusion

We evaluate to what extent the ΔVAE can capture topological properties or disentangle generating
factors, as measured by the LSBD score, and as expressed by a new discrete diagnostic for disentangle-
ment: the degree of the encoder. We use the encoder degree as a means to gain more insight in the
training behavior.

First, we obtain relatively small LSBD scores, which expresses that the ΔVAE indeed can capture or
disentangle the latent rotational factor relatively well. In comparison with the 𝑆-VAE, we find that the
𝑆-VAE typically obtains better log-likelihood scores, while the reconstruction error and LSBD score are
a bit better for the ΔVAE.

Secondly, we implemented an algorithm for computing the topological degree of the encoder and
find that even though the encoder is typically initialized with degree 0, this degree can change and after
training the encoder indeed has degree of ±1, which means that the encoder is at least homotopic to a
homeomorphism and that the learned spherical representation preserves the topological structure of
the dataset at least up to a homotopy. In particular, we find that the sphere in latent space is completely



covered by the image of the data manifold.
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