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Abstract
In the dynamic landscape of online news, recommending relevant articles is key to enhancing user engagement
and satisfaction. Traditional Multi-Armed Bandit (MAB) approaches, however, struggle with the specific non-
stationary nature of news consumption, where article relevance shifts rapidly due to emerging trends and breaking
news. Through simulations, we explore the effectiveness of non-stationary adaptations such as sliding windows,
exponentially weighted averages, and discounting, revealing some limitations in their performance. Furthermore,
we introduce a novel algorithm, Optimistic/Pessimistic-Greedy (OP-Greedy), which leverages external signals
such as article page views to optimize exploration. Our findings demonstrate that tailoring MAB algorithms to
the unique dynamics and opportunities of news recommendations can significantly improve their adaptability
and effectiveness.
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1. Introduction

In the rapidly evolving landscape of online news consumption, the ability to effectively recommend
relevant articles has become crucial for user engagement and satisfaction. This task, characterized
by the inherent dilemma of balancing exploration (discovering new, potentially relevant articles)
and exploitation (leveraging known popular articles), is well-modeled by the Multi-Armed Bandit
(MAB) problem. Based on our experience in running recommendation systems for several large online
news media sites, we noticed that traditional MAB approaches fall short in addressing the unique
challenges presented by the non-stationary nature of news consumption, where article relevance
fluctuates drastically over short periods due to emerging trends, breaking news, and shifting user
interests.

This study introduces practical enhancements to conventional MAB algorithms, specifically tailored
to the domain of news recommendations. Unlike existing methodologies that predominantly focus on
contextual [1, 2, 3, 4] or general non-stationary settings [5, 6, 7, 8], our approach deals explicitly with
the specific non-stationary dynamics inherent in online news recommendations. For this study, we
focus on the non-contextual setting before investigating the more complex contextual version. As the
largest proportion of traffic on a typical news media site is from anonymous, or cold-start, visitors, any
improvement might already have a significant impact on the news website.

Our contributions are twofold: First, we evaluate established MAB algorithms in their ability to
handle the dynamic nature of news content and show some surprising results. We run experiments in a
simulated environment and investigate how mechanisms such as sliding windows can help or hinder
algorithms in their ability to deal with the non-stationary behavior of news. Second, we describe a
novel algorithm called Optimistic/Pessimistic-Greedy (OP-Greedy) which leverages external signals,
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such as article page views, to guide the exploration process more efficiently, reducing the need for
indiscriminate exploration and focusing efforts on articles with higher potential for user engagement.

By addressing the unique challenges of the news recommendation domain, our study seeks to enhance
the practical utility of MAB algorithms, ultimately contributing to the development of more adaptive,
effective, and user-centric news recommendation systems.

2. Background

In the classical multi-armed bandit problem [9], an agent is faced with a row of slot machines (arms),
each with an unknown reward distribution. The goal is to maximize the total reward gained over
a series of pulls. This requires balancing the exploration of different arms to learn their reward
distributions with the exploitation of arms that seem to provide the highest rewards. When applied to
news recommendation systems, the arms represent different news articles and the act of pulling an arm
corresponds to recommending the associated article. An article’s reward distribution is characterized
by its click-through-rate (CTR) and the agent typically receives binary feedback indicating whether
the article was clicked or not. The agent must simultaneously identify articles with high CTRs and
maximize aggregate clicks.

Our investigation is anchored in the non-stationary multi-armed bandit (NS-MAB) problem [5, 6],
where the unknown reward distributions change over time. This introduces additional complexity as
now there isn’t a single optimal arm anymore. In general, when the rewards can change arbitrarily, no
theoretical guarantees can be provided. For this reason, researchers study classes of problems in which
the amount of change is bounded, for example by having a limited number of time points at which the
rewards change [7, 8] or a limited total variation of the expected rewards [5, 8].

While these research efforts provide interesting theoretical guarantees for large classes of non-
stationary problems, they sometimes fail to produce effective algorithms in practice. Our work diverges
from this existing literature by addressing the specific non-stationary dynamics inherent in online
news recommendations. By adapting MAB algorithms to this context, we contribute to closing the gap
between theoretical bandit solutions and their applicability in the dynamic, real-world scenario of news
recommendations.

