
Finding Comparison Insights in Multidimensional Datasets

Claire Antoine1,†, Alexandre Chanson1, Nicolas Labroche1 and Patrick Marcel2,*,‡

1LIFAT, université de Tours, France
2LIFO, Université d’Orléans, France

Abstract
What are the best comparisons that can be found in a multidimensional dataset? In this paper, we propose to support exploratory data
analysis by answering this question, resorting to both input space sampling and output space sampling. We sample both the dataset
and the set of aggregate queries that a user would have to ask to find significant comparisons that are frequent in the data cube of
the dataset. Our tests show that our approach is effective in retrieving significant comparisons, and that comparison insights can be
computed in seconds even for fairly large datasets, if the number of values compared is small.

Keywords
Exploratory data analysis, Comparison queries, Data cube, Statistical tests, Sampling

1. Introduction
Exploratory Data Analysis (EDA) is the notoriously tedious
activity of Data Science consisting of interactively analyzing
a dataset to gain insights. According to De Bie et al. [1]
EDA poses the greatest challenges for automation, since
background knowledge and human judgment are the keys
to success. Recently, many approaches were proposed to
support EDA, including approaches to automatically gener-
ate EDA sessions, often defined as maximization problems
(see, e.g., [2, 3, 4, 5]).

In this work, we target a specific type of insights, com-
parisons, that are very popular among data workers (see
e.g., [6, 7, 8]). For a given multidimensional dataset 𝑅 with
a categorical attribute 𝐴 and a numerical attribute 𝑀 , a
comparison insight is noted 𝑎 < 𝑏, where 𝑎 and 𝑏 are values
in the active domain of 𝐴, and is such that there are enough
evidences that the value of 𝑀 for 𝐴 = 𝑎 is less than the
value of 𝑀 for 𝐴 = 𝑏.

Example 1.1. Consider the excerpt of the flight dataset dis-
played in Table 1, loaded in a relational database. Suppose the
analyst is interested in comparing airlines (the categorical at-
tribute 𝐴) to each other regarding the average departure delay
(the numerical attribute 𝑀). To do so, the analyst could for
instance run a SQL query selecting two airlines, say WN and
OO (the values 𝑎 and 𝑏), grouping by airline and some other
attributes (e.g., departure airport), and aggregating measure
departure delay. This implies using a full table scan, which
may be prohibitively costly for large tables, and results in
a very summarized view of the data, which may hide some
"local" effects at more granular level of details. To obtain in-
teresting comparisons, the analyst would have to run enough
aggregate queries to check that the same insights for WN and
OO are found at various levels of detail.

DOLAP 2025: 27th International Workshop on Design, Optimization, Lan-
guages and Analytical Processing of Big Data, co-located with EDBT/ICDT
2025, March 25, 2025, Barcelona, Spain
*Corresponding author and main contributor.
†

The work was done when the author was an intern at LIFAT.
‡

This work was partially supported by JUNON Program (DATA/LIFO)
with financial support of Région Centre-Val de Loire, France.
$ claire.antoine56@gmail.com (C. Antoine);
Alexandre.Chanson@univ-tours.fr (A. Chanson);
Nicolas.Labroche@univ-tours.fr (N. Labroche);
Patrick.Marcel@univ-orleans.fr (P. Marcel)
� 0000-0003-3171-1174 (P. Marcel)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

departure date departure airline departure
airport hour delay
DCA 1-1-2015 945 WN -5
LAX 1-1-2015 1951 OO -4
DCA 1-1-2015 2233 AA 93
SEA 2-1-2015 547 WN -3
LAX 2-1-2015 2143 OO 63
LAX 3-1-2015 1143 OO 206
LAX 3-1-2015 927 AA -3
LAX 3-1-2015 1346 OO -9
SEA 3-1-2015 1654 OO 54
SEA 4-1-2015 155 AA 85

Table 1
Excerpt of table flight

Our goal is to efficiently extract such insights in a given
multidimensional dataset. To do so, we resort to sampling
the dataset and use existing optimization structures. Re-
sorting to sampling the dataset allows to obtain a candidate
comparison insight quickly, using statistical tests to check
its significance. Besides, the candidate insights should be
validated against the possible group-bys that can be com-
puted over the multidimensional dataset. To validate the
insight, we evaluate aggregate queries against the real data,
using a sample of queries over existing materialized views.

Our approach to extract comparison insights from a
dataset contributes with:

• a robust way of obtaining candidate comparison
insights by devising a statistics to choose between a
parametric and a non parametric test of significance,
based on the distribution of values in the sample of
the dataset,

• an algorithm for generating queries over existing
materialized views to validate candidate comparison
insights,

• a series of experiments on artificial and real datasets
to asses the effectiveness and efficiency of the ap-
proach.

