
Hardware acceleration for ultra-fast Neural Network
training on FPGA for MRF map reconstruction
Mattia Ricchi1,2,∗

1Department of Computer Science, University of Pisa, Largo Bruno Pontecorvo 3, 56127, Pisa, Italy
2National Insitute of Nuclear Physics, Division of Bologna, Viale Carlo Berti Pichat 6/2, 40127, Bologna, Italy

Abstract
Magnetic Resonance Fingerprinting (MRF) is a fast quantitative MR Imaging technique that provides multipara-
metric maps with a single acquisition. Neural networks (NNs) accelerate reconstruction but require significant
resources for training. We propose an FPGA-based NN for real-time brain parameter reconstruction from MRF
data. Training the NN takes an estimated 200 seconds, significantly faster than standard CPU-based training,
which can be up to 250 times slower. This method could enable real-time brain analysis on mobile devices,
revolutionising clinical decision-making and telemedicine.

Keywords
magnetic resonance fingerprinting, neural network, hardware acceleration, FPGA, real-time.

1. Introduction

Magnetic resonance imaging (MRI) improves healthcare through better diagnosis and treatment,
supported by artificial intelligence (AI) in data analysis [1, 2]. A key AI application in MRI is the
reconstruction of quantitative maps acquired with magnetic resonance fingerprinting (MRF), a
significant technique that can produce multiparametric maps in a single scan [3]. Recent work by
Barbieri et al. [4, 5] on using neural networks (NN) for the reconstruction of the MRF parameter map
reconstruction has shown greater or equal efficiency compared to traditional methods, with better
memory efficiency and reduced computational load. However, NN training is resource-intensive and
time-consuming. FPGA acceleration for NN offers a potential solution [6], as it exhibits high throughput
and low latency. After a traditional software validation, the NN algorithm can be transformed into a
hardware version compatible with modern FPGAs, aimed at accelerating processing times by a factor
of a few times to hundreds.

The studies by Xiong et al. [7] and Sanaullah et al. [8] highlight the potential of FPGA for accelerating
NNs used in medical imaging and diagnosis. Xiong et al. [7] developed an FPGA-accelerated NN for
brain tumour segmentation in MRI images, resulting in significant improvements in speed and energy
efficiency compared to traditional platforms. Sanaullah et al. [8] created an FPGA-based processor that
outperforms CPU and GPU implementations, achieving notable speedups. Despite these advances,
NN training is still performed using software before deployment on FPGAs for inference, due to the
iterative and offline nature of the training process [7].

However, MRF has a significant disadvantage: it is a non-standardised MR technique. Various factors,
such as the scanner manufacturer, the magnetic field strength, and the number of parameters to be
retrieved, can affect how the data are acquired and, consequently, how the quantitative maps are
reconstructed. Therefore, whenever any single parameter is changed, the NN must be retrained to adapt
to the new case. The retraining procedure is both computationally demanding and time-consuming,
creating a substantial obstacle to the effective application and standardization of MRF techniques across

Discovery Science - Late Breaking Contributions 2024
∗Corresponding author.
Envelope-Open mattia.ricchi@phd.unipi.it (M. Ricchi)
Orcid 0009-0008-4430-3843 (M. Ricchi)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:mattia.ricchi@phd.unipi.it
https://orcid.org/0009-0008-4430-3843
https://creativecommons.org/licenses/by/4.0/deed.en


various platforms and clinical environments.

The purpose of this work involves hardware programming for an FPGA-accelerated NN training
algorithm for the reconstruction of MR parameters (T1 and T2) using clinical MRF. To test the ability
to accelerate the training process on FPGA, the original NN must first be redesigned, i.e., simplified
and quantized, to meet the available resources of the hardware accelerator. This would result in an
important reduction in training time and power consumption.

2. Matherials and Methods

The NN model by Barbieri et al. [4, 5] is a feedforward network with nine fully connected layers. It uses
ReLU activations for the first eight layers and a linear activation for the output layer. The model inputs
are the real and imaginary parts of MRI signals and outputs T1 and T2 quantitative maps. Training was
supervised using the Mean Squared Error (MSE) loss function, over 500 epochs with 1000 gradient steps
each, a learning rate of 10−4, optimized with Adam Optimiser [9], implemented with Keras TensorFlow
[10], taking around 16 hours on an AMD Ryzen 9 3900 CPU. To fit FPGA resources, the first two layers
were removed and the network was retrained on the original dataset of 250M MRF simulated signals.
Performance was evaluated on 5000 new synthetic signals. Quantization Aware Training (QAT) [11]
was applied to use lower precision (integer parameters) without degrading performance.

