
Impact Study of NoSQL Refactoring in SkyServer Database⋆

Enrico Gallinucci1,*, Matteo Golfarelli1, Wafaa Radwan2, Gabriel Zarate3 and Alberto Abelló3

1University of Bologna, Cesena, Italy
2Jawwal Telecommunications, Ramallah, Palestine
3Universitat Politècnica de Catalunya, Barcelona, Spain

Abstract
Data modeling in NoSQL databases is notoriously complex and driven by multiple and possibly conflicting requirements. Researchers
have proposed methodologies to optimize schema design of a given domain for a given workload; however, due to the agile environment
in which NoSQL databases are usually employed, both domain and workload are frequently subject to changes and evolution - possibly
neutralizing the benefits of optimization. When this happens, the benefits of a new optimal schema design must be weighed against the
costs of migrating the data. In this work, we empirically show the benefits of schema redesign in a real publicly available database. In
particular, we identify multiple snapshots (in terms of domain extension and querying workload) in the 20+ years evolution of SkyServer,
demonstrate how NoSQL schema optimization at a given time can later backfire, and evaluate the conditions under which data migration
becomes beneficial. This takes us to define the foundations and challenges of a framework for continuous NoSQL database refactoring,
with the goal of helping DBAs and data engineers decide if, when, and how a NoSQL database should be reconsidered to restore schema
design optimality.

Keywords
NoSQL database, Database refactoring, Data modeling, Data migration

1. Introduction
Database design has been studied for many years in rela-
tional databases, but its automation has not been achieved
yet. Moreover, the advent of NoSQL databases since the
early 2010s has just added complexity to the problem by
offering alternative data models: key-value, wide-column,
document-based, and graph [1]. Among these, the first
three are also known as aggregate-oriented data models, as
they encourage the modeling of tuples as complex objects,
embedding all the data required to answer a query and min-
imizing the need to compute joins (thus avoiding the costly
operation of transferring data between nodes) [1]. For this
reason, the traditional domain-driven data modeling strate-
gies typically used in relational databases [2] are abandoned
in favor of workload-driven strategies, where tuples are
modeled (i.e., their schema is designed) depending on the
queries that the database is bound to answer.1 Notice that
we do not use the term NoSQL to name a family of tools,
but a family of models, as a synonim of “co-relational” in
[3], which can then be implemented in any tool, including
an object-relational one like PostgreSQL.

Several research papers have proposed methodologies to
obtain the optimal schema design, especially on the wide-
column and document-based data models (as the key-value
does not leave much room for alternative modeling strate-
gies). As fully discussed in Section 2, these methodologies
typically rely on a conceptual model (CM) of the domain
(e.g., a UML class diagram) and a set of queries to be an-
swered (a.k.a. workload). Their goal is to find a target
database schema design that minimizes query answering
times. This is often achieved by indexing, partitioning and
replicating data in multiple tables (or collections) with dif-

DOLAP 2025: 27th International Workshop on Design, Optimization, Lan-
guages and Analytical Processing of Big Data, co-located with EDBT/ICDT
2025, March 25, 2025, Barcelona, Spain
*Corresponding author.
$ enrico.gallinucci@unibo.it (E. Gallinucci);
matteo.golfarelli@unibo.it (M. Golfarelli); wafaa.radwan@jawwal.ps
(W. Radwan); gabriel.zarate@estudiantat.upc.edu (G. Zarate);
alberto.abello@upc.edu (A. Abelló)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

1In domain-driven design, workload information is used as well, but it
is not the main driver.

(covered by state-of-the-art)

Schema
recommender

CM0

w0

CMcur = CM0 + ΔCM

wcur = w0 + Δw

Domain evolves

Refactoring
recommender

Optimality
of s0 drops

Is it worth
refactoring
to another
schema?

Optimal
schema s0 is
implemented

Workload evolves

time

scur = s0

Objective 1

O
bj

ec
tiv

e
2

Effort
G

ai
n

Figure 1: Intuition of the research problem

ferent contents to accommodate different queries.
As sketched in Figure 1, we focus on what happens next

(i.e., after a schema design has been chosen and the sys-
tem/application is in production). For multiple reasons, the
conditions considered at design time are continuously evolv-
ing (e.g., new data must be stored, new queries appear or
they are executed at different rates), overturning the fitness
of schema designs to the optimization problem. Conse-
quently, the database should be refactored to the schema
design that proves to be optimal under the new conditions.
Intuitively, the sweet spot of interesting solutions are the
ones showing the most gain with minimum effort (i.e., those
in blue in Figure 1). However, refactoring a database can be
costly from multiple perspectives (design and execution of
the migration process in the first place) and the trade-off
between the benefits of refactoring and its effort should be
carefully evaluated. Moreover, the evaluation of database
refactoring should not be a once-in-a-while activity: in-
spired by the DevOps philosophy of continuous evolution
in an agile software development environment, database
refactoring should be treated as a continuous problem as
well. It is known that the performance of query execution
can improve by migrating the corresponding data between
DBMSs, even when the migration time is included [4, 5].
Our experiments, based on real astronomic data, show that,
although the corresponding data migration takes some days

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:enrico.gallinucci@unibo.it
mailto:matteo.golfarelli@unibo.it
mailto:wafaa.radwan@jawwal.ps
mailto:gabriel.zarate@estudiantat.upc.edu
mailto:alberto.abello@upc.edu
https://creativecommons.org/licenses/by/4.0/deed.en

0..1

*

CMR1

Photoz

SpecObjAll

PhotoObjAll
1

1

*

CMR8

SpecObjAll

PhotoObjAll

Field

*

1

1

Frame
1

*

0..1 PhotozRF
1

0..1
Photoz

1

galSpecLine

galSpecInfo

…

sppParams

sppLines

…

*

*

1

1

1

1 1

1
*

CMR18

SpecObjAll

PhotoObjAll

Field

*

1

1

Frame
1

*

0..1 zooSpec

1

0..1
Photoz

1

galSpecLine

galSpecInfo

…

PlateX
*

1

1

1

1
1

(a) R1
0..1

*

CMR1

Photoz

SpecObjAll

PhotoObjAll
1

1

*

CMR8

SpecObjAll

PhotoObjAll

Field

*

1

1

Frame
1

*

0..1 PhotozRF
1

0..1
Photoz

1

galSpecLine

galSpecInfo

…

sppParams

sppLines

…

*

*

1

1

1

1 1

1
*

CMR18

SpecObjAll

PhotoObjAll

Field

*

1

1

Frame
1

*

0..1 zooSpec

1

0..1
Photoz

1

galSpecLine

galSpecInfo

…

PlateX
*

1

1

1

1
1

(b) R8

0..1

*

CMR1

Photoz

SpecObjAll

PhotoObjAll
1

1

*

CMR8

SpecObjAll

PhotoObjAll

Field

*

1

1

Frame
1

*

0..1 PhotozRF
1

0..1
Photoz

1

galSpecLine

galSpecInfo

…

sppParams

sppLines

…

*

*

1

1

1

1 1

1
*

CMR18

SpecObjAll

PhotoObjAll

Field

*

1

1

Frame
1

*

0..1 zooSpec

1

0..1
Photoz

1

galSpecLine

galSpecInfo

…

PlateX
*

1

1

1

1
1

(c) R18

Figure 2: Conceptual models of the main tables in SDSS SkyServer.

of execution, schema optimization reduces query cost by an
order of magnitude, and consequently pays off in the long
term (notice we are not considering here the effort of appli-
cation code evolution). Thus, a structured and automated
approach is even more crucial to ensure the feasibility of
continuous evolution.

The main contributions we provide in this paper are:

1. An experimental setting that allows to analyze database
refactoring (not considering changes in application
code).

2. A detailed empirical analysis of the performance impact
of schema evolution in the SkyServer database.

3. A framework proposal able to explore schema designs
alternative to the current one, and give recommenda-
tions based on the evaluation of the trade-off between
migration effort and the gain under different optimiza-
tion criteria.

The outline of the paper is as follows. The related liter-
ature is presented in Section 2. Section 3 introduces our
use case. Section 4 explains and exemplifies the motiva-
tion behind the research problem. Section 5 defines the
experimental setting. Section 6 presents the evaluation of
SkyServer, grounded on which we define our framework
described in Section 7. Conclusions are drawn in Section 8.

2. Related work
The workload-driven nature of NoSQL data modeling has
been established since the dawn of NoSQL databases [1].
Indeed, results suggest that the schema alternatives affect
the database performance in different NoSQL models [6].
Over the last decade, researchers have worked to support
DBAs and data engineers in the complicated task of finding
the best logical model for a given workload. The most re-
cent existing works mainly differentiate for (i) focusing on a
single [7, 8, 9] or multiple data models [10, 11, 12, 13, 14], (ii)
considering only the conceptual model of the data [11] or
including workload queries, with [7, 12, 13, 14, 8] or without
query frequencies [10, 15, 9], and (iii) directly generating
one [10, 11, 14, 9] or more target schemas [15], or evaluat-
ing more of them, based on a single criterion [12, 15, 9] or
multiple thereof [7, 13, 8]. The common factor between all
these works is the limited focus on the initial design of a
logical schema (i.e., none of them considers the challenge of
implementing such schema by refactoring an existing one).

Research work on database evolution also started in the
relational world and then propagated to the NoSQL side,
where the schemaless characteristic2 makes databases more

2The term refers to the fact that schema information is attached directly

easily subject to schema changes, which highly impacts
their performance. Researchers have looked for patterns in
the evolution of schemas in both relational [16] and NoSQL
databases [17, 18] (and beyond [19]). Recent efforts to sup-
port and/or automate the management of schema evolution
have been directed toward keeping track of different schema
versions [20], propagating manually-defined schema modifi-
cation operations (SMO) to the database [21] and to queries
[22], and evaluating multiple strategies to apply schema
changes to the data [23, 24]. Overall, this is still an open
research field, and none of the mentioned works goes in the
direction of recommending if, how, and/or when a (NoSQL)
database should be refactored. Recommendations to (rela-
tional) database refactoring have been given, but mostly
focused on finding and resolving issues such as inconsisten-
cies [25] and anti-patterns [26]. More recently, [18] proposes
a first approach to migration strategy planning of NoSQL
databases, but still without deciding whether migrating is
worth or not, or how to do it.

