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Abstract
In recent years, Explainable Artificial Intelligence (XAI) has attracted significant attention due to the growing
complexity and opacity of ML models. While traditional XAI tools have focused on feature interaction analysis,
there is a gap in understanding data point interactions and their impact on model performance. This research
addresses this gap by studying data point interactions in ML models, specifically KNN, and proposing novel
algorithms to enhance prediction performance.

First, we developed Compare-xAI [1], a benchmark for direct comparison of popular XAI algorithms across
various use cases, confirming the literature’s immaturity in leveraging data interactions. Second, we introduced
STI-KNN [2], the first algorithm to calculate exact pair-interaction Shapley values in polynomial time, improving
our understanding of Shapley contributions for data point pairs. Third, we utilized data interactions to create the
Pairwise Difference Classifier algorithm [3], which solves a binary classification problem on a paired version
of the original training data.

Keywords
Supervised learning, Meta-learning, Data Interaction, Explainable AI

1. Related Work

Existing literature in XAI has extensively explored feature interactions, providing insights into how
different features contribute to model predictions. Previous works, such as Ribeiro et al.’s LIME [4] and
Lundberg and Lee’s SHAP [5], have laid the groundwork for feature-based explanations, leading to
mature research literature in the field of feature interaction [6, 7, 8, 9]. But the domain of data valuation
remains relatively unexplored, besides recent pioneer works using approximation [10] or model specific
[11] explanations. Moreover, the interaction between data points themselves has not been thoroughly
investigated.

Tynes et al. introduced pairwise difference regressor [12], a novel meta-learner for chemical tasks
that enhances prediction performance, compared to random forest and provides robust uncertainty
quantification. In computational chemistry, estimating differences between data points helps mitigate
systematic errors [12]. In parallel, Wetzel et al. used twin neural network architectures for semi-
supervised regression tasks, focusing on predicting differences between target values of distinct data
points [13].

2. Research Questions and Challenges

2.0.1. RQ.1: How do different XAI methods, especially data-based, perform in terms of
interpretability, accuracy, and computational efficiency?

We question the maturity and usability of explanation methods for the data science community. The
abundance of xAI algorithms can be overwhelming, making it hard for practitioners to select the right
one for their needs. The differing requirements and implementations of xAI algorithms pose challenges
for data scientists in accurately evaluating them and staying current with their development. This
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issue manifests as the illusion of explanatory depth [14] in interpreting xAI results [15], with evidence
showing that data scientists often misuse interpretability tools [16].

2.0.2. RQ.2: How can we accurately quantify data point interactions within trained ML
models?

Existing literature primarily focuses on feature interactions, lacking methodologies for evaluating
data point interactions. How do data points interact in forming patterns? How can we measure this
interaction? And how can we leverage this explanation to improve the ML pipeline?

2.0.3. RQ.3: Can data point interactions be leveraged to enhance the performance of ML
classifiers?

Exploring whether understanding data point interactions can lead to improved model accuracy and
robustness. How can we design and implement algorithms that utilize data point interactions for
prediction tasks? Developing and evaluating algorithms that incorporate data point interactions in
their predictive mechanisms.

3. Method and Evaluation

3.0.1. RQ.1

Given the unsolved burden of evaluating and correctly choosing xAI algorithms, we propose Compare-
xAI that mitigates two issues: non-unified benchmark for xAI algorithms and the illusion of explanatory
depth during the interpretation of results. Compare-xAI emerges as a unique and valuable benchmark.
Its distinct contributions lie in its simplicity, scalability, ability to integrate any dataset and ML model,
and, most importantly, its focus on the user’s expected explanation. By addressing the pitfalls high-
lighted in surveys of xAI algorithms through concrete functional tests, Compare-xAI provides a robust
evaluation framework.

3.0.2. RQ.2

We propose, STI-KNN, the first algorithm that calculates the exact pair-interaction Shapley values in
𝒪(𝑡𝑛2) rather than 𝒪(2𝑛). STI-KNN is the first algorithm that allows studying the exact interaction on
large real-world datasets. This research is the first to consider two disjoint fields: Data valuation and
Interaction in Explainable AI. Finally, we study various cases of positive and negative data interactions
using STI-KNN.

3.0.3. RQ.3

Leveraging the concept of data point interactions, we introduce the Pairwise Difference Learning (PDL)
Classifier. This classifier employs a dual representation of the ML task, achieving better prediction
performance by integrating pair interaction data, see Figure 1. The empirical evaluation contains 99
diverse datasets, times 25 CV repetitions. We use the macro F1 metric.

4. Preliminary Results

4.0.1. RQ.1

With 15 post-hoc xAI algorithms, 25 tests, and 50 research papers indexed, Compare-xAI offers a unified
benchmark that accurately reproduces experiments. Through a rigorous selection protocol, it highlights
the contrast between theoretical foundations and practical implementations, making the limitations of
each method transparent. Compare-xAI uses an intuitive scoring method to absorb the vast quantity of



Figure 1: Illustration of the PDL classifier.

xAI-related papers and reduce human errors in interpreting xAI outputs. Its goal is to unify post-hoc
xAI evaluation methods into a multi-dimensional benchmark, providing insights into the strengths and
weaknesses of different approaches. Link: https://karim-53.github.io/cxai/

4.0.2. RQ.2

Thanks to the STI-KNN algorithm, the data interaction can quickly be visualized using a heatmap
of the Shapley interaction values. The matrix shows an example of interaction. We observe, first, a
contrast between in-class and out-of-class interactions, second, a reduction in interaction due to data
redundancy, and third, an unusual pattern when data contains outliers.

4.0.3. RQ.3

Our benchmark demonstrates that PDL consistently outperforms state-of-the-art MLmodels, resulting in
improved F1 scores in a majority of cases. This highlights PDL’s effectiveness in enhancing performance
over baseline methods, facilitated through its straightforward integration via our Python package. Link:
https://github.com/Karim-53/pdll

Figure 2: Evaluating PDL classifier on 99 datasets. Significant wins use 25 CV repetitions on each dataset.

https://karim-53.github.io/cxai/
https://github.com/Karim-53/pdll


5. Intermediary Conclusions

Our research indicates that data point interactions play a crucial role in the performance of ML models.
By shifting the focus from feature interactions to data interactions, we have opened up new avenues
for enhancing model interpretability and accuracy. For more detailed results, refer to the following
papers[1, 2, 3].

6. Planned Next Steps

Confirming the efficiency of the PDL algorithm by studying its calibration and uncertainty estimation.
By continuing to explore the interactions between data points, we hope to contribute significantly to
the field of xAI and ML, ultimately leading to more transparent, accurate, and robust models.
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