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Abstract 
This paper investigates the potential of utilizing both probabilistic and ensemble supervised machine 
learning modeling strategies to accurately estimate under-bark tree bole volume. For this purpose, primary 
measurement data from pine trees (Pinus brutia Ten.) in the Seich–Sou suburban forest of Thessaloniki, 
Greece, were used. The described analysis can offer a strong foundation for understanding the performance 
of both non-parametric modeling approaches. Specifically, the study employed the probabilistic Gaussian 
Process Regression (GPR) modeling methodology with an integrated radial basis function (RBF) kernel. 
Furthermore, based on its well-known ability to predict values for continuous variables, the ensemble 
learning technique chosen for investigation was Random Forest regression (RFr), which integrates the 
bootstrap aggregation methodology. A cross-validation procedure, combined with an exhaustive grid-
search methodology, was employed to determine the optimal hyperparameter combination for each 
constructed model. Despite the challenge of identifying the optimal combination of numerous 
hyperparameters unique to each modeling approach, the results demonstrated that both methodologies, 
due to their flexibility, have significantly strong potential to provide reliable under-bark tree bole diameters 
and volume estimations. This contributes to the sustainable management of forest resources and highlights 
potential areas for further exploration and improvement. 
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1. Introduction 

Accurately predicting the total volume of trees is crucial for anticipating forest growth and 
productivity. To estimate the bole volume by section, sophisticated formulas derived from the 
methods developed by Huber, Smalian, and Newton are employed [1]. These techniques necessitate 
multiple measurements of bole diameters at specific heights, which can be difficult to obtain from 
standing trees. 

Directly measuring the under-bark diameters of a tree bole several meters above the ground, 
which is necessary for calculating the true under-bark bole volume, is unfeasible, as these 
measurements can only be obtained from a felled tree. To avoid this destructive method, alternative 
indirect approaches are being explored. Traditionally, regression analysis has been used to estimate 
various forest attributes. However, the standard regression methodology encounters difficulties due 
to the need to meet multiple assumptions [2].  

Lately, the emerging field of artificial intelligence (AI), including machine learning (ML) 
techniques have shown great potential providing accurate estimations and predictions of biological 
attributes, even when dealing with noisy data and non-normal distributions, which are common in 
primary forest measurements. Over the past two decades, there has been increasing interest in 
utilizing machine learning in forestry [3, 4], driven by its advanced computational capabilities. 
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In line with this objective, the goal of this study is to accurately estimate and predict the under-
bark tree bole volume of pine trees using field measurements that are easily obtainable. To achieve 
this, two distinct machine learning approaches were employed: the probabilistic Gaussian Process 
Regression (GPR) method, known for its effectiveness in handling noisy continuous data, and the 
Random Forest regression (RFr) technique, an ensemble learning algorithm that enhances overall 
performance by combining the insights of multiple models. 

2. Material and Methods 

The ground-truth data was collected from measurements on pine trees (Pinus brutia) within the 
Seich-Sou suburban forest of Thessaloniki, Greece. This forest, covering an area of 3,085.82 ha with 
an elevation range between 563 meters and 100 meters [5]. Systematic sampling was employed to 
ensure that all different site classes were represented. Tree measurements included over bark (doh) 
and under bark diameters (duh) at one-meter height intervals starting from 0.3 meters above the 
ground (do0.3, du0.3, do1.3, du1.3, …, do9.3, du9.3), as well as the total height (h) of the sampled trees. Upon 
completion of the measurements, a sample size of n = 999 measurements was obtained. 

The under bark bole volume (vubole) was calculated using the Smalian’s cross-sectional equation 
[1]: 
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where 𝑑!& , i=1,…k are the under bark diameters of the lower and upper stem’s sections in m, l is the 
length of each section in m, in this case equal to one meter, and lk is the length of the tree top, in m, 
with lk < l=1. 

The mean and the standard deviation (std) for the observed over and under bark tree diameters, 
the tree total height and the under bark calculated volumes, are given in Table 1. 

Table 1 
Summary statistics of the observed tree bole diameters, in centimeters, total height, in meters and 
under bark calculated volumes, in cubic meters 

diam mean std diam mean std diam mean std diam mean std 
do0.3 16.57 2.76 do3.3 8.88 2.79 do6.3 3.90 2.03 do9.3 1.99 1.55 
du0.3 14.03 2.42 du4.3 8.41 2.59 du6.3 3.64 1.98 du9.3 1.82 1.47 
do1.3 13.67 2.61 do4.3 7.01 2.45 do7.3 3.20 1.59 h 8.17 1.33 
du1.3 12.16 2.36 du4.3 6.65 2.32 du7.3 2.95 1.56 vubole 0.05 0.02 
do2.3 11.28 2.62 do5.3 5.13 2.23 do8.3 2.67 1.48    
du2.3 10.32 2.40 du5.3 4.83 2.15 du8.3 2.44 1.44    
 

2.1. Machine learning modeling approaches 

Using a probabilistic supervised machine learning method like Gaussian process regression 
(GPR) [6] for estimating under bark bole volume (vbole) brings significant benefits. This approach 
incorporates prior knowledge through kernels and provides uncertainty measures for predictions. 
Furthermore, this approach works well on small datasets, and it is more efficient in low dimensional 
spaces, matching perfectly in the present case study. Generally, GPR is characterized by the mean 
and covariance of the prior Gaussian process, along with the kernel that defines the relationship 
between two observations. In this context, the kernel radial basis function (RBF) was employed [7]: 
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where 𝜎/'  is the signal variance that controls the overall variance of functions drown from the 
Gaussian process regression, ls is the length scale, determines how rapidly the correlation between 
two points diminishes as the distance between them increases, 9𝑥& −	𝑥.9

' is the squared Euclidean 
distance between the 𝑥& 	and	𝑥. . 