3. SkyServer Case study
SkyServer3 is a publicly available relational database de-
signed to map the cosmos, made available by the Sloan
Digital Sky Survey (SDSS) organization. Over the years, it
has integrated more and more data in successive extensions.
Access to SDSS data is provided via a web interface, where
users can query and download data through either SQL or
interfaces designed for both professional astronomers and
educational purposes.

Besides the astronomical data themselves, the server also
makes public SkyServer Traffic Log,4 which captures statis-
tics on SQL queries being executed. This includes columns
such as theTime (datetime of the query), webserver (URL
of the server), winname (Windows name of the server),
clientIP (client’s IP address), and sql (the SQL statement
executed), among others. It also captures performance met-
rics like elapsed (query execution time), busy (CPU time
used by the query), and rows (number of rows returned by
the query), providing a comprehensive snapshot of server
activity in the last two decades (since 2003). Thus, we ana-
lyzed three different database schemas and corresponding
snapshots of this log as in Release 1 (December 2003), Re-
lease 8 (December 2013), and Release 18 (December 2023).
The corresponding schemas (𝐶𝑀𝑅1, 𝐶𝑀𝑅8, and 𝐶𝑀𝑅18)
are summarized in Figure 2 and include changes in both

to each data item, thus imposing no constraint at the level of the
table/collection of data.

3https://skyserver.sdss.org/dr18
4https://skyserver.sdss.org/log/en/traffic/sql.asp

https://skyserver.sdss.org/dr18
https://skyserver.sdss.org/log/en/traffic/sql.asp

PlateX

SpecObjAll

CM0 CMi

s0

si_1

si_3

si_2

SpecObjAll

SpecObjs

{ id: “S1",
tile: 122 }

Plates

{id: "P1",
program: “legacy",
quality: “good”,
SpecObjs: [
{id: “S1",
tile: 122 }] }

SpecObjs

{id: “S1",
tile: 122,
program: “legacy",
quality: “good” }

Plates SpecObjs

{id: "P1",
program: “legacy",
quality: “good” }

{ id: “S1",
tile: 122,
plateID: “P1” }

1

*

(a)

PlateX

SpecObjAll

CM0 CMi

s0

si_1

si_3

si_2

SpecObjAll

SpecObjs

{ id: “S1",
tile: 122 }

Plates

{id: "P1",
program: “legacy",
quality: “good”,
SpecObjs: [
{id: “S1",
tile: 122 }] }

SpecObjs

{id: “S1",
tile: 122,
program: “legacy",
quality: “good” }

Plates SpecObjs

{id: "P1",
program: “legacy",
quality: “good” }

{ id: “S1",
tile: 122,
plateID: “P1” }

1

*

(b)

Storage

Performance
(read)

Performance
(write)

0.2
0.4

0.6
0.8

1.0
si_1
si_2
si_3

(c)

Figure 3: Example of schema evolution: (a) the initial conceptual schema 𝐶𝑀0 and the initial database schema 𝑠0; (b) the
evolved conceptual schema 𝐶𝑀𝑖 at time 𝑖 and three alternative database schemas 𝑠𝑖_1, 𝑠𝑖_2, and 𝑠𝑖_3; and (c) comparison of
the three potential databases on the maximization of three different objectives.

the number of tables and attributes, and how the latter are
placed in the former, but without information loss.

In these schemas, we find data captured from different
regions of the sky called Fields, where different objects are
observed as PhotoObj. Spectroscopic data are also captured
for each one of these astronomical objects, and stored per
wavelength intervals into SpecObj. All measurements are
done through aluminum Plates that allow to precisely plug
individual spectrographs to the telescope through optical
fibers.5

4. Motivation
In any kind of DBMS, the choice of the initial schema design
is based on conditions (i.e., the conceptual representation
of the domain and the estimated workload) that can change
– either because they were not accurate or because they
have evolved, but this is even more so in NoSQL systems.
In this section, we present a couple of comprehensive and
small examples to illustrate the problems, before moving
to a larger one with real data that demonstrated the true
impact.

4.1. Domains evolve
Plenty of research papers show database schemas need to
evolve to accommodate changes in the domain (e.g., new in-
formation to be added, obsolete information to be removed,
data type changes), from the ’90s [27] to most recent times
[28], in both relational [29, 16] and NoSQL databases [30, 31],
looking for patterns in schema updates [16], studying the
repercussions on the related application code [29], man-
aging multiple schema versions [22] and designing frame-
works to automate schema evolution [17]. An interesting
pattern emerging from multiple research work [27, 29, 16]
is that, in the early stages of the application lifespan, rela-
tional databases typically undergo an inflation phase, where
multiple operations are carried out to add new schema in-
formation. In this sense, NoSQL databases are even more ap-
pealing due to their schemaless nature, which lets them eas-
ily accommodate schema additions to move on, and makes
them more suitable in agile development [32]. Nevertheless,
this does not mean their performance is optimum regardless
of how you store data and still require reconsidering it.

5The whole catalog of tables is available at https://skyserver.sdss.org/
dr18/MoreTools/browser

The frequency of schema changes depends on the do-
main and application [16]: in some cases it can be pervasive
(in [27], the authors found that all the tables over the 20
analyzed databases were somehow affected by the evolu-
tion process), while in others it was completely absent (in
[19], 70% of the database schemas over the 195 analyzed
open source software projects demonstrate the absence or
very small presence of change). Nevertheless, in the lat-
ter case, the authors verify that the absence of evolution
does not mean that application requirements are static, but
rather that DBAs/developers are reluctant to evolve database
schemas to avoid the effort. A similar insight is found in
[33], which studied schema evolution in 29 data-intensive
applications using either relational or NoSQL databases. The
study found that complex refactoring operations are seldom
carried out, due to the lack of tools to support them.

From these studies, we conclude that: (1) it is very diffi-
cult to have a perfect understanding at design time of how
schema information must be modeled; (2) the conditions to
modify database schemas can mature at any time; (3) there
is reluctance to change a database schema once it reaches
a certain maturity level, and such changes are aimed at
minimizing refactoring efforts.

As a result: (a) the updated schemas tend to be simple
variations of the initial one, despite the choice of the latter
being based on a significant degree of uncertainty at design
time; (b) the pure minimization of refactoring efforts po-
tentially leads to missing big opportunities hidden by the
scarecrow of complex refactoring, steering instead towards
possible antipatterns, i.e., bad practices in schema design
that are intended to solve certain problems but eventually
lead to other problems [34, 26] (which, in turn, will require
further modifications to remodel the data).

Example 1. An exemplification of schema evolution on a
document-based database is shown in Figure 3. Let 𝐶𝑀0 be
the initial conceptual schema with only one entity; database
schema 𝑠0 is created with a single collection of SpecObjAll
(Figure 3a shows a sample document). Later on, at time 𝑖 (Fig-
ure 3b), the conceptual schema evolves to 𝐶𝑀𝑖 to organize
spectral readings into plates. To accommodate this change
with minimum effort, DBAs would be inclined to evolve the
database towards the schema design of 𝑠𝑖_1 or 𝑠𝑖_2, but they
would probably avoid 𝑠𝑖_3, even though it might be the op-
timal schema – as hinted by the radar chart in Figure 3c.
Inspired by [35], the chart shows a comparison between the
three databases in terms of the maximization of three objec-

https://skyserver.sdss.org/dr18/MoreTools/browser
https://skyserver.sdss.org/dr18/MoreTools/browser

1

*

Product Item
(1,1)

(0,n)

ER0 = ER1

OrderCustomer
(1,1)

(0,n)

(1,1)

(1,n)

q1 = "select I.*, P.*
from Field F

join PhotoObj O
join SpecObj S

where F.name = <f_name>"

q2 = "select I.*, O.*
from Products P

join Items I
where P.name = <p_name>"

Plates Fields

{id: "P1",
program: “legacy",
quality: “good”,
specObjs: [{

id: “S1”,
waveMin: 3806,
waveMax: 9202,
photoObj_id: “O1”,
photoObj_type: “Star”}] }

{ id: “F1",
nTotal: 923,
photoObjs: [{
id: “O1”,
type: “Star”}] }

Plates Fields

{id: "P1",
program: “legacy",
quality: “good” }

{ id: “F1",
nTotal: 923,
photoObjs: [{
id: “O1”,
type: “Star”
specObjs: [{
id: “S1”,
waveMin: 3806,
waveMax: 9202,
plate_id: "P1",
plate_quality: “good” }] }] }

CM

PlateX

SpecObjAll

PhotoObjAll

Field

si_1

si_2

q1 = "select I.*, P.*
from Customers C

join Orders O
join Items I

where C.name = <c_name>"

q2 = "select I.*, O.*
from Products P

join Items I
where P.name = <p_name>"

*

1

*

1

(a)

1

*

Product Item
(1,1)

(0,n)

ER0 = ER1

OrderCustomer
(1,1)

(0,n)

(1,1)

(1,n)

q1 = "select I.*, P.*
from Field F

join PhotoObj O
join SpecObj S

where F.name = <f_name>"

q2 = "select I.*, O.*
from Products P

join Items I
where P.name = <p_name>"

Plates Fields

{id: "P1",
program: “legacy",
quality: “good”,
specObjs: [{

id: “S1”,
waveMin: 3806,
waveMax: 9202,
photoObj_id: “O1”,
photoObj_type: “Star”}] }

{ id: “F1",
nTotal: 923,
photoObjs: [{
id: “O1”,
type: “Star”}] }

Plates Fields

{id: "P1",
program: “legacy",
quality: “good” }

{ id: “F1",
nTotal: 923,
photoObjs: [{
id: “O1”,
type: “Star”
specObjs: [{
id: “S1”,
waveMin: 3806,
waveMax: 9202,
plate_id: "P1",
plate_quality: “good” }] }] }