Concretely, we make the following key assumptions about the characteristics of the news recommen-
dation environment:

• Decreasing CTRs: due to the rapid turnover inherent to news content, article CTRs tend to
decrease as more recent news becomes available and old news loses relevancy [10].

• Large and dynamic item pool: the number of news articles is large but not all articles are
available from the start. Instead, new articles are introduced periodically while old articles are
removed after their fixed lifetime.

• Low signal-to-noise ratio: The large item pool and short lifespans result in few recommendation
that actually receive clicks. The CTRs for most items is lower than 1%, which necessitates extensive
data collection.

• External signals: A news site might share their articles on social-media, send push-notification
or news letters, and generate clicks through other curated or automated recommendations. These
external sources of article clicks and page view lead to signals about an article’s popularity which
we should take advantage of.

These assumptions motivate the design of our simulated environment and they are crucial for explaining
and understanding our results. Furthermore, the opportunity represented by external signals is the
motivation behind our novel OP-Greedy algorithm.

2.1. Related Work

The theoretical foundations regarding different variations of the multi-armed bandit problem have been
extensively studied, from the classical problem [11, 12] to variants including contextual [13, 14, 15] and



non-stationary [5, 6, 7, 16, 8] problems.
Besides these theoretical works, a lot of research has also been done on applying these technique to

recommendation systems. The most well-known of these efforts is linUCB [17] which was conceptual-
ized in the domain of personalized news recommendations, but did not consider the non-stationarity
of news. In general, the focus of recommendation system bandit research has been on contextual
bandits where user and or item features can be used to create personalized recommendations. For
this reason, recent research considering non-stationarity in recommendation systems is applied to
contextual bandits [1, 2, 3, 4]. Moreover, this research primarily focuses on changing user interests
rather than changing item relevance

We believe that the non-contextual case can be equally important for the news domain as a large
portion of news traffic is often from anonymous users. Therefore, we decided to diverge from existing
literature and focus on this overlooked case, and leave the much more complex contextual version for
further work.

3. Methodology

In this section, we describe popular MAB algorithms in the context of news recommendations and
highlight possible adaptations to make them more suitable for the news NS-MAB problem. We also detail
how our experiments were conducted, including a detailed description of our simulation environment.

3.1. Base Algorithms

𝜖-Greedy (EG), Upper Confidence Bound (UCB) [11], and Thompson Sampling (TS) [18, 19], are three
popular MAB algorithms, all of which base their decisions on estimates computed from observed clicks
and the number of impressions (recommendations). To ease notation, let 𝑛𝑖(𝑡) and 𝑐𝑖(𝑡) denote the
number of times article 𝑖 has been recommended and clicked respectively, up until time 𝑡. The estimated
CTR of item 𝑖 at time 𝑡 is then given by 𝜇̄𝑖(𝑡) = 𝑛−1

𝑖 (𝑡)𝑐𝑖(𝑡).
During each time step, after the agent has chosen a set 𝐼𝑡 of items to recommend and obtained

feedback for them in the form of boolean rewards indicating clicks {𝑟𝑖,𝑡|𝑖 ∈ 𝐼𝑡}, the statistics are
updated as follows:

𝑛𝑖(𝑡) = 𝑛𝑖(𝑡− 1) + 1[𝑖 ∈ 𝐼𝑡]

𝑐𝑖(𝑡) = 𝑐𝑖(𝑡− 1) + 𝑟𝑖,𝑡

with 𝑛𝑖(0) = 𝑐𝑖(0) = 0 and 𝑟𝑖,𝑡 being zero if item 𝑖 was not recommended at time 𝑡.

3.1.1. Epsilon Greedy

The most basic, yet surprisingly effective algorithm is 𝜖-greedy. It handles the exploration/exploitation
trade-off by picking a random set of items with probability 𝜖 and greedily picking the items with the
highest estimated CTR otherwise. If 𝜖 is chosen properly, this approach will exploit the best items often
while not getting stuck on sub-optimal items.

