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Abstract 
Present paper presents a real-time animal monitoring solution envisaged for ruminants. The complete 
solution includes a wearable collar enabled with inertial sensors and a thermometer, a sensor gathering 
gateway that generates alarms and interfaces with a cloud hosted application that implements system 
analytics, and video recording tools that allow the supervision of telemetry data. System operation supports 
a triple mode: it operates in a learning mode where it gathers sensor data, an enriched version integrated 
with video recording information to enable learning data supervision, and a monitoring mode where the 
wearable system autonomously classifies animal behavior. 
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1. Introduction 

Animal monitoring [16][3], has been attracting immense attention, both from academia and from 
the industrial sector, due to its promising impact on Precision Livestock Farming and on animal well-
being, avoiding the cost and the errors associated with human monitoring. Inertial sensors by its 
turn have been validated as a viable and economical way to monitor animal behaviors and have been 
used to electronically analyzing what behaviors the animal performed during the day [1,2]; 
monitoring animal activity [3], which allows the identification of disturbing events and to infer 
energy consumption; or even in the detection of events related to animal health [4,5], such as 
detection of parturition [6–9], detection of estrus [10,11] or even mating [12]. 

Most existing commercial solutions, as well as academic work, have been developed for cattle, 
due to the greater value of these animals, for small ruminants there is a smaller set of monitoring 
solutions, but they focus especially on issues related to the location of the animals. For these 
ruminants, monitoring behavior and activity is mostly described in academic works, typically using 
on loggers [13–15], without the possibility of real-time monitoring. 

Present work presents a ruminant monitoring platform based on the use of wearable inertial 
sensors, integrated with an edge located animal behavior classification unit implemented in a 
gateway resident in livestock facilities, which is interconnected with a cloud application that 
aggregates data from different livestock facilities. Paper describes system components and tools and, 
it illustrates its operation in several monitoring scenarios. 
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2. Monitor system overview 

The monitoring system, illustrated in Figure 1, includes sensor collars, gateways, and mobile 
devices (i.e. cellular phone, tablet) and can be integrated with video collection devices to enrich the 
monitoring process. Communication between the collars and the aggregating gateway is carried out 
opportunistically via a Bluetooth Low Energy (BLE) [17] interface, and the collars have an internal 
memory that allows monitoring data to be stored when there is no radio coverage with the gateway. 
When this coverage is recovered, the collars begin a process of transmitting the stored data to the 
gateway, which reconditions and transmits it to the application residing in the cloud. The system 
relies on data sent from various gateways to perform data mining and to build learning models, 
taking advantage of the diversity of facilities and characteristics of the herds. 

 

Figure 1: System overview 

BLE communication is also used to implement communication between collars and mobile 
devices, allowing individual monitoring in situ, as checking the operation status of the device, the 
battery charge, as well to configure it and change the firmware over the air. It is also used in the 
learning mode, a scenario in which a mobile app uses the device's camera to record video and 
synchronously collect sensor data from the animal. The collar also includes a Near Field 
Communications (NFC) [18] interface, a technology present in most mobile devices, which is used 
as a virtual collar control button, allowing the device to be turned on and off, or in an integrated 
with the BLE interface process, to perform collar maintenance and monitoring tasks as illustrated in 
Figure 2. Collar monitorization is performed centrally as well, through a web interface implemented 
by a cloud application, as illustrated in Figure 3. 
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Figure 2: Collar 
parameterization 
thought NFC 

 
Figure 3: Monitorization of collar 

 
Some learning processes require long periods of monitoring, such as calving, estrous and mating, 

so the system can additionally be integrated with video image collection devices, which are 
temporally synchronized with the gateway to guarantee the synchronization of telemetry data and 
the images, and thus allow the subsequent process of data supervision [19]. 

The collar includes a three-axis accelerometer and a thermometer, and it supports operating 
frequencies between 0.03 and 20 Hz. In monitoring mode, it uses a variable sampling rate that creates 
a new data sample whenever the algorithm detects a new behavior, or after 30 seconds have passed. 
In learning mode, the sampling frequency is parameterized according to the objectives of the specific 
learning process, with a value between 1 and 20Hz. The collar operates on battery power and 
guarantees an autonomy up to 150 days between battery charges. 

The gateway (Figure 4) is implemented by a microcomputer present in the livestock facilities, 
next to the collars, and it interconnects them with a cloud-resident application that stores, analyzes, 
and allows access to the data to the human operator, as illustrated in Figure 5. The gateway also 
implements simpler data analysis mechanisms, and generates alarms, such as equipment anomalies 
or those associated with animal behavior, such as birth detection. 

The cloud-resident application centralizes monitoring data from all livestock facilities and stores 
it for centralized analysis and updating learning models. 

