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Abstract
Stress and cognitive load detection have focused on a binary set-up, where stress is compared to rest, and high
cognitive load to lower one. A more detailed analysis could reveal the type of stress, or the moments when a
person is approaching high cognitive load, rather than reached it already. In addition, the modelling efforts have
focused on finding the best classification algorithm and the biosignals to measure, and other aspects of modelling
like the duration of the feature windows, personalization, and model explanations have attained less attention.
This study allows stress to have different types and cognitive load to have different levels or to vary continuously.
Machine learning methods are investigated to assess the effects of various modelling options in this setting,
different signals and features are used to find the best input data, and the influence of the features on the results
are discussed. Eye metrics are given special attention since they have been less studied. The study also examines
how to personalize the models with little data. The research could make stress and cognitive load detection more
precise and widespread e.g. in health domain, education, and safety critical operations.

Keywords
stress, cognitive load, machine learning

1. Context

Stress and cognitive load are complex physiological states that have both positive and negative effects on
humans. Although certain level of stress and cognitive load may improve performance [1, 2], cognitive
under- and overload may decrease it [2], elevated levels of acute stress can impede performance
on cognitive tasks [3], and stress, once chronic, increases risks of e.g. mental health problems and
cardiovascular disorders [4]. As both states cause changes to human physiology, developing machine
learning (ML) methods to detect the states from wearable sensor measurements has gained significant
attention to enable monitoring and interventions.

The ML pipeline in state detection starts with data collection, followed by preprocessing, feature
extraction and selection, and classification [5]. Due to individual differences in physiological functions,
personalization may be included within one or more of the steps or constitute a step of its own.
Whereas the choice of the classification algorithm is frequently experimented with [5], other ML
components, such as hyperparameter optimization within classification or feature window duration
within preprocessing, are less investigated. They are commonly conducted but results are generally
reported only for the best pipeline, hurdling the evaluation of the necessity and effect of the different
components affecting classification performance. Despite the advances of deep learning in many fields,
it has performed rather poorly in affect recognition and comparably to feature-based classifiers in stress
detection [6], which is why a feature-based approach is adopted for this study.

Despite that stress manifests itself in the human body through two stress-responsive axes [7] and
thus various types of stress exist, most existing works aim for binary classification between stress and
non-stress states [8]. Similarly, despite that cognitive load is predominantly measured with self-report
questionnaires working on a continuous scale such as the NASA-TLX [9], attempts to detect it from
biosignals are mostly limited to binary classification based on task difficulty, performance, or binarized
self-report [10, 11]. The current work aims for multiclass state detection with two stress types (e.g.
social and mental stress) and a baseline class or three levels of cognitive load (e.g. low-medium-high).
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Cognitive load may also be modelled as a continuous variable. However, the interrelation of stress and
cognitive load is left for future studies.

Both stress and cognitive load can be detected from facial images [12, 13] and functional near-infrared
spectroscopy [14] but due to the advent of lightweight wearables measuring several biosignals, focus
has been on more unobtrusive and privacy preserving options. To classify between the different states,
existing studies have employed various biosignals, such as electrodermal and cardiac activity, skin
temperature, and respiration [15, 16]. Although different signal or measurement device combinations
are often reported (e.g. [17, 11]), the exact role and the effect of each single feature in state detection are
less discussed: model behavior remains unexplained. Cognitive load and stress have also been found to
change some eye-related parameters like pupil diameter, saccades, fixations, and blinks [9, 15, 16] but
eye measurements are scarcely considered when detecting either stressful of cognitively demanding
states.

Baseline physiology and reactions to external stimuli exhibit individual differences which hinders
the generalizability of the ML model to new individuals. This is why models are often personalized to
account for the differences. The personalization techniques range from individual feature normalization
to dividing persons into clusters of similar people and using totally personal models [18]. However,
existing methods require a large set of data from each person which is not available in a cold-start, i.e.
when a new person starts using the system.

2. Research challenges

Existing research on stress and cognitive load detection focuses on binary classification. The studies
have used a large number of biosignals but eye measurements have been included less frequently.
The exact effect of different features on model behavior and of different ML components affecting
performance are little discussed. Furthermore, personalization has focused on techniques requiring
extensive data from each end user. This PhD thesis aims to address these shortcomings. The objectives
for the thesis are posed as follows:

O1 To develop a machine learning pipeline to detect multiclass stress and cognitive load, which is
explainable and psychophysiologically sound.

O2 To evaluate the contribution of novel eye measurements to stress and cognitive load detection
performance.

O3 To optimize model performance using personalization with minimal data.

3. Approach and evaluation

Explorative analyses with various ML pipelines are conducted to develop a modelling approach for
O1. The focus is on the contribution of signal segmentation, hyperparameter optimization, classifier
and feature selection, and signals to use. Two articles [19, 20] primarily contribute to this objective,
including also analyses of model behavior with different methods of explanation. Relating to O2, the
latter also includes a wide range of eye parameters to determine their contribution to classification and
which eye parameters are most indicative of different stress types.

These two articles assume that all data from each user can be used for personalization. Building
on the modelling findings in these articles, two articles [21, 22] evaluate baseline calibration as a
means to reduce the amount of data needed for personalization in, respectively, multiclass stress/affect
detection and continuous cognitive load detection, with the latter including eye measurements and
an explainability analysis of which parameters were most important and how they contributed in the
model.

These four articles have now touched each objective but to conclude, one final article will focus
more on personalization with the goal of developing methodology for more efficiently personalizing
the detection with even less data. Simultaneously, the earlier results regarding the ML pipeline and



the contribution of different signals, especially the eye movements, are evaluated more diversely with
several open datasets.

4. Preliminary results

The results from the articles already published are summarized as follows:

[19]: Detecting cognitive load even as a binary variable was rather difficult with a wrist-worn wearable,
with classification accuracy of 67.6% at best. Longer signal segments up to 25 𝑠 performed
better than shorter ones, with statistical significance. Hyperparameter optimization improved
performance by around 2− 3%-points on average. Heart rate variability features were the most
important.

[20]: Two types of stress could be distinguished from baseline with up to 86.5% balanced accuracy
with a lab-grade wearable device. Selection of measured signals and selection of features affected
the performance more than other modelling choices. Eye movements and cardiac activity were
the most important features. The model paid attention to feature changes that are physiologically
relevant to the two stress types.

[22, 21]: A few minutes of baseline data provides sufficient information to calibrate stress/affect and
cognitive load detection models personally, outperforming a non-personalized model. However,
the requirement for some data remained and the performance with the model that did not limit
the amount of data used for personalization was clearly better.

The final article verifying these findings with several open datasets and looking at personalization
more closely is expected to be submitted during 2024.

5. Discussion and future work

Currently, it seems that characteristics of the used dataset (available signals, measurement device(s),
and that tasks participants conducted) affect the modelling performance more than choices made during
data analysis. The differences observed between different options related to the modelling pipeline
have been rather small. This impression will be elaborated with some more datasets.

The two studies including eye movements have both evidenced that they provide useful, comple-
mentary information to the other biosignals and some eye-related features have been among the most
important. Thus, future studies would likely benefit from measuring the eyes in addition to the more
traditional stress markers.

Lastly, although the benefit of baseline calibration was demonstrated in two articles, the used
personalization techniques have so far been related to person-specific feature normalization. More
advanced methodology might help to improve the benefit of personalization and further decrease the
amount of data needed for it. The remaining article will explore alternative methods for personalization
along with a wider analysis of these impressions with several more datasets to generalize the findings.
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