3.1.2. Upper Confidence Bound

Instead of exploring randomly as with EG, the UCB algorithm will guide exploration by considering the
uncertainty of its estimates. Concretely, UCB looks at the confidence intervals for the CTR estimates
and always select the article which has the highest upper confidence bound. This way, items with
high CTR will get recommended, but also those that have not been explored sufficiently and have the
potential for high CTR. In practice, UCB assigns a score 𝑞𝑖(𝑡) to each item and picks the highest scoring
items. The scores are calculated as follows:

𝑞𝑖(𝑡) = 𝜇̄𝑖(𝑡) + 𝑐

√︃
ln𝑛(𝑡)

𝑛𝑖(𝑡)



where 𝑐 is a hyper-parameter regulating the required confidence and 𝑛(𝑡) it the total impressions count
before time 𝑡 of all available items.

3.1.3. Thompson Sampling

TS guides its exploration by recommending each item in proportion with the probability that they are
optimal based on previous evidence. Similarly to UCB, this will cause more exploration for items with
uncertain and promising estimates. In practice, the probability of item 𝑖 being optimal is modeled using
a beta distribution 𝐵𝑒𝑡𝑎(1+ 𝑐𝑖(𝑡), 1+𝑛𝑖(𝑡)− 𝑐𝑖(𝑡)). At recommendation time, each item’s distribution
is sampled and those with the highest samples are recommended.

3.2. Adaptations for Non-Stationary Settings

Three notable ways to adapt MAB algorithms for non-stationary settings are to use sliding windows,
discounting and weighted averages. All these approaches aim to increase the accuracy of the CTR
estimates by either discarding old observations (sliding windows) or placing more importance on recent
observations (weighted averages and discounting).

3.2.1. Sliding windows

A global (or time-based) sliding window will only consider the last 𝜏 interactions (or last 𝜏 minutes of
interactions) when determining the click and impression counts [20, 8, 7]. For UCB, this also means
changing the calculation of 𝑛(𝑡). This is the most common form of sliding windows because it ensures
that items which have stopped being recommended will eventually be tried again as their observations
fall outside the window and they are treated as new items again. This is necessary in cases where
the relevance of items can change arbitrarily. However, in news, the relevance of items is expected to
decrease, which would lead a global sliding window to keep exploring unnecessarily.

To resolve this, we can apply the sliding windows locally, making the algorithm only consider the
last 𝜏 interactions of each item individually. When an item is deemed irrelevant by an algorithm using
this approach, it is far less likely to be recommended again because the window will stop advancing
as the item stops receiving recommendations. On the other hand, relevant items which receive many
recommendations do advance the window, allowing the estimates to update quickly if they start to
become less relevant.

3.2.2. Weighted averages

With exponential recency-weighted averages [9], the estimated CTR 𝜇̄𝑖,𝑡 of item 𝑖 is not calculated
from the click and impression counts but instead iteratively updated each time item 𝑖 is recommended
according to the following update rule:

𝑄𝑖(𝑛) = 𝑄𝑖(𝑛− 1) + 𝛼(𝑟𝑖,𝑛 −𝑄𝑖(𝑛− 1))

where 𝛼 is the learning rate, and 𝑟𝑖,𝑛 indicates the reward obtained from the 𝑛-th recommendation.
The estimated CTR is always set to the latest value: 𝜇̄𝑖(𝑡) = 𝑄𝑖(𝑛𝑖(𝑡)).

With this update rule, more weight is given to more recent observations and similar to the local
sliding windows, this technique does not change CTR estimates when an item is not recommended.

For TS, where the beta distribution is parameterized based on the click and impression counts, and
not the estimated CTR, we first calculate the number of clicks that would achieve the estimated CTR
given the number of impressions:

𝐵𝑒𝑡𝑎(1 + 𝑛𝑖(𝑡)𝜇̄𝑖(𝑡), 1 + 𝑛𝑖(𝑡)(1− 𝜇̄𝑖(𝑡))

A possible extra hyper-parameter when using weighted averages is the starting estimate 𝑄𝑖(0).
When it is set higher than the expected true CTR we call it an optimistic starting value while if it is



set lower we call it a pessimistic starting value. Sometimes, optimistic weighted averages are used in
combination with 𝜖-greedy in which case 𝜖 can be set to zero as the optimism can drive the exploration
for new items.