CM

Plate

SpecObj

PhotoObj

Field

s1

s2

q1 = "select I.*, P.*
from Customers C

join Orders O
join Items I

where C.name = <c_name>"

q2 = "select I.*, O.*
from Products P

join Items I
where P.name = <p_name>"

*

1

*

1 (b)

t0 tiTime
Low

High

Qu
er

y
 fr

eq
. q1

q2

(c)

t0 tiTime
Bad

Good

Qu
er

y
 p

er
f. s1

s2

(d)

t0 tiTime
0%

100%

St
or

ag
e

 ra
tio

(e)

Figure 4: Example of workload evolution: (a) the conceptual
model 𝑈𝑀𝐿; (b) two possible database schemas, 𝑠1 (the initially
chosen one) and 𝑠2; (c) change of queries’ frequency in time;
(d,e) change of optimality of the two database schemas on query
performance and storage occupation.

tives: storage occupation, and performance (speed) of read and
write queries. For storage, we assume 30 bytes for IDs, 50 bytes
for strings, 8 bytes for numbers, and a ratio of 2 products per
category. To estimate query performance in this example, we
used the cost model by [12] and assumed two read queries (𝑞1
and 𝑞2) and two write queries (𝑞3 and 𝑞4) as follows:

𝑞1 = SELECT s.* FROM SpecObjAll s
WHERE s.id = <s_id>;

𝑞2 = SELECT s.* FROM SpecObjAll s
JOIN PlateX p WHERE p.id = <p_id>;

𝑞3 = UPDATE SpecObjAll s SET
s.tile = <s_tile> WHERE s.id = <s_id>;

𝑞4 = UPDATE PlateX p SET
p.quality = <p_quality>
WHERE p.id = <p_id>;

The indicators are normalized on a scale from 0 (worse) to
1 (best) using the complementary of the min-max normalized
value. For instance, given 𝜙(𝑠) as the average query execution
time on schema 𝑠, and 𝑥 and 𝑦 as the minimum and maximum
values for 𝜙(𝑠𝑖_𝑘), 𝑘 ∈ {1, 2, 3}, query performance for the
j-th schema is calculated as 𝑦−𝜙(𝑠𝑖_𝑗)

𝑦−𝑥
. ♢

4.2. Workloads evolve
Similarly to schema evolution, early studies on the evolution
of query workloads date back to the 80’s [36] and continue
to most recent times [37]. The evolution of workloads can
be traced back to common patterns [38, 39].

• Changes in frequency (i.e., the same queries are executed
with different frequencies and/or ratios), either with cyclic
patterns (e.g., daily or monthly), with occasional spikes
(e.g., due to unexpected popularity increase of the appli-
cation), or more stable changes (e.g., due to new users
from different time zones).

• Changes in queries (i.e., the existing queries are formu-
lated differently, e.g., due to a change at domain level)
or new/old queries are added/removed (e.g., due to the
addition/removal to/from the application in the latest re-
lease).

When the initial schema design is chosen, the workload
is assumed to be constant in terms of the queries using it
and their corresponding frequencies. This simplification is
understandable (if not essential) to choose a (sub-)optimal
initial schema design. However, given the strong depen-
dence of schema design optimality on the workload, the
evolution of the latter can have a tremendous impact and
ignoring it can lead to a progressive distancing from the
objectives that the initial schema design was originally max-
imizing.

Example 2. An exemplification of workload evolution on a
document-based database is shown in Figure 4. Let 𝐶𝑀 be
the initial conceptual model with four classes (Figure 4a) and
two different database schemas 𝑠1 and 𝑠2 (Figure 4b). Assume
that 𝑠1 is the one chosen at design time, given the following
workload.

𝑞1 = SELECT o.*, s.* FROM Field f
JOIN PhotoObj o JOIN SpecObj s
WHERE f.id = <f_id>;

𝑞2 = SELECT p.*, s.*
FROM Plate p JOIN SpecObj s
WHERE p.id = <p_id>;

Figure 4c shows that the frequency of the two queries inverts
from the initial deployment at 𝑡0 to the one at 𝑡𝑖. Consequently,
the optimality of the two database schemas with respect to
query performance changes accordingly (Figure 4d). Storage
ratio can also change (Figure 4e shows the database size in 𝑠2
divided by the size in 𝑠1) if the data grows unevenly. Reusing
storage assumptions from Example 1, the values in the figure
are calculated assuming a ratio between fields and spectral
readings that grows from 1:1 to 10:1 and the average number
of items per order growing from 2 to 10. ♢

5. Experimental setting
To empirically demonstrate our point, we analyzed in detail
the real effect of schema evolution on SkyServer perfor-
mance. For this, we considered three points in time corre-
sponding to releases R1, R8 and R18, respectively. Firstly,
we characterized the different workloads identifying the
most common query patterns (i.e., ignoring mostly unique
queries in the very long tail of frequencies). Then, we recre-
ated the database at the point in time of each of the three
releases and populated them with a sample of the data avail-
able in SkyServer. Finally, we measured both the cost of
queries in each schema as well as the cost of moving the
data from one to another. All tests have been executed on a
PostgreSQL 15 instance, running on a server with an i7-8700
CPU and 64 GB of RAM. To guarantee reproducibility, all
the corresponding code is publicly available in GitHub.6

In the following, we use numbers (1, 2, and 3) to refer
to database schemas in different points in time, and Greek
letters (𝛼, 𝛽, and 𝛾) to refer to the corresponding workloads.
A summary of the experimental setup is shown in Figure 5
and detailed in the following sections; in the figure, the
yellow area indicates the database schemas over which each
workload is executed.
6https://github.com/enricogallinucci/nosql-refactoring

https://github.com/enricogallinucci/nosql-refactoring

Optimized DB

SkyServer DB

Time evolution

Optimized version of

Migration to be
evaluated

LEGEND

Time-evolved DB

Workload execution

Figure 5: DBs and workloads in our experimental setup

5.1. Schemas
The schema of each database in Figure 5 is generated as
follows. Original databases (𝐷1, 𝐷2, 𝐷3) are populated
exactly as provided by SDSS. Nevertheless, to make the
performance comparable after optimization, we did not im-
plement classic 1NF, but encoded all them into a flat JSON
document (without any subdocument or array) that was
then stored in a relational table in PostgreSQL. Optimized
databases (𝐷𝛼

1 , 𝐷𝛽
2 , and 𝐷𝛾

3) are optimized for the work-
load in the corresponding point in time following the hints
in [12]. More concretely, to decide on join materialization,
as well as vertical and horizontal partitioning, we:

1. Followed a greedy algorithm taking each query in the or-
der indicated by their criticality (i.e., queries with higher
value for the product of their frequency and cost were
considered first) and:

(i) Created a JSON document per row considering all
the tables involved in the query (i.e., join materi-
alization or embedding).

(ii) Took from each source table only the attributes
necessary for the query (i.e., vertical partitioning).

(iii) Applied filters of the query (i.e., horizontal parti-
tioning).

Notice that (a) once a critical query has generated some
optimization, this is not undone by less critical queries,
and (b) we allowed intra-table redundancies (e.g., materi-
alizing the many-to-one join between Frame and Field,
which replicates field data for every frame), but not inter-
table ones (i.e., once we materialize the join between
PhotoObjAll and Photoz in a single table, we do not
create another standalone copy of the later).

2. Generated a separate vertical partition of the correspond-
ing table to store all attributes not used in any query.

3. Created secondary indexes for any attribute in the selec-
tion predicates for both the original as well as optimized
schemas.

Time-evolved databases (𝐷𝛼
2 , 𝐷𝛼

3 , and 𝐷𝛽
3) correspond

exactly to databases optimized for an obsolete workload, but
extended with the concepts introduced in the new release in
the form of one extra table per new concept, so all queries
can be executed. For instance, 𝐷𝛼

2 is the time-evolution of
𝐷𝛼

1 , which preserves the pre-existing data and optimiza-
tions for workload 𝛼, but adds the flat new tables introduced
by 𝐷2. These schemas are crucial to put optimizations un-
der the test of time and evaluate whether effectiveness is
held upon workload evolution or if it would be more conve-
nient to migrate the data to the schema optimized for the

Work.
Queries

per month
Query

freq. (Hz)

N. query patterns by output
1 row

(stable)
>1 rows
(stable)

>1 rows
(scaling)

𝑊𝛼 48,337 0.02 2 3 -
𝑊𝛽 1,352,498 0.57 6 3 -
𝑊𝛾 3,485,018 1.39 6 2 7

Table 1
Workload statistics

new workload.

5.2. Data
The overall size of the SkyServer database (in its latest re-
lease) is approximately 5TB and cannot be directly down-
loaded; consequently, we proportionally sampled the source
to manage it more effectively. Sampling is based on the
main table, PhotoObjAll, which originally contains 1.2
billion rows: we collected 4 samples of 100K, 200K, 500K,
and 1M rows, ensuring that samples preserve the distribu-
tion of attributes involved in the selection predicates; then,
other tables are populated with the rows linked to the ones
sampled on PhotoObjAll. To make the performance com-
parable across the releases, we made the four samples of the
same size, independently of the size of the database at the
point in time of the release.

5.3. Workload
The workload of every release was extracted from the
SqlLog table of the SkyServer Traffic Log for December of
the corresponding year, excluding queries that were unsuc-
cessful or involving customer user tables. Given the nature
of the service, we should notice that users are not allowed
to modify the database, hence, the log contains only read
queries. After parsing the queries, we extracted (1) the tables
involved, (2) the columns projected, and (3) the selection
predicate. Firstly, the queries were clustered based on the
tables they required, and a minimum threshold of 1% was
fixed for the cluster to be further considered. These initial
clusters were then subdivided depending on the columns
projected and selection predicate used, filtering out subclus-
ters with less than 0.5% queries, for a final count of 5, 23,
and 21 clusters being considered for each release. Since we
wanted to evaluate changes from one release to another,
out of those clusters, we generated query patterns only for
those involving tables present in more than one release.