The outline of the paper is as follows. Next section
presents the formal background. Section 3 introduces our
approach to extract comparisons. Section 4 details how can-
didate comparisons are obtained while Section 5 presents
the validation of candidates. Experiments are reported in
Section 6. Section 7 discusses related work and Section 8
concludes by outlining perspectives.

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:claire.antoine56@gmail.com
mailto:Alexandre.Chanson@univ-tours.fr
mailto:Nicolas.Labroche@univ-tours.fr
mailto:Patrick.Marcel@univ-orleans.fr
https://orcid.org/0000-0003-3171-1174
https://creativecommons.org/licenses/by/4.0/deed.en

2. Formal background
We give the definition of the comparison queries we consider.
This definition extends that of [4, 9] by considering more
than one attribute in the group-by set. We consider an
instance of relation 𝑅 of schema 𝑅[𝐴1, . . . , 𝐴𝑛, 𝑀1, . . . ,
𝑀𝑚]. The 𝐴𝑖’s are categorical attributes and the 𝑀𝑗 ’s are
numerical attributes, called measures in what follows. The
active domain of attribute𝐴 is noted 𝑎𝑑𝑜𝑚(𝐴). As usual for
multidimensional data, we require 𝑅 to be in Boyce-Codd
Normal Form.

Definition 2.1 (Comparison queries). Comparison
queries are extended relational queries of the form:
𝛾𝐺,𝑎𝑔𝑔(𝑀)→𝑣𝑎𝑙(𝜎𝐴=𝑎(𝑅)) ◁▷ 𝛾𝐺,𝑎𝑔𝑔(𝑀)→𝑣𝑎𝑙′(𝜎𝐴=𝑏(𝑅))
where 𝐴 is a categorical attribute in {𝐴1, . . . , 𝐴𝑛}, 𝐺 is
a group-by set in 2{𝐴1,...,𝐴𝑛}, 𝑀 is a measure attribute
in {𝑀1, . . . ,𝑀𝑚}, 𝑎𝑔𝑔 is an aggregate function, and
𝑎, 𝑏 ∈ 𝑎𝑑𝑜𝑚(𝐴). 𝛾 denotes the grouping/aggregation
operator.

For a group-by set 𝐺 of relation 𝑅, we call a cuboid of
𝑅 for function 𝑎𝑔𝑔 and measure 𝑀 the result of query:
𝛾𝐺;𝑎𝑔𝑔(𝑀)(𝑅). The cuboids of 𝑅 form the data cube
[10] of 𝑅. The number of cuboids for 𝑅 and 𝑎𝑔𝑔(𝑀) is
2|{𝐴1,...,𝐴𝑛}|, and the number of cuboids for 𝑅 and 𝑎𝑔𝑔(𝑀)
whose group-by includes attribute 𝐴 is 2|{𝐴1,...,𝐴𝑛}|−1.

For two values 𝑎, 𝑏 of an attribute 𝐴 for measure 𝑀 , a
comparison insight 𝑎 < 𝑏 indicates that, on average, values
of 𝑀 for 𝑎 are statistically lower than values of 𝑀 for 𝑏.
The result of a comparison query can present evidences (if
the value of 𝑀 for 𝑎 is indeed lower than the value of 𝑀
for 𝑏), or violations (otherwise) of the insight. An actual
insight must have enough evidences that support it. If this
is not known, we call it a candidate comparison insight.

Definition 2.2 (Candidate comparison insight). A
candidate comparison insight 𝑎 < 𝑏 where 𝑎, 𝑏 are in
𝑎𝑑𝑜𝑚(𝐴) for attribute 𝐴, measure 𝑀 of 𝑅, aggregation
function 𝑎𝑔𝑔, and instance 𝑔 of a group-by set 𝐺 over 𝑅
including 𝐴 is a pair of tuples (𝑔, 𝑎,𝑚𝑎), (𝑔, 𝑏,𝑚𝑏) of the
result of a comparison query over 𝑅 such that 𝑚𝑎 < 𝑚𝑏.

A candidate comparison insight can be violated depend-
ing on the group-by set instance, where a violation of can-
didate 𝑎 < 𝑏 is when 𝑚𝑎 ≥ 𝑚𝑏.

airline
departure airport AA OO WN
DCA 11.92 -1.67 8.13
LAX 10.15 3.18 19.09
SEA 6.22 31.0 4.5

Table 2
Cuboid by airline and departure airport (crosstab view) over the
flight table