3.2.3. Discounting

A related technique to weighted averages is that of discounting [7, 16], where the impression and click
counts are individually updated after each time step with the following update rule:

𝑛𝑖(𝑡) = 𝛼𝑛𝑖(𝑡− 1) + 1[𝑖 ∈ 𝐼𝑡]

𝑐𝑖(𝑡) = 𝛼𝑐𝑖(𝑡− 1) + 𝑟𝑖,𝑡

While this technique gives more weight to more recent observations like weighted averages, it does
so in way where all estimates are updated after each time step, which makes it more similar to global
sliding windows.

3.3. Optimistic/Pessimistic-Greedy

On typical news portals, bandit-based recommender system will only be a small part of a larger
ecosystem. A news site might share their articles on social-media, send push-notification or news
letters, and generate clicks through other curated or automated recommendations. These other sources
of article clicks and page view leads to signals about an article’s popularity which we should take
advantage of.

An interesting option presents itself when we use such popularity signals to decide whether an
article warrants exploration or not. In this subsection, we describe a novel algorithm for doing so
called optimistic/pessimistic-greedy (OP-greedy) which is based on weighted averages and greedy item
selection. The idea behind our approach is to use external popularity information to retroactively decide
whether we should use optimistic or pessimistic starting values.

Our algorithm expects as input the ranking of items based on the popularity signal. Note that we
expect this ranking to contain valuable information, but not be good enough to use without modifcation.
Based on an item’s ranking rank(𝑖), we interpolate between an optimistic starting value 𝑄̂(0) and a
pessimistic starting value 𝑄̌(0) as follows:

𝑄𝑖(0) = 𝑄̌(0) + (𝑄̂(0)− 𝑄̌(0)) exp
(︁
− rank(𝑖)

𝛾

)︁
where 𝛾 is a hyper-parameter controlling how large the rank can be before being seen as pessimistic.

By writing the weighted average update rule as a direct formula, we see how the starting value can
be retroactively changed:

𝑄𝑖(𝑛) = (1− 𝛼)𝑛𝑄𝑖(0) +

𝑛−1∑︁
𝑘=0

(1− 𝛼)𝑘𝛼𝑟𝑖,𝑡−𝑘

The effect of the starting value can be included in the CTR estimate by using weighted averages as
normal (without a special starting value) and adding 𝑄𝑖(0) multiplied by (1− 𝛼)𝑛𝑖(𝑡) to determine the
final result.

3.4. Experimental Setup

Each experiment operates on a fixed number of episodes 𝑇 = 2000. During each episode, the agent
under evaluation must make a number of top-3 recommendation from a set of available items. After
each recommendation the simulator provides binary feedback for each of the 3 recommended items,
indicating whether each item was clicked or not. The feedback is based on simulated ground truth CTRs
which remain constant during the episode. After 𝑃 recommendations have been made (episode length
𝑃 depends on the simulation), the next episode starts with possibly changed CTRs and item availability.



The main metric we look at is the average CTR, which is the total number of obtained clicks divided
by the total number of impressions. Since the number of impressions is constant for all agents, this
effectively measures how many clicks each agent obtained. To normalize the results across environments,
we report the relative CTR compared to an omniscient agent which always picks the 3 articles with
highest ground truth CTR. Thus, a relative CTR of 80% means the agent missed out on 20% of clicks
that it could have received if it had picked optimally.

We repeat each experiment 𝑁 times with different seeds and report the 95% confidence intervals
of the results. The seed determines the evolution of the CTRs and thus each run of the experiment
corresponds to an entirely different environment with different items. To further improve the accuracy
of our results, we count the expected number of clicks instead of the obtained number of clicks to
calculate the CTR. In the simulations we have access to the ground truth CTR which is equivalent to the
click probability. While the agent receives boolean feedback based on the probabilities, data collection
can use the CTRs directly for more accurate results.