 
Figure 4: iRunMon Gateway 

 
Figure 5: Web interface of cloud-hosted application 

 
 
 



 29 

3. System operation 

Collar periodically reads sensor values and classifies animal behaviors according to the operating 
mode configured, as described in Table 1. Monitoring mode operation implements animal 
classification such as classifying behaviors according to the defined ethogram (eating, walking, 
chewing, lying down, resting) (Figure 6) or detecting birth events in the case of goats. In addition to 
classifying behavior with a 0,5 Hz frequency, it transfers monitoring data to the gateway, which in 
turn analyzes and transfers it to the cloud application. Monitoring mode allows up to 150 days of 
storage autonomy and 1600 days of battery autonomy. 

Learning modes were designed to carry out learning operations, whereby the system collects data 
from sensors and stores it with a timestamp of the moment of collection, so that this data can be 
externally annotated with the help of other information and use to carry out learning operations. To 
allow different learning processes with different dynamism, two modes with two sampling 
frequencies were implemented. The mode Learning samples data at a frequency of 1Hz and has a 
battery autonomy of 120 days, while Special Learning mode implements a 20Hz sampling and offers 
a battery autonomy of 60 days and a storage autonomy of 800 days. 

Table 1 
System operation modes 

Mode Sampling 
Frequency 

Autonomy 
(days) 

Storage autonomy 
(days) 

Description 

Monitoring 0,5Hz* 150 1600 Envisage for offline monitoring 
Learning 1Hz 120 No limit Doesn’t use memory 
Special 
Learning 

20Hz 60 800 Learning mode supporting offline 
operation 

 
Regardless of the mode of operation, the collar periodically transfers the classification of 

behaviors and accelerometry data (see Figure 7) to the gateway, so that it is transferred to the cloud-
hosted application, where it can be mined and made available to the human supervisor. In the case 
of events that require timely intervention by the animal handler, such as birth detection events, the 
gateway's alarm generation module sends a notification message directly to the contact defined in 
the gateway. 

 
Figure 6: Behaviors distribution 
throughout the day 

 

 
Figure 7: Animal activity throughout the day 

 
The transfer of accelerometer data through the gateway also allows analyzing animal activity 

over time as illustrated in Figure 7, and comparing it with previous periods of the same animal or 
with other animals in the herd. 

The learning mode performs the sensing of animal behavior in terms of reading accelerometer 
and thermometer values, and subsequently sending the data stream abroad. This data is later 
supervised and used to build learning models. iRumMon allows two learning scenarios: for short 
learning processes in which the aim is to monitor behavior through human presence, an Android 
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app is used (Figure 8); for longer learning processes in which it is not possible to keep the human 
operator in the presence of the animal, a video image capture device (Figure 9) and gateway are 
used. In either case, communication is carried out via BLE, either with the Android app or with the 
gateway. 

 
Figure 8: Android device learning 

 
Figure 9: Video camera-based learning 

Figure 8 illustrates the Android app for learning. The app receives the data sent by a collar and 
synchronously records the video images through the Android device's camera. For the convenience 
of the subsequent learning process, the app timestamps the images and allows the extraction of the 
video and collar records, illustrated in Table 2. The process requires a scan of BLE devices and 
subsequent connection with the collar used by the animal under monitoring. After initiating the 
learning process, the human operator needs to track the monitored animal to ensure its continual 
presence in the video footage, facilitating the classification of its behavior in real-time. Due to the 
monotony of the task, the human operator can typically classify behaviors during the monitoring 
process by simply pressing the corresponding buttons in the application. Anyhow classification can 
always be reviewed, or carried out, when session monitoring data is extracted from the mobile 
device. The app also includes commands to stop recording, disconnect the session and even turn off 
the collar. 

Table 2 
Monitoring data example 

Timestamp Acc_X 
(mg) 

Acc_Y 
(mg) 

Acc_Z 
(mg) 

Temperature (C) Behavior 

1 709 551 104 150  -0.105 -0.031 -0.229 16.5 S 
1 709 551 104 200  -0.092 -0.031 -0.220 16.5 S 
1 709 551 104 250  -0.078 -0.032 -0.207 16.5 S 
1 709 551 104 300  -0.081 -0.036 -0.214 16.5 S 
1 709 551 104 350  -0.081 -0.031 -0.225 16.5 S 

 
In more temporally extensive learning processes, the collars are interconnected with the gateway 

and a video camera with temporal synchronization support, is used (Figure 9), such as an Internet 
access camera that allows automatic configuration of the system time. In this type of scenario, 
iRumMon allows the learning process regarding several animals simultaneously, as long as the 
collection of images of the animals involved is guaranteed. As in the monitoring scenario with the 
app, once the monitoring session is over, data from the various collars and video images are extracted 
to enable the data monitoring process. 

4. Conclusions 

Animal monitoring using wearable inertial sensors is a low-cost technique with enormous 
possibilities for monitoring animals and their well-being. This paper presents an animal monitoring 
solution, developed for monitoring ruminants and which has been used, for example, to monitor the 
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activity and behavior of sheep, detecting goat births. The paper presents the system components and 
briefly describes their operating modes and characteristics. 

The system, whose development has been completed, should be equipped with a new, smaller and 
lighter version in the near future, in order to allow the monitoring of other animals, such as smaller 
animals, or even birds. 
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