In the equation (2), both the hyperparameter ls (length scale) and 𝜎/'  (signal variance) are critical 
to the quality of the resulting model and must be properly optimized. To achieve this, the tree 
samples were randomly divided into a fitting data set, comprising 70% of the total data, and a testing 
data set with the remaining 30%. Additionally, the fitting data sets were subjected to k-fold cross-
validation with k=5, ensuring the constructed model’s predictive ability is adequate. The same data 
division approach was applied to the Random Forest regression model construction, as well. 

The second non-parametric approach chosen was the RFr, selected in part for its ability to bypass 
the assumptions inherent in standard regression modeling. This technique is recognized as a robust 
non-parametric, supervised machine learning algorithm, originally proposed by [8]. The concept 
behind this approach is that combining multiple models can better capture the true structure of the 
data. RFr employs multiple individual models, called decision trees, which are combined into a single 
model. The goal is to minimize both the variance and bias of the base model—the decision tree—as 
much as possible within the system. 

The successful training of the RFr model significantly depends on fine-tuning its 
hyperparameters, particularly the number of decision trees (ndt), known as learners, and the 
maximum depth (dmax) of these learners. These hyperparameters are crucial as they govern the 
complexity of the RFr model. The RFr training utilized the bootstrap aggregation algorithm, 
commonly known as bagging [8, 9].  

Both the machine learning methodologies were implemented in the scikit-learn libraries [10] and 
the Python programming language [11]. 

2.2. Evaluation criteria 

The evaluation criteria crucial for assessing the suitability of the machine learning models used 
in this study were as follows: a) root mean square error (RMSE), which calculates the square root of 
the average squared differences between estimated/predicted and observed values; b) the coefficient 
of determination (R²), which reflects the proportion of variance in the dependent variable that can 
be explained by the independent variables; c) bias (BIAS), representing the mean difference between 
estimated/predicted and observed values; and d) relative sum of square errors (RSSE), which is the 
(%) ratio of the sum of squared errors (SSE) to the sum of the actual values of the under-bark bole 
volume values. High model performance is indicated by low RMSE, BIAS, and RSSE values, coupled 
with high R² values. 

3. Results 

Taking into account the difficulty faced in obtaining tree bole diameters in different heights, the 
variables used as input variables to the under bark volume machine learning systems with output 
variable the under bark bole volume (vubole) were the diameters located near the ground, therefore 
easy to be measured, which were the (do0.3), (du0.3), (do1.3), (du1.3) and the total height (h) of the trees. 
Moreover, these variables produce high correlation with the (vubole) values, contributing mostly to the 
(vubole) values configuration.  

Employing both machine learning Gaussian process regression modeling, and Random Forest for 
regression modeling, the required hyperparameters were assessed using the grid-search 
methodology [12], which resulted to the optimal hyperparameters’ values presenting in Table 2. 
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Table 2 
Optimal hyperparameters values for both modeling approaches 

Gaussian process regression (GPR) Random Forest for regression (RFr) 
hyperparameters range optimal value hyperparameters range optimal value 

𝜎/'  0 - 1 0.05 ndt 1 - 300 10 
ls 1 - 5 1.1 dmax 1 - 10 7 

 
The evaluation criteria for the constructed models are presented in Table 3. As indicated in the 

table, both models yield similar outcomes. However, the GPR model provides the most accurate and 
reliable results for both the fitting and testing datasets. 

Table 3 
Evaluation criteria for both the constructed (GPR) and (RFr) modeling approaches, for both fitting 
and testing data sets 

 data criteria 
models set RMSE R² BIAS RSSE% 

GPR  fitting 0.0026 0.988 -0.00002 0.0141 
 testing 0.0032 0.977 -0.00009 0.0233 

RFr fitting 0.0028 0.986 -0.00005 0.0163 
 testing 0.0038 0.974 -0.00136 0.0319 

 
The performance of both constructed models was further assessed through the 45-degree line 

plots. 

4. Discussion 

As a Bayesian regression technique, GPR modeling offers a probabilistic approach to inference, 
enabling the prediction of not just the expected value of a target variable but also the uncertainty 
associated with that prediction. 

 

  

  
Figure 1: GPR model performance associated by its uncertainty 
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Offering a probabilistic prediction with a mean and variance provides a natural measure of 
uncertainty in the predictions. Indicatively, the uncertainty in the under bark bole volume 
predictions against the total tree height and the stump diameter (the tree bole diameter located at 0.3 
m from ground) is shown in Figure 1. Similar plots under similar uncertainty could be produced for 
all predictors. This evaluation is particularly useful in forestry, where risk assessment is essential for 
the effective implementation of sustainable forest management. 

The flexible structure of the Random Forest algorithm helps prevent the serious issue of 
overfitting and enables the system to handle real-world data, which often includes challenges such 
as high variance, outliers, and missing values. However, it’s important to note that the further a 
predicted value is from the range of the fitting data, the less reliable that prediction will be. 
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