Example 2.3. Assume Table 2 shows
the result of the aggregate query 𝑞 =
𝛾𝑎𝑖𝑟𝑙𝑖𝑛𝑒,𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒_𝑎𝑖𝑟𝑝𝑜𝑟𝑡;𝑎𝑣𝑔(𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒_𝑑𝑒𝑙𝑎𝑦)(𝑓𝑙𝑖𝑔ℎ𝑡)
over the flight table of the previous Example. The candidate
comparison insight AA> OO holds for DCA and LAX
airports, while SEA airport shows a violation of AA> OO.
This candidate insight can be obtained from the compar-
ison query: 𝛾𝐺,𝑎𝑣𝑔(𝑑𝑒𝑙𝑎𝑦)→𝐴𝐴(𝜎𝑎𝑖𝑟𝑙𝑖𝑛𝑒=𝐴𝐴(𝑓𝑙𝑖𝑔ℎ𝑡)) ◁▷
𝛾𝐺,𝑎𝑣𝑔(𝑑𝑒𝑙𝑎𝑦)→𝑂𝑂(𝜎𝑎𝑖𝑟𝑙𝑖𝑛𝑒=𝑂𝑂(𝑓𝑙𝑖𝑔ℎ𝑡)) where 𝐺 denotes
all the attributes of table flight (see the previous example).

Definition 2.4 (Validated comparison insight). Let
𝑎 < 𝑏 be a candidate insight, and 𝐶 be a cuboid over 𝑅
including attribute 𝐴. We say that 𝐶 supports 𝑎 < 𝑏 if the
ratio of violations of 𝑎 < 𝑏 is below a user defined threshold
𝜏 . Finally, we say that the insight is validated if the ratio
of cuboids supporting the insight is above a user defined
threshold 𝜌.

3. Approach overview

Figure 1: Approach overview

The computation of comparison insights requires to ex-
plore the data cube of 𝑅 which may be too computationally
costly if 𝑅 is large. We developed an approach based on
sampling to tackle those cases of discovering comparison
insights from large relations. The principle is to compute
candidate comparison insights on a sample of𝑅 and validate
them over a sample of the cuboids of 𝑅.

Our approach is illustrated in Figure 1. We first sam-
ple 𝑅, so that this sample fits in main memory. Let 𝑆
be the sample of 𝑅. Over 𝑆, we compute a candidate
comparison insight 𝑎 < 𝑏, for the comparison query
𝛾𝐺,𝑎𝑔𝑔(𝑀)→𝑣𝑎𝑙(𝜎𝐴=𝑎(𝑆)) ◁▷ 𝛾𝐺,𝑎𝑔𝑔(𝑀)→𝑣𝑎𝑙′(𝜎𝐴=𝑏(𝑆))
where 𝐺 includes all categorical attributes of 𝑅. To check
if the comparison is significant, we run a statistical test as-
sessing whether the mean for 𝑎 is significantly greater than
that for 𝑏 over the sample.

To validate the candidate comparisons found with the
statistical tests over𝑆, we sample the set𝐿 of cuboids over𝑅
as follows. From this set𝐿, we assume that some cuboids are
materialized on disk under the form of materialized views
(𝑀𝐶 , dark green cuboids in Figure 1). From this set 𝑀𝐶 of
materialized views (excluding R), we consider the set 𝐶𝑄
of all comparison queries that can be answered using 𝑀𝐶
(purple bordered in Figure 1). Generally, |𝐶𝑄| > |𝑀𝐶|.
We sample this set 𝐶𝑄. This sample is called 𝑄. Over 𝑄,
we approximate the ratio of queries of 𝐶𝑄 satisfying the
user threshold 𝜏 . We postulate that this approximation is
close enough to the ratio of queries of 𝐿 satisfying the user
threshold.

We now detail these two steps.

4. Statistical test to obtain candidate
comparisons

As we do not have all of 𝑅 but a sample 𝑆, the pairwise
comparison of 𝑎, 𝑏 is made using a statistical test over𝑆. The

null hypothesis of the test should be that the mean for 𝑎 is
greater than that for 𝑏. The choice of accepting or rejecting
the hypothesis is made based on the p-value of the chosen
test. As we will be making many comparisons, the p-values
should be corrected, using e.g., the Benjamini-Hochberg
FDR correction [11].

We could use a non-parametric test, as in [4] since such
tests make few or no assumptions about the data distri-
bution. However, the statistical power of non parametric
tests is generally lower and some tests, e.g., permutation
tests, require more computation time, as they estimate the
distribution by performing numerous re-samplings.

We choose to use the parametric Welch’s one-sided t-test
that has the advantage of not making assumptions about the
variance or sample size, which is well-suited to a context
where there is no prior knowledge of the data. However
Welch’s test still assumes normality of the data and is mainly
impacted by skewness and sample size. Indeed, type I error
tends to increase with the rise in skewness of the distribu-
tions [12].

The question becomes: how to build a decision model
based on a dedicated statistic to verify whether the sam-
ples used in the comparison are sufficiently normal and
decide whether to use Welch’s test or a non parametric
test. We therefore present our methodology relying on the
parametric Welch-t test to devise potentially discriminat-
ing candidate statistics (Section 4.1) and then train a simple
decision model based on these candidates (Section 4.2).