A low-level HDL design approach, in which every firmware component is written in VHDL, without
any high-level synthesis support, has been selected, ensuring full control and data protection through
an on-FPGA firewall security algorithm [12]. The ALVEO U250 FPGA board, with 1.7M LUTs, 3.4M FFs,
12k DSPs, and 2.6k BRAMs, was selected for implementation. Firstly, the behaviour function of a single
node was implemented as given in Eq. (1).

𝑦 = 𝜎 (
𝑁𝑖𝑛𝑝𝑢𝑡𝑠

∑
𝑖=1

𝑥𝑖 ⋅ 𝑤𝑖 + 𝑏) (1)

This function was generically implemented once and then used all the necessary times to cover all
the node operations present in the NN. Proper functioning was verified by deploying 16 nodes in the
FPGA and comparing their output with those of Python. Secondly, the backpropagation algorithm was
implemented. As a starting point, the simple stochastic gradient descent was chosen, which describes
how the parameters of the NN, i.e. weights and biases, are updated at each iteration during training,
following Eq. (2).

𝛿 𝑙 = ((w𝑙+1)
𝑇
𝛿 𝑙+1) ∘ 𝜎 ′(𝑧 𝑙)

𝜕ℒ
𝜕w𝑙

= 𝑦 𝑙−1𝛿 𝑙 and 𝜕ℒ
𝜕𝑏𝑙

= 𝛿 𝑙
(2)

Finally, an assessment was conducted to evaluate the resource requirements for node operations,
backpropagation, and memory storage on the FPGA, involving the necessary LUTs, DSPs, and FFs.

3. Results and Discussion

Tab. 1 reports the error metrics both in the cases of the original and the quantized NN, showing that
the quantization process did not affect the NN performance but simply reduced its precision, allowing
it to work with full integer numbers.

The synthesis tool provided by Vivado enables the transformation of high-level design descriptions
into gate-level models, aiding in the development of efficient and optimised digital circuits. By analysing
synthesis results, one can estimate the maximum achievable clock frequency for the implemented
design. In our scenario, based on the synthesis outcomes of a single node and the backpropagation



𝑇1 𝑇2
Original Quantized Original Quantized

MAPE (%) 2.15 2.36 8.89 11.07
MPE (%) −0.66 0.12 0.02 −3.12

RMSE (ms) 75 78 145 148

Table 1
Comparison between the error metrics in the case of the original and quantized NN. Results show good
performance of the quantized NN.

process, a clock frequency of 200 MHz is totally feasible, with the possibility of increasing it to 250
MHz. Based on the estimation of the required resources for executing all the necessary operations
on the FPGA, the whole network and backpropagation algorithm cannot be implemented on the
FPGA but, it is feasible to implement 16 nodes of the second layer on the FPGA, as well as the
backpropagation between the layers containing 16 and 32 nodes. Thus, by iterating these two blocks
multiple times in a semiparallelised way, all the operational requirements of the network can be covered.

To verify the correct implementation of the single node function in VHDL, the outputs produced on
both the FPGA and in software were compared after providing identical inputs, weights, and biases.
The comparison produced promising results, as there was no difference between the Python outputs
and those of the FPGA, indicating that the mathematical operations were correctly translated into VHDL.

The estimate of the necessary FPGA resources was 145k LUTs, 5k DSPs, and 146k FFs. This implies
that the entire NN and backpropagation use 8% of the available LUTs and 40% of the available DSPs,
demonstrating that the algorithm’s implementation is entirely viable from the resource point of view.
PCI Express technology was chosen to communicate from the PC’s CPU to the FPGA and back resulting
in additional resources of 83k LUTs, 148kn FFs and 150 BRAMs, the internal RAMmemories of the FPGA.

Finally, a fairly accurate estimate of the training time can be made. Each node needs 4 clock cycles to
perform its operations. The 16 nodes implemented on the FPGA work in a semi-parallel way, resulting
in 56 clock cycles required for all levels. Similarly, the single backpropagation module requires 3 clock
cycles, iterating through the entire process for a total of 104 clock cycles. With a clock frequency of 200
MHz, the clock period is 5 ns, considering 250M training data the total training time results in:

(5 ⋅ (250′000′000 ⋅ (56 + 104))) = 200 s (3)

This result highlights how the NN can be trained on FPGA in less than 5 minutes, which is 200 times
faster than the corresponding training on CPU. The proposed method poses a big step in the direction
of real-time and personalized healthcare, opening the possibility of having an integrated NN hardware
accelerator for map reconstruction inside the MRI scanner.

Acknowledgments

The author would like to thank all the people who contributed to this work: Fabrizio Alfonsi (INFN
Bologna), Camilla Marella (University of Bologna), Marco Barbieri (Stanford University), Alessandra
Retico (INFN Pisa), Leonardo Brizi (University of Bologna), Alessandro Gabrielli (University & INFN
Bologna), Claudia Testa (University & INFN Bologna).