All algorithms were tuned by evaluating each parameter combination on 15 runs. The best performing
combinations were selected and used for the final 100 runs on different seeds. Those final results are
the ones we report.

3.5. Simulation

In this subsection, we describe how the ground truth CTRs and their dynamics are determined in our
simulation. As a reminder, the CTR of an item should be highest in the first half of its lifetime and
decrease as time goes on. Nevertheless, the simulation should leave room for variation. Some items
may keep their CTR constant or slightly rising for a while and some may exhibit multiple peaks of high
CTR or reach their maximum near the middle of their lifetime.

To achieve this behavior, we model the base relevance 𝑓𝑖,𝑡 of item 𝑖 during episode 𝑡 of its lifetime
using exponential decay as follows

𝑓𝑖,𝑡 = 𝑏𝑖 exp(−(𝜎𝑖𝑡)
2)

where 𝑏𝑖 and 𝜎𝑖 are item dependent simulation parameters controlling the item’s maximum relevance
and evolution speed respectively.

Only using the base relevance would result in all CTR curves simply trending toward 0 which is
not what we want. Instead, the base relevance is modified by looking at the rank rank𝑡(𝑖) of item 𝑖’s
relevance w.r.t. all other items. This gives rise to the following formula for the ground truth CTR of
item 𝑖

𝜇𝑖,𝑡 = 𝑔

(︂
𝑓𝑖,𝑡

ln(𝑎 · rank𝑡(𝑖) + 𝑒)

)︂
where 𝑎 ≥ 0 is a constant regulating how much relevant articles are boosted compared to less relevant
articles and 𝑔(·) denotes Gaussian smoothing. Using this formula, the items with highest base relevance
have boosted CTR, but can suddenly drop when their underlying relevance falls below the relevance of
other items. Figure 1 shows that the CTR curves described above indeed follow the desired behaviour.
The CTRs are generally highest in the beginning and generally decrease, but some items have multiple
peaks, no peaks at all, or only peak after a while.

To define sensible simulation parameter values, we assume an episode corresponds to 5 minutes of
real time, meaning the time horizon covers about a week. We set the lifespan of items to 900 episodes
(3 days) and use 300 items in total (135 items on average available at any time). To achieve a low signal
to noise ratio, we set the maximum relevance to 0.005 ± 0.002 uniformly distributed across items.
The evolution speed range, 𝑎 and smoothing parameters were chosen by trial and error to achieve the
desired CTR curve shapes.

Regarding the episode length 𝑃 , we consider two simulation versions with identical parameters
as described above but different amounts of throughput. This allows us to study how algorithms are
affected by different amounts of available information.



Figure 1: Simulated CTR curves.

• Simulation A: we set 𝑃 = 100 corresponding to 1 item recommendation per second of real time
(600,000 in total).

• Simulation B: we set 𝑃 = 1000 corresponding to 10 item recommendations per second of real
time (6,000,000 in total).

4. Results

4.1. Evaluating Non-stationary Adaptations

Table 1 shows the performance on Simulation A of various algorithms combined with various non-
stationarity adaptations. The best combination for each algorithm is highlighted in bold. Table 2 shows
the same but for Simulation B.

Table 1
Relative CTR of various algorithms for Simulation A.

Base algorithm

Adaptation 𝜖-Greedy Greedy (𝜖 = 0) UCB TS

— 0.511± 0.012 0.276± 0.012 0.580± 0.008 0.469± 0.006
sliding window (global) 0.536± 0.011 0.457± 0.009 0.602± 0.009 0.293± 0.001
sliding window (local) 0.541± 0.012 0.520± 0.012 0.664± 0.012 0.468± 0.005
weighted (optimistic) 0.495± 0.007 0.488± 0.009 0.503± 0.005 0.419± 0.005
weighted (pessimistic) 0.656± 0.011 0.709± 0.014 0.690± 0.011 0.440± 0.004

discounting 0.551± 0.012 0.279± 0.012 0.502± 0.009 0.291± 0.001

4.1.1. Sliding windows

From the results, we can see that global sliding windows are not beneficial for algorithms which
employ guided exploration, such as UCB and TS. The reason for this is that—by design—such sliding
windows forget previously explored items, resulting in those items being explored again. In arbitrary
non-stationary environments, this can be desirable as those items could have become relevant since



Table 2
Relative CTR of various algorithms for Simulation B.