4.1. Devising candidate statistics
To devise a statistics for deciding which test to use,
we considered 8 candidate statistics, devised based
on the factors cited in the literature as influenc-
ing Welch’s test robustness, namely sample size
(𝑛) and skewness (𝑠𝑘𝑒𝑤) for each sample, 𝑎 and 𝑏:
(𝑛𝑎 × 𝑛𝑏), (𝑛𝑎 + 𝑛𝑏), (𝑠𝑘𝑒𝑤𝑎 × 𝑠𝑘𝑒𝑤𝑏), (𝑠𝑘𝑒𝑤𝑎 +

𝑠𝑘𝑒𝑤𝑏), |𝑠𝑘𝑒𝑤𝑎 − 𝑠𝑘𝑒𝑤𝑏| ,
⃒⃒⃒
𝑠𝑘𝑒𝑤𝑎
𝑛𝑎

− 𝑠𝑘𝑒𝑤𝑏
𝑛𝑏

⃒⃒⃒
, (𝑠𝑘𝑒𝑤𝑎

𝑛2
𝑎

+
𝑠𝑘𝑒𝑤𝑏

𝑛2
𝑏

), (𝑠𝑘𝑒𝑤𝑎
𝑛𝑎

+ 𝑠𝑘𝑒𝑤𝑏
𝑛𝑏

).

We generated artificial datasets for 𝑎 and 𝑏 with various
distributions (standard normal, normal with 𝜎 = 20, uni-
form, chi-squared, and exponential) and different sample
sizes 𝑛 ∈ {10, 50, 100, 200, 500, 1000}. The goal was to
obtain a varied panel of pairs (distribution for 𝑎, 𝑛𝑎) × (dis-
tribution for 𝑏, 𝑛𝑏): distributions with high asymmetry and
completely symmetric ones, equal or unequal sample sizes,
with large and small size differences. Each sample of the
same pair was generated with the same expectation 𝜇, to be
under the hypothesis 𝐻0 : 𝜇𝑎 = 𝜇𝑏(= 𝜇) of Welch’s test.
If the test rejects 𝐻0, we know it makes a type I error. For
each pair considered, we draw 10,000 replicas of different
sample pairs, perform Welch’s test at the nominal threshold
𝛼 = 5%, and calculate the rejection rate among the replicas,
giving us an estimator of the type I error rate for this given
combination. The number of replicas was chosen to be large
enough to ensure that the rejection rate is a good estimator
of the type I error rate [12, 13]. We also considered several
expectations 𝜇 ∈ {2, 5, 10, 100} in case the parameter also
impacts the type I error rate.

4.2. Decision model
We want a model that uses only one statistic to classify
pairs, to have a quick and simple decision rule: a decision

threshold on the statistic in question. We trained two models
(decision tree, logistic regression) to classify pairs whose
type I error is out of bounds (1) and those for which it is
controlled (0) based on each of the candidate statistics. The
training sample transmitted to our models was balanced by
undersampling, to avoid favoring the majority class.

For each model type, we selected the most interesting
statistic (the one creating the greatest heterogeneity for the
decision tree, and the one selected by backward selection for
logistic regression). We took the highest probability thresh-
old for logistic regression that ensures 0% false negatives on
the training sample. In our case, false negatives (not detect-
ing a pair where type I error is out of bounds) are considered
more serious errors than false positives (thinking that a pair
with controlled type I error is out of bounds) because in the
first case, we present a false test result to the user, while in
the second case, we postpone the decision to more tests but
do not give false conclusions. We compared the two models
based on the 𝐹2-score on the rest of the data (excluding the
training sample) which provides a more severe estimation
of recall, i.e. it maximizes the portion of out-of-bounds pairs
detected, which avoids false conclusions.

Both models agree on the following: the best statistics

is
⃒⃒⃒
𝑠𝑘𝑒𝑤𝑎
𝑛𝑎

− 𝑠𝑘𝑒𝑤𝑏
𝑛𝑏

⃒⃒⃒
and a threshold of 0.049 achieves the

best 𝐹2-score of 0.99 (with no false negatives) to separate
valid/invalid pairs on the training sample. Below this thresh-
old, pairs are valid for using Welch’s test. On the test sample,
the 𝐹2-score is 0.73 (with a recall of 1). We therefore chose
to use this statistics and threshold for deciding which test
to run.