Statistics of the final workloads, including overall query
frequency (assuming uniform distribution in time) and a
characterization of the included query patterns (based on
the number of returned rows), are reported in Table 1.

6. Experimental evaluation
In our experiments, we first look at the space being used,
then the execution time of the query workload, and finally,
the cost of migrating from one schema to another.

6.1. Evaluation of storage occupation
Table 2 shows the total storage occupation (in MB) of each
database schema on every scale. Intuitively, the storage in-
creases proportionally with the scale - though this is less ev-
ident in 𝐷*

2 and 𝐷*
3 due to some tables (Field and Frame)

being independent from PhotoObjAll. Interestingly, the

Scale 𝐷1 𝐷𝛼
1 𝐷2 𝐷𝛼

2 𝐷𝛽
2 𝐷3 𝐷𝛼

3 𝐷𝛽
3 𝐷𝛾

3

100K 683 704 849 875 853 885 892 882 878
200K 1365 1408 1600 1652 1607 1672 1685 1666 1665
500K 3412 3520 3852 3983 3869 4035 4065 4019 4028
1M 6824 7039 7607 7868 7640 7973 8033 7941 7965

Table 2
Storage occupation (in MB) of database schemas

Scale
𝑊𝛼 𝑊𝛽 𝑊𝛾

𝐷1 𝐷𝛼
1 𝐷2 𝐷𝛼

2 𝐷𝛽
2 𝐷3 𝐷𝛼

3 𝐷𝛽
3 𝐷𝛾

3

100K 73.8 7.6 27.8 63.7 2.0 145.9 571.2 269.7 45.5
200K 71.3 5.4 26.3 60.2 1.6 285.4 1124.4 490.9 60.7
500K 71.3 5.4 25.5 60.2 1.6 714.5 1546.4 1134.6 125.5
1M 77.9 5.4 27.8 63.7 1.0 1125.2 3249.2 2304.3 240.6

Table 3
Average execution time (in ms) of a single query

applied optimizations have no significant impact on storage,
due to the absence of inter-table redundancies and to a low
footprint of intra-table ones.

6.2. Evaluation of query execution times
As shown in Figure 5, the three workloads are executed over
the database schemas available for the corresponding point
in time (i.e., 𝑊𝛼, 𝑊 𝛽 , and 𝑊 𝛾 are respectively executed
over the 𝐷*

1 , 𝐷*
2 , and 𝐷*

3 versions). For each combination
of workload and database schema, 11K queries have been
executed by preserving the frequency of each query pattern
and randomly choosing values (among the existing ones)
for the selection predicates; the first 1000 queries are then
discarded to minimize the impact of cold-start on the cache.
Table 3 shows the average execution time (in ms) of a single
query, by weighing the average execution time of each query
pattern on the respective query frequency. From the results,
we can make the following observations.

• The workload changes significantly across releases. This
is evident not only on the average execution time of a
single query (which considerably grows on 𝑊 𝛾), but also
in the variation over different scales: as shown in Table 1,
𝑊 𝛾 includes query patterns where the number of rows
scales with the cardinality of tables, while these are not
present in 𝑊𝛼 and 𝑊 𝛽 .

• The random choice of selection predicates slightly im-
pacts on the average execution times, especially when
these are particularly low. For example, it may seem that
execution times improve with the database size in 𝐷𝛽

2 ;
however, the standard deviation in this case ranges from
1.9 to 2.8 in all scales for this database schema, so the
variation is clearly not statistically significant.

• Optimizations have a huge impact on performances, with
reductions of execution times ranging from 3 to 10 times
across all workloads. This provides a solid justification for
the need to implement optimized database schemas - also
in light of the essentially unvaried storage occupation.

• Interestingly, optimizations carried out at a specific point
in time do not outlive the workload and end up backfiring
at later stages. As the characteristics of the workloads
evolve, execution times sensibly increase due to previous
optimizations losing effectiveness and becoming a liabil-
ity. This nicely demonstrates the need for a continuous
re-evaluation of database optimizations.

101 102 103 104 105 106

Time elapsed (s)

101

102

103

104

105

106

107

Cu
m

ul
at

iv
e

tim
e

ga
in

ed
 (s

)

Mig. time (100K)
Mig. time (200K)
Mig. time (500K)

Mig. time (1M)

 Mig. time (full) (est.)

1
m

in
.

1
ho

ur

1
da

y

1
m

on
th

All sc
ales

Figure 6: Study of migration convenience from 𝐷𝛼
2 to 𝐷𝛽

2

101 102 103 104 105 106

Time elapsed (s)

101

102

103

104

105

106

107

Cu
m

ul
at

iv
e

tim
e

ga
in

ed
 (s

)

Mig. time (100K)
Mig. time (200K)
Mig. time (500K)

Mig. time (1M)

 Mig. time (full) (est.)

1
m

in
.

1
ho

ur

1
da

y

1
m

on
th

100K200K
500K
1M

 Full (e
st.)

Figure 7: Study of migration convenience from 𝐷𝛽
3 to 𝐷𝛾

3

Migration Scale
Time gain
per query

(ms)

Mig.
time
(ms)

N. queries
to pass

mig. time

Time to
pass mig.
time (min)

𝐷𝛼
2 to 𝐷𝛽

2

100K 62 55,100 893 25.9
200K 59 127,100 2,172 63.0
500K 61 319,200 5,236 151.9
1M 63 675,000 10,761 312.2

𝐷𝛽
3 to 𝐷𝛾

3

100K 172 93,000 542 6.5
200K 378 233,300 618 7.4
500K 910 521,900 574 6.8
1M 1,867 922,000 494 5.9

Table 4
Migration statistics

6.3. Evaluation of migration convenience
Finally, we study the convenience of database migration; as
seen in Figure 5, we focus on the migrations from 𝐷𝛼

2 to 𝐷𝛽
2

and from 𝐷𝛽
3 to 𝐷𝛾

3 (i.e., migrating data from R8 optimized
for the old R1 workload, to another schema optimized for
the true R8 workload; similarly for R8 and R18).

Migration convenience is evaluated by measuring the
gain obtained in query performance (due to database re-
optimization) against the effort taken to migrate the data.
Both factors are measured in terms of time: the gain is the
difference in the average execution time of two database
schemas, and effort is the time required to execute migration
scripts. Then, the migration becomes convenient when the
(cumulated) gain overcomes the effort. Table 4 summarizes
the results on all sample sizes and indicates the number of
queries needed to accumulate enough gain to overcome the

migration effort; the same is also translated into a measure
of time, based on the query frequency in the real workload,
as in Table 1. The results are also reported in Figures 6
and 7, which emphasize trends over logarithmic time scales:
for each sample size (identified by a different color), the
cumulative time gained is shown as time elapses, migration
time is shown as a flat horizontal threshold, and a star marks
the turning point. Linear regression is used to estimate gain
and effort on the full database size (shown as black lines).

From these results, we derive the following takeaways.

• First, we observe that migration time is proportional to
the database size. As discussed in Section 6.1, this is
not surprising given the low-to-no impact of replication.
What is remarkable is the estimated migration time on
the full scale, which achieves the order of multiple days.
Though this estimate could be easily optimized by par-
allelizing the migration of the different tables, it shows
the importance of considering workload prediction in
the refactoring recommendation: the longer the time to
migrate the data, the longer the required stability of the
workload (or accuracy of the prediction) to ensure that
the migration pays off.

• Since execution times for 𝑊 𝛽 are unaffected by the
database size (as discussed in Section 6.2), the gain is
almost identical across all scales. As a result, the bigger
the database, the more time it takes to accumulate enough
gain to compensate for migration times. Differently, in
𝑊 𝛾 , query execution times grow with the database size,
thus the gain scales accordingly. As a result, the migra-
tion becomes convenient after only 6-7 minutes, indepen-
dently of the database size.

• Interestingly, the two studies reveal radically different sce-
narios where the recommendations to carry out database
refactoring are diverse. In the samples, database migra-
tion is always fast and particularly convenient. In our
projected estimates over the full database, the migration
to 𝐷𝛽

2 would be discouraged under the assumption that
the workload significantly differs in the following month;
differently, the migration to 𝐷𝛾

3 is shown to be conve-
nient, even though the implications of the considerable
migration time should be carefully considered before en-
acting the refactoring.

7. Framework overview
As we have just demonstrated, the evolution of schemas
and workloads can dramatically change the optimality of
the schema design chosen at design time, and refactor-
ing the database can restore such optimality. The newly-
optimal schema should be found as the one maximizing
the trade-off between the benefits of a refactoring and the
effort to design and execute it. This task opens to multi-
ple research challenges, including the exploration of the
search space of target schemas (potentially scaling to thou-
sands of concepts), the quantification (and comparison)
of the benefits from refactoring the database and the ef-
forts to design and execute the refactoring, and the pre-
diction of changes in the workload (potentially including
millions of queries). As shown in Section 2, related work
mainly explore the identification of the first target solu-
tion [40, 41, 42, 7, 8, 43, 10, 11, 12, 13, 14] or devise frame-
works to manage multiple schema versions and propagate
manually-defined schema transformations to the database

placeholder

Recommender

Target Schema Explorer Workload Predictor

Gain
Estimator

Migration
Effort

Estimator

Migration
Process

Generator

calls

sends output to

LEGEND

CMcur wcur scur

Effort

G
ai
n

wpred

Figure 8: Overview of the proposed framework for continuous
refactoring evaluation

[20, 24, 31, 21, 22, 23, 24], but do not address these research
questions. In this section, we pave the way in this direction,
defining a framework and illustrating some novel research
challenges that this should address to achieve this goal.

The outcomes of the experiments evidently suggest that
(i) database optimization is neither a one-time nor an incre-
mental activity, as some optimizations can become coun-
terproductive in future stages, (ii) database migration can
be particularly expensive and may not be worth the trou-
ble, and (iii) as a result, the continuous evaluation of refac-
toring options is fundamental to guarantee maximum ef-
ficiency under evolving workloads. Hence, we propose a
multi-objective optimization to continuously evaluate and
recommend the refactoring of NoSQL databases.