Base algorithm

Adaptation 𝜖-Greedy Greedy (𝜖 = 0) UCB TS

— 0.659± 0.010 0.271± 0.014 0.816± 0.006 0.778± 0.005
sliding window (global) 0.784± 0.006 0.483± 0.012 0.626± 0.005 0.337± 0.002
sliding window (local) 0.784± 0.008 0.654± 0.010 0.868± 0.004 0.814± 0.003
weighted (optimistic) 0.762± 0.004 0.828± 0.004 0.799± 0.004 0.738± 0.004
weighted (pessimistic) 0.824± 0.004 0.873± 0.006 0.879± 0.005 0.792± 0.004

discounting 0.775± 0.007 0.281± 0.014 0.538± 0.005 0.277± 0.001

they were last recommended. In the case of news however, the relevancy of items tends to decrease,
making such exploration efforts unnecessary. For random exploration strategies such as 𝜖-greedy, this
is not a concern because the exploration is purely random. Instead, global sliding windows provide an
advantage in this case as items that are starting to perform poorly get identified more quickly.

Local sliding windows are beneficial to all algorithms, especially in Simulation B. Local sliding
windows enable algorithms to more quickly detect when the items they are recommending start to
under-perform, without incurring excessive exploration as global sliding windows do.

4.1.2. Weighted averages

The results also show that weighted averages are beneficial for news. Surprisingly, pessimistic starting
values perform the best with optimistic starting values even being slightly worse than most non-adapted
algorithms in Simulation A. The success of pessimistic starting values further supports the view that
limiting exploration is the best strategy in this environment. In fact, with pessimistic starting values,
new items will generally not be explored as much when they are added. Only when the best performing
items (which are being recommended) start to lose relevance and drop below the starting value, will
more items be explored. There are too many new items to explore effectively so algorithms should only
explore when necessary.

4.1.3. Pessimistic greedy

Pessimistic greedy (𝜖-greedy with 𝜖 = 0 and pessimistic weighted averages) takes the previous one step
further and actually does not explore new items at all, until the currently best performing items perform
worse than the starting value. Despite presumably missing many good items this way, pessimistic
greedy is the best performing algorithm tied with UCB in both simulations.

4.1.4. Discounting

The results show that discounting is the least effective strategy. As with global sliding windows,
discounting encourages unwanted continued exploration in guided strategies. However, unlike global
sliding windows which caused the greedy algorithm to perform better, discounting has no such benefit.
The reason for this is that with global windows the estimated CTR of items which are not being
recommend can increase when impressions fall outside the window, which can lead to the greedy action
changing. With discounting, the estimates only ever decrease if the item is not being recommended,
causing the algorithm to get stuck on suboptimal items as in the non-adapted version of greedy.

4.2. Optimistic/Pessimistic-greedy

Table 3 shows the performance of optimistic/pessimistic-greedy (OP-greedy). To simulate the external
popularity signal, we apply varying amounts of noise to the ground truth CTRs. The items are then
ranked by their perturbed CTR and this ranking is provided as popularity information to the algorithm.



Table 3
Relative CTR of popularity and optimistic/pessimistic-greedy with varying amounts of noise.

Simulation A

low medium high

Popularity 0.735± 0.014 0.510± 0.015 0.375± 0.009
OP-Greedy 0.814± 0.008 0.731± 0.011 0.690± 0.012

Simulation B

low medium high

Popularity 0.727± 0.013 0.523± 0.014 0.375± 0.010
OP-Greedy 0.924± 0.003 0.884± 0.005 0.867± 0.006

To validate that this popularity signal is not too accurate (which would make increased performance
trivial), we report the performance of a pure popularity algorithm which simply recommends the top-3
items according to the signal. We calibrated the amount of noise based on the performance of this
popularity algorithm and report results for low, medium and high amounts of noise representing good,
medium and poor quality signals.