5. Validating candidate comparisons
The validation of a candidate comparison insight is de-
scribed in Algorithm 1. Recall from Section 3 that the al-
gorithm validates the candidate insight 𝑎 < 𝑏 on a sample
of queries 𝑄. Given the sparsity of the data, the sample 𝑆
may return no data for 𝑎 or 𝑏. If so the candidate is not
considered, and the next candidate comparison is checked
(line 4). The candidate comes with a p-values indicating if
the difference 𝑎 < 𝑏 is significant in 𝑆. If it is not, the next
candidate comparison is checked (line 4). If the candidate is
considered and significant, the queries to check violations
over the sample 𝑄 are generated (line 5), and ran over the
materialized cuboids (lines 8). Again, the query result may
return no data for 𝑎 or 𝑏. In that case, the cuboid is not
counted in the denominator of the prediction (lines 10). If
the prediction is such that it is over the threshold (line 15)
or such that this threshold can not be reached given the
remaining cuboids to check (line 18), then no more vali-
dation queries are run and another candidate is checked.
Otherwise the algorithm runs until no more queries are left.

Phrased in SQL, the queries generated to check violations
of 𝑎 < 𝑏 are of the following form:

WITH
Q1 AS (SELECT G

FROM (SELECT G,A FROM view_G
WHERE A in (a,b) group-by G,A)

group-by G HAVING count(*) >1),
Q2 AS (SELECT G,A, agg(M) rank () over

(partition by G ORDER BY agg(M) desc)
FROM view_G
WHERE A in (a,b)

Algorithm 1 Candidate comparison validation
Require: a sample of queries 𝑄, two user thresholds 𝜏 and

𝜌, a candidate comparison insight 𝑎 < 𝑏
Ensure: Valid if 𝑎 < 𝑏 is valid, Invalid if it is not, Inconclu-

sive if 𝑎 < 𝑏 is not considered or not significant
1: 𝑛𝑏𝑄𝑢𝑒𝑟𝑖𝑒𝑠 = |𝑄|
2: 𝑛𝑏𝑂𝑘 = 0
3: 𝑛𝑏𝑇𝑒𝑠𝑡 = 0
4: if 𝑎 < 𝑏 is considered and significant then
5: 𝑉 = generate validation queries over 𝑄
6: for 𝑞 ∈ 𝑉 do
7: 𝑛𝑏𝑇𝑒𝑠𝑡 = 𝑛𝑏𝑇𝑒𝑠𝑡+ 1
8: 𝑟 = evaluate 𝑞
9: if 𝑎 and 𝑏 are not in 𝑟 then

10: 𝑛𝑏𝑄𝑢𝑒𝑟𝑖𝑒𝑠 = 𝑛𝑏𝑄𝑢𝑒𝑟𝑖𝑒𝑠− 1
11: end if
12: if ratio violations in 𝑟 < 𝜏 then
13: 𝑛𝑏𝑂𝑘 = 𝑛𝑏𝑂𝑘 + 1
14: end if
15: if 𝑛𝑏𝑂𝑘/𝑛𝑏𝑄𝑢𝑒𝑟𝑖𝑒𝑠 > 𝜌 then
16: return Valid
17: end if
18: if 𝑛𝑏𝑂𝑘+|𝑄|−𝑛𝑏𝑇𝑒𝑠𝑡

𝑛𝑏𝑄𝑢𝑒𝑟𝑖𝑒𝑠
< 𝜌 then

19: return Invalid
20: end if
21: end for
22: if 𝑛𝑏𝑂𝑘/𝑛𝑏𝑄𝑢𝑒𝑟𝑖𝑒𝑠 > 𝜌 then
23: return Valid
24: else
25: return Invalid
26: end if
27: end if
28: return Inconclusive

group-by G,A)
SELECT G,string_agg(A::text,',')
FROM (Q2)
WHERE (G) IN (Q1)
group-by G;

where view_G is the materialized view over which the
query is evaluated, Q2 is used to order 𝑎 and 𝑏 in the result of
the comparison query over view_G and Q1 removes group-
by instances where 𝑎 or 𝑏 do not appear.

Note that Algorithm 1 generates one query per pair (𝑎, 𝑏)
per element of the sample 𝑄, allowing to leverage existing
indexes over attribute 𝐴. Another strategy consists of leav-
ing the DBMS to actually compute the ratio of violations of
all pairs in a cuboid, by generating one query per element
of the sample 𝑄. Phrased in SQL, these queries are of the
following form:

WITH
Q1 AS (SELECT G,c1.A A1,c2.A A2,

sign(c1.M-c2.M) sign
FROM
(SELECT G,A, agg(M) M
FROM view_G group-by G,A) c1,
(SELECT G,A, agg(M) M
FROM view_G group-by G,A) c2

WHERE c1.A<c2.A and c1.G=c2.G
),
Q2 AS (SELECT A1, A2, count(*) cnt,

count(*) filter (WHERE sign=1) pos,
count(*) filter (WHERE sign=-1) neg

FROM (Q1)
group-by A1,A2

)
SELECT A1, A2, (pos-neg)/cnt score
FROM (Q2);

We postulate that such queries may not be able to exploit
any index and that the self-join between aggregates over
the materialized view is likely to be very costly. Therefore,
only small datasets may benefit from this strategy.