An overview of the proposed framework is shown in
Figure 8. The main component is the Target Schema Ex-
plorer, which is in charge of enumerating and evaluating
the possible target schemas. The enumeration requires the
current schema 𝑠𝑐𝑢𝑟 , the current conceptual model 𝐶𝑀𝑐𝑢𝑟 ,
and either the current workload 𝑤𝑐𝑢𝑟 or a prediction of
a future workload 𝑤𝑝𝑟𝑒𝑑, calculated by the Workload Pre-
dictor. Given a possible target schema 𝑠𝑖, its evaluation is
aimed at quantifying the pros and cons of carrying out the
refactoring from 𝑠𝑐𝑢𝑟 . The pros are calculated by the Gain
Estimator, which measures the variations of multiple qual-
ity criteria (in terms of performance, storage occupation,
etc.). The cons are calculated by the Effort Estimator, which
measures the work required to carry out the refactoring
(in terms of designing and executing the migration process,
rewriting all workload queries, etc.). The latter estimation
requires as much information as possible about the migra-
tion process, which is produced by the Migration Process
Generator component. Finally, the Recommender obtains
from the Target Schema Explorer the list of evaluated target
schemas and produces a recommendation; given the amount
and diversity of criteria to measure gains and efforts, the
Recommender determines the set of relevant target schemas
on the Pareto front [44].

The benefits of advancing the state-of-the-art in this di-
rection are twofold. On the one hand, the Recommender can
provide critical insights to make refactoring decisions with
significant improvements to the current situation based on
objective criteria and a comprehensive coverage of possible
alternatives. On the other hand, the automation of this task
enables its continuous adoption through the lifetime of the
database and the applications running on top of it; indeed,
a continuous evaluation of database refactoring minimizes

the risk of undergoing major efforts at a later time to recover
from a degraded state. In both cases, complete automation
is hard to achieve, as the precise measurement of gains and
efforts is particularly challenging and the selection of the
“best” refactoring activity from the Pareto front requires busi-
ness knowledge and strategic vision (i.e., skills that cannot
be easily quantified and encoded). Thus, our proposal goes
in the direction of human-in-the-loop automation: while we
turn to the DevOps philosophy in the continuous applica-
tion of an automated procedure to maintain a high-quality
level of the database, DBAs/engineers should be able to step
in at critical points to contribute with their knowledge and
exploit the system to make decisions and decide the path
forward.

In the following, we delve into the details of each of the
framework’s components, discussing current implementa-
tions and presenting the research challenges that are yet to
be addressed to achieve automation.

Target schemas exploration. The aggregate-data mod-
eling style of NoSQL databases implies a huge search space
of alternative schemas that could be devised in a given do-
main [45]. [46] shows that there are 12 different ways to log-
ically model a conceptual relationship between two entities
in a document-based database. This search space is further
amplified by the practice of replicating data in multiple col-
lections to optimize the performance of the most frequent
queries (we avoided this possibility in our experiments to
keep them simpler); thus, an exhaustive generation and
evaluation of all possibilities is prohibitive. The challenge is
worsened by the absence of a single optimization metric to
drive the exploration towards convergence. In the related
work, the most common approach to schema exploration
(as well as the one followed in this study) simply consists
in converging to a target schema through some heuristics
(e.g., [12]). However, we see huge potential behind multi-
objective evolutionary algorithms (MOEAs), which are par-
ticularly suitable for the task of finding Pareto-optimal so-
lutions [47] but not yet adopted in this context.

Gain estimation. The Gain Estimator relies on a
set of Key Performance Indicators (KPIs) to quantify the
(dis)advantages of migrating from the current schema to
a different one under many perspectives, namely Perfor-
mance (query execution time is crucial in NoSQL), Storage
(redundancy is typically encouraged, but updates should not
be forgotten), and Complexity (schemaless allows quick
development, but also hides mistakes in the coding). In
this study, we focused on the performance evaluation, but
measured it empirically. Thus far, the proposed metrics for
estimations are either oversimplistic (e.g., [12] considers the
number of accessed documents) or too narrow (e.g., [48] pre-
dicts execution times using an advanced database-specific
model, but limitedly to point-queries on the primary key).

Migration effort estimation. Similarly to the gain,
the estimation of the migration effort can be measured
from multiple perspectives, namely Process design (whose
cost would depend on the complexity and extension of the
model), Execution (which should consider the impact over
the currently-running workload), and Application update
(especially relevant due to schemaless philosophy in NoSQL).
For this, we can build on top of recent software refactoring
work [49] and ETL evolution [50].

Migration process generation. The proper estimation
of migration efforts also depends on how well the migration
process can be predicted and how much it can be auto-
mated. The information returned by this component can

be at several levels, namely conceptual (e.g., identifying
which entities are involved in the migration), logical (i.e.,
defining the sequence of operations that should be carried
out to migrate the data), and physical (i.e., producing the
scripts or application code to be executed). In any case, an
optimizer should be used to make the process as efficient as
possible. In our study, the process was generated and opti-
mized manually, but automation is clearly necessary. Some
proposals in this direction have been made, but they only
support a limited range of schema modification operations
[51] and are tied to table-to-table (or collection-to-collection)
mappings [52], whereas the migration of the database needs
to be considered as a whole.

Workload prediction. The capability of the recom-
mender to operate on a predicted future workload is a bonus
feature, in the sense that the recommendation could also be
given just by considering the current workload. Nonetheless,
given the (possibly considerable) effort to do a migration
and the (possibly continuous) evolution of the workload,
the optimality of the new target schema may be lost by the
time that the migration is completed – as the evidence of
this study has shown. For this reason, predicting (with suf-
ficient accuracy) what the workload will be at time 𝑖+∆
allows the recommender to consider an additional variable
and to possibly converge towards the optimal solutions that
require that ∆ time to carry out the migration. The predic-
tion of the evolution of workload queries is a field that has
recently attracted research interest [37]. However, existing
works are limited to relational databases and mostly focused
on supporting a live tuning of the DBMS’s configuration
and/or resources [53].

8. Conclusions
In this paper, we have presented an impact study of NoSQL
database refactoring over a real-world use case, motivating
the research problem, supporting it with empirical evidence,
and presenting a proposal for a refactoring recommender
framework. Our research work will continue under two
directions. On the one hand, we plan to further investi-
gate the SkyServer use case to consider additional strate-
gies for schema optimizations and to incorporate workload
prediction into the migration convenience evaluation; by
collecting additional information about the workload in the
upcoming months, we will put the proposed optimizations
under a more comprehensive test of time. On the other
hand, we will work towards the implementation and au-
tomation of the proposed framework. Each module in the
framework encompasses its own challenges, which can be
addressed separately. Our main efforts will be first directed
towards enabling a broad exploration of target schemas and
defining a comprehensive method for estimating migration
efforts considering the many variables that influence this
process, including application code evolution and human
effort estimation. We plan to work in close collaboration
with companies dealing with evolving workloads in NoSQL
databases and whose support is already shown in previous
work on heterogeneous and evolving datasets [54, 55].

Acknowledgments
This work has been partially supported by the Spanish Minis-
terio de Ciencia e Innovación under project PID2020-117191
RB-I00/AEI/10.13039/501100011033 (DOGO4ML).

References
[1] P. J. Sadalage, M. Fowler, NoSQL distilled: a brief guide

to the emerging world of polyglot persistence, Pearson
Education, 2013.

[2] J. L. Harrington, Relational database design and imple-
mentation, Morgan Kaufmann, 2016.

[3] E. Meijer, A co-relational model of data for large
shared data banks, in: M. Mezini (Ed.), ECOOP
2011 - Object-Oriented Programming - 25th Euro-
pean Conference, Lancaster, UK, July 25-29, 2011
Proceedings, volume 6813 of Lecture Notes in Com-
puter Science, Springer, 2011, p. 1. URL: https://
doi.org/10.1007/978-3-642-22655-7_1. doi:10.1007/
978-3-642-22655-7_1.

[4] V. Gadepally, P. Chen, J. Duggan, A. J. Elmore,
B. Haynes, J. Kepner, S. Madden, T. Mattson, M. Stone-
braker, The bigdawg polystore system and architec-
ture, in: 2016 IEEE High Performance Extreme Com-
puting Conference, HPEC 2016, Waltham, MA, USA,
September 13-15, 2016, IEEE, 2016, pp. 1–6. URL: https:
//doi.org/10.1109/HPEC.2016.7761636. doi:10.1109/
HPEC.2016.7761636.

[5] R. Alotaibi, D. Bursztyn, A. Deutsch, I. Manolescu,
S. Zampetakis, Towards scalable hybrid stores:
Constraint-based rewriting to the rescue, in: P. A.
Boncz, S. Manegold, A. Ailamaki, A. Deshpande,
T. Kraska (Eds.), Proceedings of the 2019 Interna-
tional Conference on Management of Data, SIG-
MOD Conference 2019, Amsterdam, The Netherlands,
June 30 - July 5, 2019, ACM, 2019, pp. 1660–1677.
URL: https://doi.org/10.1145/3299869.3319895. doi:10.
1145/3299869.3319895.

[6] S. S. Neha Bansal, L. K. Awasthi, Are nosql
databases affected by schema?, IETE Jour-
nal of Research 70 (2024) 4770–4791. URL:
https://doi.org/10.1080/03772063.2023.2237478.
doi:10.1080/03772063.2023.2237478.

[7] V. Reniers, D. V. Landuyt, A. Rafique, W. Joosen,
A workload-driven document database schema rec-
ommender (DBSR), in: G. Dobbie, U. Frank,
G. Kappel, S. W. Liddle, H. C. Mayr (Eds.), Concep-
tual Modeling - 39th International Conference, ER
2020, Vienna, Austria, November 3-6, 2020, Proceed-
ings, volume 12400 of Lecture Notes in Computer
Science, Springer, 2020, pp. 471–484. URL: https://
doi.org/10.1007/978-3-030-62522-1_35. doi:10.1007/
978-3-030-62522-1_35.

