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Abstract
Research on human-computer interaction emphasise the importance of reliability in hybrid decision-making
systems. Trust hinges on the performance and trustworthiness of AI, achievable through accuracy metrics,
confidence scores, eXplainable AI, and abstention mechanisms. This study presents an explainable abstaining
classifier named Learning to Reject via Local Rule-based Explanations (L2loRe), a novel approach that leverages
the distance between data points and counterfactuals to evaluate the confidence of predictions, thus facilitating
the formulation of a rejection policy and generating clear explanations for the reasoning behind predictions or
rejections.
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1. Introduction

Research on human-computer interaction emphasizes that a safe and effective utilization of Artificial
Intelligence (AI) in decision-making requires human agents to properly rely on AI systems, which
in turn is achieved by building the hybrid system for appropriate trust [1]. Key factors influencing
trust in automation include performance and transparency, typically conveyed via accuracy metrics,
confidence scores, and explanations [2]. The inclusion of an abstention mechanism can further improve
the reliability of the system [3]. When the AI system lacks sufficient confidence in its predictions or
the impact of errors could be serious, it may be more prudent to refrain from making a prediction and
instead direct the input to a more advanced system or a human agent. Several approaches, referred to
as “Learning to Abstain” (L2A, [4]), have adopted this mechanism. Nonetheless, limited attention has
been directed towards a significant drawback of L2A, namely, the opaqueness of the rejection policy,
which may ultimately undermine human trust and satisfaction with the automated system.

This research extends prior work concerning the opaqueness of abstaining algorithms [5, 6, 7, 8]. It
presents an explainable abstaining classifier named Learning to Reject via LOcal Rule-based Explanations
(L2loRe, 1). This novel algorithm incorporates an interpretable abstention mechanism, allowing for the
extraction of the rationale behind the decision to abstain. L2loRe draws from the L2R framework, where
the rejection policy depends on input features and machine outcomes, while presuming the presence
of a downstream human agent. In general, a key element of an L2R algorithm is to identify a suitable
confidence metric to quantify the (un)certainty of the prediction. In L2loRe, we define an interpretable
confidence score described by the distance between data points and their corresponding counterfactual
instances. L2lore leverages this distance as a proxy to quantify the certainty level of a prediction and to
reject it accordingly.

Overall, the contributions of this work can be summarized as follows: i) We present a novel strategy
to fine-tune an existing pre-trained classifier with local rule-based explanations; i) we propose to use
the distance between data points and their corresponding counterfactuals as a confidence metric to
define a rejection policy for a given classifier; i) we generate human-understandable explanations to
enrich the outcome of the classifier in case of rejection.
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2. Proposed methodology

Problem setting. The goal of L2R algorithms is to learn a model 𝑓𝜌 that consists of two components,
namely a predictor 𝑓 and a rejection policy 𝜌. The former is defined as a function 𝑓 ∶ 𝒳 → 𝒴, where
𝒳 denotes the feature space and 𝒴 the target space, while the latter is generally defined (at inference
time) as 𝜌 ∶ 𝒳 → {0, 1}. In the case of dependent rejectors, 𝜌 depends also on the predictor 𝑓 through a
confidence function 𝑐𝑓 ∶ 𝒳 → ℝ+ and a certain threshold 𝜏. The composed system is then defined by a
function 𝑓𝜌 ∶ 𝒳 → 𝒴 ⋃{∅} such that:

𝑓𝜌(𝑥) = {
∅ if 𝜌(𝑥; 𝑐𝑓, 𝜏 ) = 1,
𝑓 (𝑥) otherwise.

In other words, given an instance 𝑥, if the rejection policy 𝜌 rejects it, then no prediction is made and
the instance is directly deferred to a downstream agent (e.g., a human decision-maker); conversely, if 𝜌
accepts 𝑥, then the prediction function 𝑓 is applied to 𝑥 and the outcome 𝑓 (𝑥) is observed. In this study,
we assume 𝑓 to be a binary or multiclass classifier. Ideally, 𝜌 should be able to accurately capture the
decision boundary of 𝑓 in order to reject the examples on which 𝑓 is prone to make mistakes, while
accepting those where a correct prediction is more probable. In accordance with the terminology in
[4], our proposed method implements a dependent and staged (i.e., learnt post-hoc with respect to
the classifier) abstention policy for the rejection of ambiguous samples. L2loRe is model agnostic for
classification models on tabular data.

Architecture. L2loRe implements the following sequential functions:

1. Learning a confidence function 𝑐𝑓 that quantifies the uncertainty associated with the
prediction of a test example by measuring its proximity to its closest counterfactual.
Intuitively, the distance between an instance and its counterfactual might serve as a proxy for
the confidence of the original classifier. The first step to learn 𝑐𝑓 is the generation of a set of
counterfactual rules 𝐶 = {𝑟1𝑐 , … 𝑟𝑚𝑐 } and a set of counterfactual instances 𝑋𝑐(𝑥) = {𝑥1𝑐 , … , 𝑥𝑚𝑐 }
obtained by applying the counterfactual rule 𝑟 𝑖𝑐 to the original instance 𝑥 to get 𝑥 𝑖𝑐. This step
largely relies XAI method LORE𝑠𝑎 [9]. Successively, the confidence function 𝑐𝑓 ∶ 𝒳 × 𝒳𝑚 → ℝ+
is estimated as:

𝑐𝑓(𝑥, 𝑋𝑐(𝑥)) ≔ 𝑑(𝑥 − min
𝑥 𝑖𝑐∈𝑋𝑐

𝑥 𝑖𝑐).