6. Experiments
This section reports the tests we did to assess the effective-
ness and efficiency of our approach.

6.1. Settings
We developed a prototype in Python 3.10 over the Post-
gres 16 RDBMS1. We use the SAMPLE method of Postgres
to sample the initial dataset, with the ’SYSTEM_ROWS’
parameter2. As Postgres does not support query rewriting
using materialized view, we implemented a simple rewriting
method based only on the list of attributes in the group-by
set of the query. Tests are run on a Macbook Pro with Apple
M2 Pro chip and 32GB of RAM. Postgres was run with the
default configuration, i.e., with 128MB of shared memory
buffers and 4MB of working memory.

Dataset #tuples Disk #cat. #cub. Density
sp. (MB) attr.

F100K 110,358 10 6 32 4.4.10−10

F600K 633,938 129 7 64 5.7.10−12

SSB 6,001,171 1406 5 16 2.7.10−8

Health 12,694,445 2309 6 32 1.3.10−2

Table 3
Dataset statistics

Datasets used are in Table 3. F100K and F600K are ex-
cerpts from the flight delays dataset3. SSB is the artificial
dataset of the SSB benchmark [14]. Health is the Rate table
from the health insurance dataset4.

We ran two sets of tests: the first tests compare the re-
sult of our approach to ground truth on the small F100K
dataset, for the airline attribute. The second set of tests on
all datasets reports the time to compute 90 pairs for one
attribute: the airline attribute having 14 values (91 pairs
in total) for F100k and F600K, the statecode attribute for
Health and the lo_suppkey attribute for SSB.

6.2. Effectiveness
Since our approach uses sampling, we ran effectiveness
tests to compare its outcome (the comparison insights) to
the ground truth, i.e., when comparisons are computed on
the non-sampled relation 𝑅 and all its cuboids. Unless oth-
erwise stated, we arbitrarily fixed 𝜏 = 0.4 for the ratio of
violations in a cuboid and 𝜌 = 0.4 for the ratio of cuboids
showing less than 0.4 violations. The percentage of the lat-
tice materialized is fixed to 40%. Note that the materialized
cuboids are randomly chosen. Since random sampling is

1https://github.com/patrickmarcel/rankInsightGeneration
2https://www.postgresql.org/docs/current/tsm-system-rows.html
3https://www.kaggle.com/datasets/usdot/flight-delays
4https://www.kaggle.com/datasets/hhs/health-insurance-marketplace

https://github.com/patrickmarcel/rankInsightGeneration
https://www.postgresql.org/docs/current/tsm-system-rows.html
https://www.kaggle.com/datasets/usdot/flight-delays
https://www.kaggle.com/datasets/hhs/health-insurance-marketplace

used, we run each effectiveness tests 5 times and the results
are averaged on the 5 runs.

Figure 2: Estimation of the ratio of cuboids over threshold 𝜏 =
0.4

We start by showing the average prediction, i.e., the
estimation of the ratio of cuboids over the user thresh-
old 𝜏 = 0.4 in Figure 2. Both the size of 𝑆, the sample
of the dataset (each curve), and the size of 𝑄, the sam-
ple of the set of aggregate queries over the materialized
views (𝑥 axis), vary, by changing the sampling ratio in
{0.001, 0.01, 0.1, 0.25, 0.5, 0.75, 1}. It can be seen that, ex-
cept for the very small size of 𝑆 (0.1% of 𝑅), as the query
sample grows, all sizes of 𝑆 converge toward the exact ratio
of cuboids.

Figure 3: Prediction error over 𝑄 compared to 𝐶𝑄

Figure 3 shows the average error (prediction over the
sample 𝑄 compared to the prediction over all 𝐶𝑄) made
by estimating the ratio of cuboids over the user threshold
𝜏 , varying the size of the sample of the dataset (each curve)
and the size of 𝑄 the sample of the set of aggregate queries
over the materialized views (𝑥 axis) varying the sizes as in
the previous test. It can be seen that, except for a very small
size, the size of 𝑆 has little influence on the error, compared
to the size of the query sample. This result is good since it
shows that the error quickly decreases as the query sample
size grows, with an average error below 0.1 with a sample
size of 40% and above, even when the size of 𝑆 is 1% of 𝑅.
If an error of 0.15 is considered acceptable, then a query
sample size of 25% can be used even with 0.1% of the initial

dataset.

Figure 4: Prediction error over 𝑄 compared to 𝐿

More interestingly, Figure 4 also shows the average error,
but this time as the prediction over the sample 𝑄 compared
to the prediction over all the lattice 𝐿. It can be seen that
the error made on 𝐿 is very close to the error made on 𝐶𝑄,
meaning that our approach is a good predictor of the actual
number of cuboids of 𝑅 featuring the comparison insight.