[8] M. Hewasinghage, S. Nadal, A. Abelló,
E. Zimányi, Automated database design for
document stores with multicriteria optimiza-
tion, Knowl. Inf. Syst. 65 (2023) 3045–3078.
URL: https://doi.org/10.1007/s10115-023-01828-3.
doi:10.1007/s10115-023-01828-3.

[9] M. Mozaffari, E. Nazemi, A. Eftekhari-Moghadam,
CONST: continuous online nosql schema tuning,
Softw. Pract. Exp. 51 (2021) 1147–1169. URL: https:
//doi.org/10.1002/spe.2945. doi:10.1002/SPE.2945.

[10] A. de la Vega, D. García-Saiz, C. Blanco, M. E. Zorrilla,
P. Sánchez, Mortadelo: Automatic generation of nosql
stores from platform-independent data models, Future
Gener. Comput. Syst. 105 (2020) 455–474. URL: https:
//doi.org/10.1016/j.future.2019.11.032. doi:10.1016/
j.future.2019.11.032.

[11] J. Mali, F. Atigui, A. Azough, N. Travers, Mod-

eldrivenguide: An approach for implementing nosql
schemas, in: S. Hartmann, J. Küng, G. Kotsis, A. M.
Tjoa, I. Khalil (Eds.), Database and Expert Systems
Applications - 31st International Conference, DEXA
2020, Bratislava, Slovakia, September 14-17, 2020, Pro-
ceedings, Part I, volume 12391 of Lecture Notes in
Computer Science, Springer, 2020, pp. 141–151. URL:
https://doi.org/10.1007/978-3-030-59003-1_9. doi:10.
1007/978-3-030-59003-1_9.

[12] L. Chen, A. Davoudian, M. Liu, A workload-driven
method for designing aggregate-oriented nosql
databases, Data Knowl. Eng. 142 (2022) 102089.
URL: https://doi.org/10.1016/j.datak.2022.102089.
doi:10.1016/J.DATAK.2022.102089.

[13] E. M. Kuszera, L. M. Peres, M. D. D. Fabro, Exploring
data structure alternatives in the RDB to nosql docu-
ment store conversion process, Inf. Syst. 105 (2022)
101941. URL: https://doi.org/10.1016/j.is.2021.101941.
doi:10.1016/j.is.2021.101941.

[14] N. Roy-Hubara, A. Sturm, P. Shoval, Designing nosql
databases based on multiple requirement views, Data
Knowl. Eng. 145 (2023) 102149. URL: https://doi.org/
10.1016/j.datak.2023.102149. doi:10.1016/j.datak.
2023.102149.

[15] W. Y. Mok, A conceptual model based design methodol-
ogy for mongodb databases, in: 7th International Con-
ference on Information and Computer Technologies,
ICICT 2024, Honolulu, HI, USA, March 15-17, 2024,
IEEE, 2024, pp. 151–159. URL: https://doi.org/10.1109/
ICICT62343.2024.00030. doi:10.1109/ICICT62343.
2024.00030.

[16] I. Skoulis, P. Vassiliadis, A. V. Zarras, Growing up
with stability: How open-source relational databases
evolve, Inf. Syst. 53 (2015) 363–385. URL: https:
//doi.org/10.1016/j.is.2015.03.009. doi:10.1016/j.is.
2015.03.009.

[17] S. Scherzinger, S. Sidortschuck, An empirical study on
the design and evolution of nosql database schemas,
in: G. Dobbie, U. Frank, G. Kappel, S. W. Liddle, H. C.
Mayr (Eds.), Conceptual Modeling - 39th International
Conference, ER 2020, Vienna, Austria, November 3-6,
2020, Proceedings, volume 12400 of Lecture Notes in
Computer Science, Springer, 2020, pp. 441–455. URL:
https://doi.org/10.1007/978-3-030-62522-1_33. doi:10.
1007/978-3-030-62522-1_33.

[18] S. Fedushko, R. Malyi, Y. Syerov, P. Serdyuk, Nosql
document data migration strategy in the context of
schema evolution, Data & Knowledge Engineering 154
(2024) 102369. URL: https://www.sciencedirect.com/
science/article/pii/S0169023X24000934. doi:https://
doi.org/10.1016/j.datak.2024.102369.

[19] P. Vassiliadis, Profiles of schema evolution in free open
source software projects, in: 37th IEEE International
Conference on Data Engineering, ICDE 2021, Chania,
Greece, April 19-22, 2021, IEEE, 2021, pp. 1–12. URL:
https://doi.org/10.1109/ICDE51399.2021.00008. doi:10.
1109/ICDE51399.2021.00008.

[20] K. Herrmann, H. Voigt, A. Behrend, J. Rausch,
W. Lehner, Living in parallel realities: Co-existing
schema versions with a bidirectional database evo-
lution language, in: S. Salihoglu, W. Zhou,
R. Chirkova, J. Yang, D. Suciu (Eds.), Proceedings of
the 2017 ACM International Conference on Manage-
ment of Data, SIGMOD Conference 2017, Chicago,
IL, USA, May 14-19, 2017, ACM, 2017, pp. 1101–

https://doi.org/10.1007/978-3-642-22655-7_1
https://doi.org/10.1007/978-3-642-22655-7_1
http://dx.doi.org/10.1007/978-3-642-22655-7_1
http://dx.doi.org/10.1007/978-3-642-22655-7_1
https://doi.org/10.1109/HPEC.2016.7761636
https://doi.org/10.1109/HPEC.2016.7761636
http://dx.doi.org/10.1109/HPEC.2016.7761636
http://dx.doi.org/10.1109/HPEC.2016.7761636
https://doi.org/10.1145/3299869.3319895
http://dx.doi.org/10.1145/3299869.3319895
http://dx.doi.org/10.1145/3299869.3319895
https://doi.org/10.1080/03772063.2023.2237478
http://dx.doi.org/10.1080/03772063.2023.2237478
https://doi.org/10.1007/978-3-030-62522-1_35
https://doi.org/10.1007/978-3-030-62522-1_35
http://dx.doi.org/10.1007/978-3-030-62522-1_35
http://dx.doi.org/10.1007/978-3-030-62522-1_35
https://doi.org/10.1007/s10115-023-01828-3
http://dx.doi.org/10.1007/s10115-023-01828-3
https://doi.org/10.1002/spe.2945
https://doi.org/10.1002/spe.2945
http://dx.doi.org/10.1002/SPE.2945
https://doi.org/10.1016/j.future.2019.11.032
https://doi.org/10.1016/j.future.2019.11.032
http://dx.doi.org/10.1016/j.future.2019.11.032
http://dx.doi.org/10.1016/j.future.2019.11.032
https://doi.org/10.1007/978-3-030-59003-1_9
http://dx.doi.org/10.1007/978-3-030-59003-1_9
http://dx.doi.org/10.1007/978-3-030-59003-1_9
https://doi.org/10.1016/j.datak.2022.102089
http://dx.doi.org/10.1016/J.DATAK.2022.102089
https://doi.org/10.1016/j.is.2021.101941
http://dx.doi.org/10.1016/j.is.2021.101941
https://doi.org/10.1016/j.datak.2023.102149
https://doi.org/10.1016/j.datak.2023.102149
http://dx.doi.org/10.1016/j.datak.2023.102149
http://dx.doi.org/10.1016/j.datak.2023.102149
https://doi.org/10.1109/ICICT62343.2024.00030
https://doi.org/10.1109/ICICT62343.2024.00030
http://dx.doi.org/10.1109/ICICT62343.2024.00030
http://dx.doi.org/10.1109/ICICT62343.2024.00030
https://doi.org/10.1016/j.is.2015.03.009
https://doi.org/10.1016/j.is.2015.03.009
http://dx.doi.org/10.1016/j.is.2015.03.009
http://dx.doi.org/10.1016/j.is.2015.03.009
https://doi.org/10.1007/978-3-030-62522-1_33
http://dx.doi.org/10.1007/978-3-030-62522-1_33
http://dx.doi.org/10.1007/978-3-030-62522-1_33
https://www.sciencedirect.com/science/article/pii/S0169023X24000934
https://www.sciencedirect.com/science/article/pii/S0169023X24000934
http://dx.doi.org/https://doi.org/10.1016/j.datak.2024.102369
http://dx.doi.org/https://doi.org/10.1016/j.datak.2024.102369
https://doi.org/10.1109/ICDE51399.2021.00008
http://dx.doi.org/10.1109/ICDE51399.2021.00008
http://dx.doi.org/10.1109/ICDE51399.2021.00008

1116. URL: https://doi.org/10.1145/3035918.3064046.
doi:10.1145/3035918.3064046.

[21] P. Koupil, J. Bártík, I. Holubová, MM-evocat: A tool
for modelling and evolution management of multi-
model data, in: M. A. Hasan, L. Xiong (Eds.), Pro-
ceedings of the 31st ACM International Conference
on Information & Knowledge Management, Atlanta,
GA, USA, October 17-21, 2022, ACM, 2022, pp. 4892–
4896. URL: https://doi.org/10.1145/3511808.3557180.
doi:10.1145/3511808.3557180.

[22] L. Caruccio, G. Polese, G. Tortora, Synchronization
of queries and views upon schema evolutions: A sur-
vey, ACM Trans. Database Syst. 41 (2016) 9:1–9:41.
URL: https://doi.org/10.1145/2903726. doi:10.1145/
2903726.

[23] A. Hillenbrand, M. Levchenko, U. Störl, S. Scherzinger,
M. Klettke, Migcast: Putting a price tag on data model
evolution in nosql data stores, in: P. A. Boncz, S. Mane-
gold, A. Ailamaki, A. Deshpande, T. Kraska (Eds.),
Proceedings of the 2019 International Conference on
Management of Data, SIGMOD Conference 2019, Am-
sterdam, The Netherlands, June 30 - July 5, 2019, ACM,
2019, pp. 1925–1928. URL: https://doi.org/10.1145/
3299869.3320223. doi:10.1145/3299869.3320223.