References

[1] J. C. Gore, Artificial intelligence in medical imaging, Magnetic Resonance Imaging 68 (2020)
A1–A4. URL: https://www.sciencedirect.com/science/article/pii/S0730725X19307556. doi:https:
//doi.org/10.1016/j.mri.2019.12.006.

[2] D. Shen, G. Wu, H.-I. Suk, Deep learning in medical image analysis, Annual
Review of Biomedical Engineering 19 (2017) 221–248. URL: https://www.annualreviews.
org/content/journals/10.1146/annurev-bioeng-071516-044442. doi:https://doi.org/10.1146/
annurev-bioeng-071516-044442.

[3] D. Ma, V. Gulani, N. Seiberlich, K. Liu, J. Sunshine, J. Duerk, M. Griswold, Magnetic resonance
fingerprinting, Nature 495 (2013) 187–92. doi:10.1038/nature11971.

[4] M. Barbieri, L. Brizi, E. Giampieri, F. Solera, G. Castellani, C. Testa, D. Remondini, Circumventing
the curse of dimensionality in magnetic resonance fingerprinting through a deep learning approach,
2018.

[5] M. Barbieri, L. Brizi, E. Giampieri, F. Solera, D. Manners, G. Castellani, C. Testa, D. Remondini,
A deep learning approach for magnetic resonance fingerprinting: Scaling capabilities and good
training practices investigated by simulations, Physica Medica 89 (2021) 80–92. doi:10.1016/j.
ejmp.2021.07.013.

[6] A. Sanaullah, C. Yang, Y. Alexeev, K. Yoshii, M. Herbordt, Real-time data analysis for medical
diagnosis using fpga-accelerated neural networks, BMC Bioinformatics 19 (2018). doi:10.1186/
s12859-018-2505-7.

[7] S. Xiong, G. Wu, X. Fan, X. Feng, Z. Huang, W. Cao, X. Zhou, S. Ding, J. Yu, L. Wang, Z. Shi,
Mri-based brain tumor segmentation using fpga-accelerated neural network, BMC bioinformatics
22 (2021) 421. doi:10.1186/s12859-021-04347-6.

[8] A. Sanaullah, C. Yang, Y. Alexeev, K. Yoshii, M. Herbordt, Real-time data analysis for medical
diagnosis using fpga-accelerated neural networks, BMC Bioinformatics 19 (2018). doi:10.1186/
s12859-018-2505-7.

[9] D. Kingma, J. Ba, Adam: A method for stochastic optimization, International Conference on
Learning Representations (2014).

[10] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. Corrado, A. Davis, J. Dean,
M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, L. Kaiser, M. Kudlur,
J. Levenberg, X. Zheng, Tensorflow : Large-scale machine learning on heterogeneous distributed
systems, 2015.

[11] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam, D. Kalenichenko, Quantization
and training of neural networks for efficient integer-arithmetic-only inference, 2017. URL: https:
//arxiv.org/abs/1712.05877. arXiv:1712.05877.

[12] M. Grossi, F. Alfonsi, M. Prandini, A. Gabrielli, A high throughput intrusion detection system (ids)
to enhance the security of data transmission among research centers, Journal of Instrumentation 18
(2023) C12017. URL: https://dx.doi.org/10.1088/1748-0221/18/12/C12017. doi:10.1088/1748-0221/
18/12/C12017.

https://www.sciencedirect.com/science/article/pii/S0730725X19307556
http://dx.doi.org/https://doi.org/10.1016/j.mri.2019.12.006
http://dx.doi.org/https://doi.org/10.1016/j.mri.2019.12.006
https://www.annualreviews.org/content/journals/10.1146/annurev-bioeng-071516-044442
https://www.annualreviews.org/content/journals/10.1146/annurev-bioeng-071516-044442
http://dx.doi.org/https://doi.org/10.1146/annurev-bioeng-071516-044442
http://dx.doi.org/https://doi.org/10.1146/annurev-bioeng-071516-044442
http://dx.doi.org/10.1038/nature11971
http://dx.doi.org/10.1016/j.ejmp.2021.07.013
http://dx.doi.org/10.1016/j.ejmp.2021.07.013
http://dx.doi.org/10.1186/s12859-018-2505-7
http://dx.doi.org/10.1186/s12859-018-2505-7
http://dx.doi.org/10.1186/s12859-021-04347-6
http://dx.doi.org/10.1186/s12859-018-2505-7
http://dx.doi.org/10.1186/s12859-018-2505-7
https://arxiv.org/abs/1712.05877
https://arxiv.org/abs/1712.05877
http://arxiv.org/abs/1712.05877
https://dx.doi.org/10.1088/1748-0221/18/12/C12017
http://dx.doi.org/10.1088/1748-0221/18/12/C12017
http://dx.doi.org/10.1088/1748-0221/18/12/C12017

	1 Introduction
	2 Matherials and Methods
	3 Results and Discussion