Figure 5: Significant comparisons found on 𝑆 and 𝑄 compared
to 𝐿 (F1 score)

Figure 5 reports the F-measure achieved by our approach
compared to the ground truth, i.e., all significant compar-
isons found (irrespective of the prediction score) by our
approach against all the significant comparisons found on
𝐿. It can be seen that a sample of 𝑅 of only 25% is sufficient
to achieve a F-measure above 75.

Figure 6 details this result by measuring the Recall @10,
i.e., how many of the comparisons having the top-10 pre-
diction scores are found by our approach compared to that
found in 𝐿. It can be seen that users can expect to find
between 30 and 40% of the best comparisons among the first
10 retrieved by our approach, with a sample of half of 𝑅 and
sampling 50% of the queries over the materialized cuboids.

Our last effectiveness test investigates the sensitivity to
user parameters 𝜏 and 𝜌. Based on the previous tests, we
fixed the initial sample size at 25% of 𝑅 and the size of
query sample at 40% of aggregate queries, varying 𝜏 and
𝜌. Figure 7 shows that 𝜌 does not impact the error, while 𝜏
slightly impacts it, since the more violations are tolerated,

Figure 6: Significant comparisons found on 𝑆 and 𝑄 compared
to 𝐿 (Recall @10)

Figure 7: Prediction error over 𝑄 compared to 𝐿, varying 𝜏 and
𝜌

Figure 8: Time (s) for all Welch against all permutations (F100K)

the more impact the sampling of 𝑅 will have. Other tests,
not presented here for lack of space, showed that F-measure
and Recall@ 10 are not impacted by these parameters.

6.3. Efficiency
We first check the gain of using the parametric Welch’s
tests instead of non parametric permutation tests. Figure

Figure 9: Number of Welch’s tests (F100K)

Figure 10: Time (s) by number of comparisons (F100K)

8 reports the difference in time (in seconds) when using
only Welch’s (respectively only permutation) tests on the 90
comparisons (𝑥 axis) on F100K, showing that the parametric
test is faster by almost an order of magnitude. Figure 9
shows the number of Welch’s tests by sample size for the
90 comparisons on F100K. We observe that, expectedly, the
larger the sample size, the closer the skewness and size of
samples for 𝑎 and 𝑏 are, and therefore the more Welch’s
tests are used. We can conclude that choosing a sample size
for 𝑆 favoring the use of the parametric test allows to save
time. Interestingly, for F100K, a sample of only 10% allows
to use Welch’s tests around 90% of the time.

We next measure the time (in seconds, averaged on 5 runs)
it takes to check 90 comparisons (all pairs of the airline at-
tributes in F100K or F600K, 90 pairs of SSB’s lo_suppkey, 90
pairs of Health’s statecode), using Algorithm 1 in different
settings: without index ("False"), with a mono-attribute hash
index on the airline (resp., lo_suppkey) attribute ("True"),
with a multi-attribute index on all attributes ("mc" for
multi-column), with a clustered index on the airline (resp.,
lo_suppkey) attribute ("cl") and with a multi-attribute index
on all attributes when the view is clustered on the airline
(resp., lo_suppkey) attribute ("mc-cl"). Note that for SSB
and Health, only multi-column indexes were tested. In each
case, 40% of the lattice is materialized.

The results are reported in Figures 10, 11 and 12. The time
taken is linear in the number of comparisons, and increases
with the dataset size and the number of cuboids. This is

Figure 11: Time (s) by number of comparisons (F600K)

Figure 12: Time (s) by number of comparisons (SSB, Health)

because sampling 𝑅 and hypothesis generation are very fast,
the cost comes from the evaluation of validation queries and
the size of cuboids over which they are evaluated. It takes
less than 15 seconds to compute 90 comparison insights over
F100K (the smallest dataset), around 20 seconds over SSB
(much larger but with only 16 cuboids in its lattice), around
75 seconds on Health (the largest, densest dataset, with
number of cuboids between SSB and F600K) and around 3
minutes for F600K (smaller than SSB and Health but with 4
times more cuboids). Expectedly, it can be seen that indexes
are useful, with a slight advantage for clustered indexes.