The results show that leveraging popularity signals to guide exploration can be very beneficial. Even
with high amounts of noise the performance is comparable to that of the best algorithms in our other
results, showing that OP-greedy is robust to poor signal quality. Furthermore, when the amount of
noise is low, OP-greedy significantly outperforms the other algorithms we tested. Knowing that pure
popularity approaches already typically perform surprisingly well in practice, this approach is very
promising.

4.3. Impression plots

To gain further insight into why these algorithms are performing the way they do, we investigated
which items are being recommended across times. To facilitate this, we evaluated some of the algorithms
on a fixed simulation seed (the same seed as in Figure 1) so that the items are the same across runs.
From these runs, we created plots showing the impression rate of the items. This was done by plotting a
bar chart for every 10 episodes which shows how often each item is recommended in that time span. By
placing those charts next to each other, we get a plot where the x-axis represents time and the height of
items on the y-axis represents their impression rate.

As there are hundreds of items, we identify them using a sequence of 20 repeating colors. The
ordering of items is fixed and based on the order they were added to the item pool, with older items
appearing lower in the bar charts. To help interpret the plot, we also show the optimal impression
distribution according to the omniscient agent above the plots. As each recommendation consists of
three items, the optimal distribution shows three items on average. How close an algorithm’s impression
plot matches with the optimal impressions, directly determines its performance.

Figure 2 shows an example impression plot for the random algorithm which always selects random
available items. The plot shows how each item gets an equal share of the impressions. The colouring
gives a striped appearance evoking downwards movement. This is explained by the introduction of new
items, which are added to the top of the bars, and old items leaving the item pool, which are removed
from the bottom. This highlights that only an item’s height shows the impression rate; its position is
irrelevant.

4.3.1. Sliding windows

Figure 3 shows impressions plots for 𝜖-greedy and TS and their adapted versions with global and local
sliding windows on Simulation B.



Figure 2: Impression plot for random recommendations. Optimal distribution is also shown (unlabeled,
top). Each vertical slice shows how the impressions for that time interval were distributed across the
items. Each color represents an item, with colors repeating and items alwyas occuring in the same order
from oldest to newest, top to bottom.

The plots show how the non-adapted versions suffer from not being able to detect when an item stops
being relevant. For example, both algorithms continue to recommend the dark green item (optimal in
the beginning) long after it stopped being optimal. In contrast, the local sliding window versions adapt
much more quickly and are able to switch more quickly to recommending relevant items.

As explained previously, the global sliding window adaptation works well for the unguided 𝜖-greedy
algorithm, but falls apart for TS because it needs to keep exploring all items. This results in an
impressions plot which resembles random recommendations. On the other hand, the 𝜖-greedy plots
of both sliding window types look nearly identical because the exploration is unaffected and so both
versions give the same benefit of faster change detection.

4.3.2. Greedy strategies

Figure 4 shows impression plots for various greedy strategies using weighted averages on Simula-
tion B. The first two plots are for optimistic and pessimistic starting values and the last plot is for the
optimistic/pessimistic-greedy algorithm (OP-greedy) which decides between these variants based on
an external signal. The plots shows that all variant perform well and match the optimal distribution
closely, but there are still some differences.

The most obvious difference is that optimistic greedy allocates a considerable number of impressions
to new items. This can be seen in the plots by the items at the top of the bar charts extending down
much farther for optimistic greedy than for the other algorithms. These impressions are “wasted” in
the sense that the other algorithms are able to gather enough information to determine the optimal
items, without needing so much exploration.

The difference between pessimistic- and OP-greedy is more subtle. The amount of exploration of
new items is about the same for both algorithms as most items are seen pessimistically. However, items
which the external signal indicates are popular will be explored more by OP-greedy. In some cases
this is unwarranted and results in impressions being wasted on new items (the gray item in the top
right). On the other hand, sometimes the extra exploration pays off and results in optimal items being
discovered slightly sooner (the optimal dark blue item in the middle receives more attention sooner).