2. Learning the rejection policy. The rejection policy 𝜌 is formulated in such a way that data
points whose distance from their closest counterfactual is less than a specified threshold 𝜏𝑟 are
deemed too uncertain to be predicted by the classifier 𝑓 and are thus rejected. Formally:

𝜌(𝑥; 𝑐𝑓, 𝜏 ) = {
1 if 𝑐𝑓(𝑥, 𝑋𝑐(𝑥)) < 𝜏𝑟,
0 otherwise.

Figure 1: Overview of L2loRe.
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Figure 2: Classification-rejection performance evaluation as a function of the rejection rate. The metrics are
defined in [10] and are computed on 200 test samples.

The rejection threshold 𝜏𝑟 is chosen as the solution of the following constrained optimization
problem:

minimize arg max
𝜏𝑟∈[0,1]

𝜇(𝜏𝑟)

subject to 𝑟(𝜏𝑟) < 𝑟max (rejection rate)

𝜏𝑟 > 1 −
𝑒max

1 − 𝜇(𝜏𝑟)
(misprediction error)

where 𝜇 ∶ [0, 1] → ℝ+ is a measure defined as a function of the rejection threshold (e.g., one of
the three L2R evaluation metrics suggested in [10] ), 𝑟max is an upper bound for the rejection rate,
and 𝑒max is an upper bound for the proportion of misprediction. In order to determine the optimal
value for 𝜏𝑟, we employed a heuristic approach that involved assessing the performance of 𝜇 in
correspondence of a number of candidate rejection thresholds (i.e., distance values). These are
sampled from a gamma distribution fitted on the vector of confidence scores {𝑐𝑓(𝑥, 𝑋𝑐(𝑥))}𝑥∈𝑋𝑡𝑟𝑎𝑖𝑛 .

3. Generating explanations. L2loRe additionally provides a textual explanation for the deci-
sion/abstention. This can be achieved by directly exploiting the underlying LORE𝑠𝑎 architecture
that provides counterfactual explanations regarding the existence of high confident counterfactual
points in the very close proximity of the decision boundary of the classifier.

Experiments. In order to perform experiments with L2loRe, we selected three binary (Compas
[11], Adult [12], German Credit [13]) and three multiclass (Wine [14], Abalone [15], Student [16])
tabular datasets, most of which contained a combination of categorical and continuous variables. As
a first preliminary analysis, we examined how the performance of L2loRe varies as a function of the
rejection rate 𝑟 over the aforementioned datasets. As it can been seen in Figure 2, L2loRe improved
the performance of the classification task over all datasets. Secondly, we fine-tuned the rejection
threshold 𝜏. Given the the optimal choice of 𝜏 for all datasets, we then computed and analyzed the
classification-rejection scores, as reported in Table 1. Specifically, we set 𝑟max = 0.6 and 𝑒max = 0.3 as
upper bounds to the rejection and misprediction rate, respectively, and optimized 𝜏 with respect to each
of the three L2R metrics defined in [10]. Figure 3 displays the explanation provided by L2loRe in the a
case of an rejected instanced selected from the Compas dataset.

3. Conclusion and future works

Based on these preliminary findings, the next steps will involve conducting in-depth experiments
to assess L2loRe from both quantitative and qualitative perspectives. In addition, we suggest that a
potentially promising avenue for future research could be extending L2loRe within the L2D framework.
By incorporating a deferral policy that learns from and accounts for human expected performance, this
scenario should also explain why a specific human agent or machine was considered more suitable for
making a prediction.



Figure 3: Example of explanation provided by L2loRe for a case of rejection.

compas adult german_credit
base rej rate 𝜏 value base rej rate 𝜏 value base rej rate 𝜏 value

classification quality 0.72 0.015 0.415 0.725 0.875 0.005 0.304 0.880 0.735 0.060 3.580 0.745
nonrejected accuracy 0.72 0.595 3.213 0.827 0.875 0.005 0.304 0.879 0.735 0.340 3717.094 0.803
rejection quality 0 0.025 0.488 3.857 0 0 0.304 0 0 0.060 3.516 3.883

wine student abalone
base rej rate 𝜏 value base rej rate 𝜏 value base rej rate 𝜏 value

classification quality 0.715 0 0 0.715 0.775 0.005 0 0.78 0.65 0.315 0.096 0.695
nonrejected accuracy 0.715 0.01 0 0.717 0.775 0.455 0.543 0.89 0.65 0.59 0.169 0.854
rejection quality 0 0.01 0 2.509 0 0.035 0.092 4.593 0 0.345 0.102 2.414

Table 1
Evaluation of L2loRe with optimal choice of the rejection threshold 𝜏.
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