[24] I. Holubová, M. Vavrek, S. Scherzinger, Evolution man-
agement in multi-model databases, Data Knowl. Eng.
136 (2021) 101932. URL: https://doi.org/10.1016/j.datak.
2021.101932. doi:10.1016/j.datak.2021.101932.

[25] S. Chang, V. Deufemia, G. Polese, M. Vacca, A logic
framework to support database refactoring, in: R. R.
Wagner, N. Revell, G. Pernul (Eds.), Database and Ex-
pert Systems Applications, 18th International Confer-
ence, DEXA 2007, Regensburg, Germany, September
3-7, 2007, Proceedings, volume 4653 of Lecture Notes
in Computer Science, Springer, 2007, pp. 509–518. URL:
https://doi.org/10.1007/978-3-540-74469-6_50. doi:10.
1007/978-3-540-74469-6_50.

[26] P. Khumnin, T. Senivongse, SQL antipatterns detec-
tion and database refactoring process, in: T. Hochin,
H. Hirata, H. Nomiya (Eds.), 18th IEEE/ACIS Inter-
national Conference on Software Engineering, Artifi-
cial Intelligence, Networking and Parallel/Distributed
Computing, SNPD 2017, Kanazawa, Japan, June 26-
28, 2017, IEEE Computer Society, 2017, pp. 199–
205. URL: https://doi.org/10.1109/SNPD.2017.8022723.
doi:10.1109/SNPD.2017.8022723.

[27] D. Sjøberg, Quantifying schema evolution, Inf.
Softw. Technol. 35 (1993) 35–44. URL: https://
doi.org/10.1016/0950-5849(93)90027-Z. doi:10.1016/
0950-5849(93)90027-Z.

[28] P. Vassiliadis, F. Shehaj, G. Kalampokis, A. V. Zarras,
Joint source and schema evolution: Insights from a
study of 195 FOSS projects, in: J. Stoyanovich, J. Teub-
ner, N. Mamoulis, E. Pitoura, J. Mühlig, K. Hose, S. S.
Bhowmick, M. Lissandrini (Eds.), Proceedings 26th In-
ternational Conference on Extending Database Tech-
nology, EDBT 2023, Ioannina, Greece, March 28-31,
2023, OpenProceedings.org, 2023, pp. 27–39. URL:
https://doi.org/10.48786/edbt.2023.03. doi:10.48786/
edbt.2023.03.

[29] C. Curino, H. J. Moon, L. Tanca, C. Zaniolo, Schema
evolution in wikipedia - toward a web information sys-
tem benchmark, in: J. Cordeiro, J. Filipe (Eds.), ICEIS
2008 - Proceedings of the Tenth International Confer-
ence on Enterprise Information Systems, Volume DISI,

Barcelona, Spain, June 12-16, 2008, 2008, pp. 323–332.
[30] M. Klettke, U. Störl, M. Shenavai, S. Scherzinger, Nosql

schema evolution and big data migration at scale,
in: J. Joshi, G. Karypis, L. Liu, X. Hu, R. Ak, Y. Xia,
W. Xu, A. Sato, S. Rachuri, L. H. Ungar, P. S. Yu,
R. Govindaraju, T. Suzumura (Eds.), 2016 IEEE In-
ternational Conference on Big Data (IEEE BigData
2016), Washington DC, USA, December 5-8, 2016,
IEEE Computer Society, 2016, pp. 2764–2774. URL:
https://doi.org/10.1109/BigData.2016.7840924. doi:10.
1109/BigData.2016.7840924.

[31] A. H. Chillón, D. S. Ruiz, J. G. Molina, Towards a taxon-
omy of schema changes for nosql databases: The orion
language, in: A. K. Ghose, J. Horkoff, V. E. S. Souza,
J. Parsons, J. Evermann (Eds.), Conceptual Modeling -
40th International Conference, ER 2021, Virtual Event,
October 18-21, 2021, Proceedings, volume 13011 of Lec-
ture Notes in Computer Science, Springer, 2021, pp. 176–
185. URL: https://doi.org/10.1007/978-3-030-89022-3_
15. doi:10.1007/978-3-030-89022-3_15.

[32] U. Störl, M. Klettke, S. Scherzinger, Nosql schema
evolution and data migration: State-of-the-art and
opportunities, in: A. Bonifati, Y. Zhou, M. A. V.
Salles, A. Böhm, D. Olteanu, G. H. L. Fletcher, A. Khan,
B. Yang (Eds.), Proceedings of the 23rd Interna-
tional Conference on Extending Database Technology,
EDBT 2020, Copenhagen, Denmark, March 30 - April
02, 2020, OpenProceedings.org, 2020, pp. 655–658.
URL: https://doi.org/10.5441/002/edbt.2020.87. doi:10.
5441/002/edbt.2020.87.

[33] B. A. Muse, F. Khomh, G. Antoniol, Refactor-
ing practices in the context of data-intensive sys-
tems, Empir. Softw. Eng. 28 (2023) 46. URL: https:
//doi.org/10.1007/s10664-022-10271-x. doi:10.1007/
s10664-022-10271-x.

[34] B. Karwin, S. Antipatterns, Avoiding the pitfalls of
database programming, The Pragmatic Bookshelf
(2010) 15–155.

[35] M. Athanassoulis, M. S. Kester, L. M. Maas, R. Sto-
ica, S. Idreos, A. Ailamaki, M. Callaghan, Design-
ing access methods: The RUM conjecture, in: E. Pi-
toura, S. Maabout, G. Koutrika, A. Marian, L. Tanca,
I. Manolescu, K. Stefanidis (Eds.), Proceedings of the
19th International Conference on Extending Database
Technology, EDBT 2016, Bordeaux, France, March
15-16, 2016, Bordeaux, France, March 15-16, 2016,
OpenProceedings.org, 2016, pp. 461–466. URL: https://
doi.org/10.5441/002/edbt.2016.42. doi:10.5441/002/
edbt.2016.42.

[36] S. Salza, M. Terranova, Workload modeling for rela-
tional database systems, in: D. J. DeWitt, H. Boral
(Eds.), Database Machines, Fourth International Work-
shop, Grand Bahama Island, March 1985, Springer,
1985, pp. 233–255.

[37] X. Huang, S. Cao, Y. Gao, X. Gao, G. Chen, Lightpro:
Lightweight probabilistic workload prediction frame-
work for database-as-a-service, in: C. A. Ardagna, N. L.
Atukorala, B. Benatallah, A. Bouguettaya, F. Casati,
C. K. Chang, R. N. Chang, E. Damiani, C. G. Guegan,
R. Ward, F. Xhafa, X. Xu, J. Zhang (Eds.), IEEE In-
ternational Conference on Web Services, ICWS 2022,
Barcelona, Spain, July 10-16, 2022, IEEE, 2022, pp. 160–
169. URL: https://doi.org/10.1109/ICWS55610.2022.
00036. doi:10.1109/ICWS55610.2022.00036.

[38] L. Ma, D. V. Aken, A. Hefny, G. Mezerhane, A. Pavlo,

https://doi.org/10.1145/3035918.3064046
http://dx.doi.org/10.1145/3035918.3064046
https://doi.org/10.1145/3511808.3557180
http://dx.doi.org/10.1145/3511808.3557180
https://doi.org/10.1145/2903726
http://dx.doi.org/10.1145/2903726
http://dx.doi.org/10.1145/2903726
https://doi.org/10.1145/3299869.3320223
https://doi.org/10.1145/3299869.3320223
http://dx.doi.org/10.1145/3299869.3320223
https://doi.org/10.1016/j.datak.2021.101932
https://doi.org/10.1016/j.datak.2021.101932
http://dx.doi.org/10.1016/j.datak.2021.101932
https://doi.org/10.1007/978-3-540-74469-6_50
http://dx.doi.org/10.1007/978-3-540-74469-6_50
http://dx.doi.org/10.1007/978-3-540-74469-6_50
https://doi.org/10.1109/SNPD.2017.8022723
http://dx.doi.org/10.1109/SNPD.2017.8022723
https://doi.org/10.1016/0950-5849(93)90027-Z
https://doi.org/10.1016/0950-5849(93)90027-Z
http://dx.doi.org/10.1016/0950-5849(93)90027-Z
http://dx.doi.org/10.1016/0950-5849(93)90027-Z
https://doi.org/10.48786/edbt.2023.03
http://dx.doi.org/10.48786/edbt.2023.03
http://dx.doi.org/10.48786/edbt.2023.03
https://doi.org/10.1109/BigData.2016.7840924
http://dx.doi.org/10.1109/BigData.2016.7840924
http://dx.doi.org/10.1109/BigData.2016.7840924
https://doi.org/10.1007/978-3-030-89022-3_15
https://doi.org/10.1007/978-3-030-89022-3_15
http://dx.doi.org/10.1007/978-3-030-89022-3_15
https://doi.org/10.5441/002/edbt.2020.87
http://dx.doi.org/10.5441/002/edbt.2020.87
http://dx.doi.org/10.5441/002/edbt.2020.87
https://doi.org/10.1007/s10664-022-10271-x
https://doi.org/10.1007/s10664-022-10271-x
http://dx.doi.org/10.1007/s10664-022-10271-x
http://dx.doi.org/10.1007/s10664-022-10271-x
https://doi.org/10.5441/002/edbt.2016.42
https://doi.org/10.5441/002/edbt.2016.42
http://dx.doi.org/10.5441/002/edbt.2016.42
http://dx.doi.org/10.5441/002/edbt.2016.42
https://doi.org/10.1109/ICWS55610.2022.00036
https://doi.org/10.1109/ICWS55610.2022.00036
http://dx.doi.org/10.1109/ICWS55610.2022.00036

G. J. Gordon, Query-based workload forecasting
for self-driving database management systems, in:
G. Das, C. M. Jermaine, P. A. Bernstein (Eds.), Proceed-
ings of the 2018 International Conference on Manage-
ment of Data, SIGMOD Conference 2018, Houston,
TX, USA, June 10-15, 2018, ACM, 2018, pp. 631–645.
URL: https://doi.org/10.1145/3183713.3196908. doi:10.
1145/3183713.3196908.