4.3.3. Discounting

Figure 5 shows impression plots for UCB and TS using discounting on Simulation B. We can see
that the effect of discounting is similar to that of a global sliding window as it improves the change
detection speed, but also incurs extra exploration costs. These graphs further make it clear that the
extra exploration happens for old items as the bottom parts shows old items being recommended often.



Figure 3: Impression plots for 𝜖-greedy (left) and TS (right). Standard version (center top), global
sliding windows (center bottom) and local sliding windows (bottom) are shown, as well as the optimal
distribution (unlabeled, top).

4.4. Conclusion

In terms of the exploration/exploitation trade-off for news recommendation, it seems that the best
strategies consist of being pessimistic and doing as little exploration as possible. The first reason for this
is that the CTR of articles generally decreases. This means that exploring old articles which previously
started to perform poorly is not needed. The second reason is that there are just too many new items to
explore. You are better off searching for good performing items instead of chasing the optimal items, as
they will quickly lose relevancy anyway.

In terms of handling the non-stationary behavior of news, we conclude that the focus should be on
quickly detecting when the best performing articles stop performing well. Weighted average updates
and local sliding windows are excellent for this. Importantly, sliding windows applied globally or
discounting can be counterproductive in combination with guided exploration strategies as they lead to
excessive continued exploration, which is undesirable.

When there is external information available indicating article popularity, we can make use of this
by deciding which articles warrant exploration. We introduced optimistic/pessimistic-greedy, which
uses this data effectively and outperformed all other algorithms in our simulated experiments.



Figure 4: Impression plots for optimistic greedy (center top), pessimistic greedy (center bottom) and
optimistic/pessimistic-greedy (bottom). Optimal distribution is also shown (unlabeled, top).

5. Discussion and Future Work

Our findings highlight the importance of considering decreasing relevancy and article lifespan in the
news recommendation domain. The superior performance of local sliding windows and weighted
averages compared to global sliding windows or discounting, underscores the potential benefits of
investigating domain-tailored adaptations into recommendation strategies. However, while these results
are encouraging, they also open up several avenues for further investigation.

The evaluation is based on a simulated environment that, despite being designed to mimic real-world
scenarios, cannot capture the full complexity of actual user interactions. Another limitation of our
experiments is the idealized evaluation procedure. In real recommendation systems, feedback is not
obtained immediately and updates are performed in batches. For these reasons, one of the primary
discussions arising from this study concerns the applicability of these results in live settings. Future
investigations and especially deployments of these algorithms on real-world platforms would provide
valuable insights into their practical effectiveness and user satisfaction.

Another point for discussion is the computational efficiency of the adapted algorithms. While local
sliding windows demonstrate comparable and in some cases superior performance to weighted averages,
the optimal window size for most algorithms was quite large, which can pose challenging infrastructure
problems to accommodate. Weighted averages on the other hand, are in principle easier to implement
due to their iterative nature, but can still present difficulties in large distributed systems.



Figure 5: Impression plots for UCB (center) and TS (bottom) with discounting. Optimal distribution is also
shown (unlabeled, top)

5.1. Future Work

Building on the foundation laid by this study, several directions for future work can be identified:

• Real-world Implementation: Deploying the adapted algorithms in a live news recommendation
system would allow for the collection of empirical data, providing a clearer picture of their
performance and user reception.

• Personalization: Integrating user-specific context, such as historical interactions and prefer-
ences, could enhance the personalization of recommendations, potentially leading to even higher
engagement rates.

• Longitudinal Studies: Conducting long-term studies on the impact of adapted MAB algorithms
on user engagement and satisfaction would provide deeper insights into their effectiveness over
time.

In conclusion, this study contributes valuable insights into the application of multi-armed bandit
algorithms in the context of online news recommendation. The promising results pave the way for
future research and development in this area, with the potential to significantly enhance the user
experience on news platforms.
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