[39] S. S. Elnaffar, P. Martin, An intelligent framework
for predicting shifts in the workloads of autonomic
database management systems, in: Proc of 2004 IEEE
International Conference on Advances in Intelligent
Systems–Theory and Applications, 15-18, 2004, pp.
1–8.

[40] A. Chebotko, A. Kashlev, S. Lu, A big data modeling
methodology for apache cassandra, in: B. Carminati,
L. Khan (Eds.), 2015 IEEE International Congress on
Big Data, New York City, NY, USA, June 27 - July
2, 2015, IEEE Computer Society, 2015, pp. 238–245.
URL: https://doi.org/10.1109/BigDataCongress.2015.
41. doi:10.1109/BigDataCongress.2015.41.

[41] M. J. Mior, K. Salem, A. Aboulnaga, R. Liu, Nose:
Schema design for nosql applications, IEEE Trans.
Knowl. Data Eng. 29 (2017) 2275–2289. URL: https:
//doi.org/10.1109/TKDE.2017.2722412. doi:10.1109/
TKDE.2017.2722412.

[42] C. de Lima, R. dos Santos Mello, On proposing and eval-
uating a nosql document database logical approach,
Int. J. Web Inf. Syst. 12 (2016) 398–417. URL: https:
//doi.org/10.1108/IJWIS-04-2016-0018. doi:10.1108/
IJWIS-04-2016-0018.

[43] F. Abdelhédi, A. A. Brahim, F. Atigui, G. Zurfluh,
Umltonosql: Automatic transformation of conceptual
schema to nosql databases, in: 14th IEEE/ACS Inter-
national Conference on Computer Systems and Appli-
cations, AICCSA 2017, Hammamet, Tunisia, October
30 - Nov. 3, 2017, IEEE Computer Society, 2017, pp.
272–279. URL: https://doi.org/10.1109/AICCSA.2017.
76. doi:10.1109/AICCSA.2017.76.

[44] A. Ben-Tal, Characterization of pareto and lexico-
graphic optimal solutions, in: Multiple Criteria Deci-
sion Making Theory and Application: Proceedings of
the Third Conference Hagen/Königswinter, West Ger-
many, August 20–24, 1979, Springer, 1980, pp. 1–11.

[45] M. Hewasinghage, N. B. Seghouani, F. Bugiotti, Mod-
eling strategies for storing data in distributed het-
erogeneous nosql databases, in: J. Trujillo, K. C.
Davis, X. Du, Z. Li, T. W. Ling, G. Li, M. Lee (Eds.),
Conceptual Modeling - 37th International Confer-
ence, ER 2018, Xi’an, China, October 22-25, 2018,
Proceedings, volume 11157 of Lecture Notes in Com-
puter Science, Springer, 2018, pp. 488–496. URL: https://
doi.org/10.1007/978-3-030-00847-5_35. doi:10.1007/
978-3-030-00847-5_35.

[46] M. Hewasinghage, S. Nadal, A. Abelló, Docdesign
2.0: Automated database design for document stores
with multi-criteria optimization, in: Y. Velegrakis,
D. Zeinalipour-Yazti, P. K. Chrysanthis, F. Guerra
(Eds.), Proceedings of the 24th International Con-
ference on Extending Database Technology, EDBT
2021, Nicosia, Cyprus, March 23 - 26, 2021, Open-
Proceedings.org, 2021, pp. 674–677. URL: https://
doi.org/10.5441/002/edbt.2021.81. doi:10.5441/002/
edbt.2021.81.

[47] K. Deb, S. Agrawal, A. Pratap, T. Meyarivan, A

fast and elitist multiobjective genetic algorithm:
NSGA-II, IEEE Trans. Evol. Comput. 6 (2002) 182–
197. URL: https://doi.org/10.1109/4235.996017. doi:10.
1109/4235.996017.

[48] M. Hewasinghage, A. Abelló, J. Varga, E. Zimányi,
Managing polyglot systems metadata with hy-
pergraphs, Data Knowl. Eng. 134 (2021) 101896.
URL: https://doi.org/10.1016/j.datak.2021.101896.
doi:10.1016/j.datak.2021.101896.

[49] R. Rasool, A. A. Malik, Effort estimation of etl projects
using forward stepwise regression, in: 2015 Interna-
tional Conference on Emerging Technologies (ICET),
2015, pp. 1–6. doi:10.1109/ICET.2015.7389209.

[50] G. Papastefanatos, P. Vassiliadis, A. Simit-
sis, Y. Vassiliou, Metrics for the prediction
of evolution impact in ETL ecosystems: A
case study, J. Data Semant. 1 (2012) 75–97.
URL: https://doi.org/10.1007/s13740-012-0006-9.
doi:10.1007/s13740-012-0006-9.

[51] U. Störl, M. Klettke, Darwin: A data platform for
schema evolution management and data migration, in:
M. Ramanath, T. Palpanas (Eds.), Proceedings of the
Workshops of the EDBT/ICDT 2022 Joint Conference,
Edinburgh, UK, March 29, 2022, volume 3135 of CEUR
Workshop Proceedings, CEUR-WS.org, 2022. URL: https:
//ceur-ws.org/Vol-3135/dataplat_short3.pdf.

[52] C. Forresi, E. Gallinucci, M. Golfarelli, H. B. Hamadou,
A dataspace-based framework for OLAP analyses in a
high-variety multistore, VLDB J. 30 (2021) 1017–1040.
URL: https://doi.org/10.1007/s00778-021-00682-5.
doi:10.1007/s00778-021-00682-5.

[53] V. V. Meduri, K. Chowdhury, M. Sarwat, Evaluation
of machine learning algorithms in predicting the next
SQL query from the future, ACM Trans. Database
Syst. 46 (2021) 4:1–4:46. URL: https://doi.org/10.1145/
3442338. doi:10.1145/3442338.

[54] E. Gallinucci, M. Golfarelli, S. Rizzi, Schema profil-
ing of document-oriented databases, Inf. Syst. 75
(2018) 13–25. URL: https://doi.org/10.1016/j.is.2018.02.
007. doi:10.1016/j.is.2018.02.007.

[55] C. Forresi, M. Francia, E. Gallinucci, M. Golfarelli,
Streaming approach to schema profiling, in: A. Abelló,
P. Vassiliadis, O. Romero, R. Wrembel, F. Bugiotti,
J. Gamper, G. Vargas-Solar, E. Zumpano (Eds.), New
Trends in Database and Information Systems - ADBIS
2023 Short Papers, Doctoral Consortium and Work-
shops: AIDMA, DOING, K-Gals, MADEISD, PeRS,
Barcelona, Spain, September 4-7, 2023, Proceedings,
volume 1850 of Communications in Computer and In-
formation Science, Springer, 2023, pp. 211–220. URL:
https://doi.org/10.1007/978-3-031-42941-5_19. doi:10.
1007/978-3-031-42941-5_19.

https://doi.org/10.1145/3183713.3196908
http://dx.doi.org/10.1145/3183713.3196908
http://dx.doi.org/10.1145/3183713.3196908
https://doi.org/10.1109/BigDataCongress.2015.41
https://doi.org/10.1109/BigDataCongress.2015.41
http://dx.doi.org/10.1109/BigDataCongress.2015.41
https://doi.org/10.1109/TKDE.2017.2722412
https://doi.org/10.1109/TKDE.2017.2722412
http://dx.doi.org/10.1109/TKDE.2017.2722412
http://dx.doi.org/10.1109/TKDE.2017.2722412
https://doi.org/10.1108/IJWIS-04-2016-0018
https://doi.org/10.1108/IJWIS-04-2016-0018
http://dx.doi.org/10.1108/IJWIS-04-2016-0018
http://dx.doi.org/10.1108/IJWIS-04-2016-0018
https://doi.org/10.1109/AICCSA.2017.76
https://doi.org/10.1109/AICCSA.2017.76
http://dx.doi.org/10.1109/AICCSA.2017.76
https://doi.org/10.1007/978-3-030-00847-5_35
https://doi.org/10.1007/978-3-030-00847-5_35
http://dx.doi.org/10.1007/978-3-030-00847-5_35
http://dx.doi.org/10.1007/978-3-030-00847-5_35
https://doi.org/10.5441/002/edbt.2021.81
https://doi.org/10.5441/002/edbt.2021.81
http://dx.doi.org/10.5441/002/edbt.2021.81
http://dx.doi.org/10.5441/002/edbt.2021.81
https://doi.org/10.1109/4235.996017
http://dx.doi.org/10.1109/4235.996017
http://dx.doi.org/10.1109/4235.996017
https://doi.org/10.1016/j.datak.2021.101896
http://dx.doi.org/10.1016/j.datak.2021.101896
http://dx.doi.org/10.1109/ICET.2015.7389209
https://doi.org/10.1007/s13740-012-0006-9
http://dx.doi.org/10.1007/s13740-012-0006-9
https://ceur-ws.org/Vol-3135/dataplat_short3.pdf
https://ceur-ws.org/Vol-3135/dataplat_short3.pdf
https://doi.org/10.1007/s00778-021-00682-5
http://dx.doi.org/10.1007/s00778-021-00682-5
https://doi.org/10.1145/3442338
https://doi.org/10.1145/3442338
http://dx.doi.org/10.1145/3442338
https://doi.org/10.1016/j.is.2018.02.007
https://doi.org/10.1016/j.is.2018.02.007
http://dx.doi.org/10.1016/j.is.2018.02.007
https://doi.org/10.1007/978-3-031-42941-5_19
http://dx.doi.org/10.1007/978-3-031-42941-5_19
http://dx.doi.org/10.1007/978-3-031-42941-5_19

	1 Introduction
	2 Related work
	3 SkyServer Case study
	4 Motivation
	4.1 Domains evolve
	4.2 Workloads evolve

	5 Experimental setting
	5.1 Schemas
	5.2 Data
	5.3 Workload

	6 Experimental evaluation
	6.1 Evaluation of storage occupation
	6.2 Evaluation of query execution times
	6.3 Evaluation of migration convenience

	7 Framework overview
	8 Conclusions