Our last tests aim to assess the alternative strategy that
sends one query per element of 𝑄. We measure the time
(in seconds) it takes to check all 90 pairs, changing the size
of 𝑄. We tested different index configurations: without
index ("False"), with a multi-attribute index on all attributes
when the view is clustered on the airline (resp., lo_suppkey)
attribute ("mc-cl") and with a multi-attribute index on all at-
tributes but the airline (resp., lo_suppkey) attribute ("group").
Results are reported in Figures 13, 14 and 15. As expected,
this strategy is beneficial for smaller datasets, with a sub-
stantial speedup for both F100K and F600K. For instance,
with a sample size of 50%, the time to compute 90 compar-
isons is less than 4 seconds on F100K while it was more than
10 seconds with a sample size of 40% using the first strategy
(Algorithm 1). Indexes and clustering are not useful. On
F100K, we also tested different values of parameters 𝜏 and
𝜌, with a positive impact for 𝜌 (since the more cuboids we

Figure 13: Time (s) by size of 𝑄 (F100K)

Figure 14: Time (s) by size of 𝑄 (F600K)

Figure 15: Time (s) by size of 𝑄 (SSB)

want, the faster it is to prune cuboids where 𝜏 is not satis-
fied) and no impact for 𝜏 , on the computation time. Also as
expected, this strategy is very bad for SSB (Figure 15) since
the size of its cuboids prevents an efficient self-join.

6.4. Lessons learned
The tests run allow to draw a few suggestions for setting up
the parameters of the approach, to achieve good effective-
ness and efficiency. Efficiency-wise, it is suggested to opt

for Algorithm 1 when the dataset is small, and opt for the
second strategy for larger datasets (over 1 GB on a laptop).
As to effectiveness, if the goal is to predict the number of
cuboids with few violations, 𝑆 = 10% of 𝑅, 𝜏 < 20% and
𝑄 = 40% of all aggregate queries should enable to obtain
good predictions. If the goal is to check the presence of a
given comparison insight, 𝑆 should be above 25% of 𝑅.

7. Related work
Exploratory Data Analysis, insights and Automatic
generation of data explorations Exploratory Data
Analysis (EDA), the notoriously tedious task of interactively
analyzing datasets to gain insights, has attracted a lot of
attention both recently [15, 16] and since the early ages of
discovery-driven exploration of multidimensional data [17].
Sunita Sarawagi’s pioneering work [18, 19, 20] proposed
techniques for interactively browsing interesting cells in a
data cube. Our approach can actually be seen as complemen-
tary to Sunita Sarawagi’s DIFF [21], aiming at explaining
differences in a multidimensional dataset. In the case of
DIFF, the user is supposed to point the comparison to be
explained while our approach suggests such comparisons.

EDA has developed beyond analyzing multidimensional
datasets with classical OLAP operations like drill-down.
EDA operations include data retrieval, data representation,
and data mining tasks [22].

One key aspect of supporting EDA is quantifying the
importance of insights [2, 6]. It is commonly admitted that
interestingness in EDA is manifold [23, 24]. For instance,
statistical significance and coverage (importance of the data
scope against the entire dataset) are used in [25] and [2].

Approaches for automatically generating EDA sessions
can be divided into two categories: generate and select, or
guided EDA. Generate and select methods (see e.g., [25, 2])
generate many, if not all, possible insights and then select
the best ones. Guided EDA methods (see e.g., [3, 26]) gener-
ate the session as the algorithm explores the search space,
mimicking a human analyst.

Comparisons Several studies highlighted the importance
of comparisons when analyzing data. Blount et al. [7] ex-
amined 67 stories produced using EDA, including award-
winning data stories, from both professional journalists and
data science-aware students, and found comparisons to be
the most popular pattern among novices and professionals
alike. Zgraggen et al. [6] define comparison insights as
observations, hypotheses, and generalizations directly ex-
tracted from data that do not require prior knowledge or do-
main expertise. The authors designed an experiment where
participants explored a synthetic dataset and instructed
them to report their reliable insights. 60% of user-reported
insights were spurious, which underlines the need for sys-
tems to be able to automatically characterize comparison
insights.

Francia et al. [27] and, independently, Siddiqui et al. [8]
respectively defined the Assess and Compare operators to
give a clear semantics and logical foundations of compar-
isons (and labeling the result of the comparison in [27]) of
two series of data.

Since comparisons happen frequently in practice, with
a high risk of comparison-based insights being spurious,
there is a need to automate the production of non-spurious
comparison insights. In that sense our present work can be

seen as a follow-up to [4], where we develop a robust input
space sampling method (Section 4) and consider output
space sampling to validate candidate insights (Section 5).

Note that none of the works mentioned above, in partic-
ular [25, 2, 7, 6, 8], can be used as baselines, since they do
not propose a method to automatically extract comparison
insights like the one proposed here.

Sampling, approximate query answering Approxi-
mate query answering techniques [28, 29, 30] are aimed at
answering typical aggregation queries much faster than the
exact algorithms implemented by DBMS and do so with a
bounded error. AQP methods may also rely on common
probabilistic bounds such as Hoeffding and Chebyshev [28]
to qualify this error. To answer queries faster while remain-
ing accurate AQP methods need to build samples that are
accurate stand-in for the complete database. This is espe-
cially necessary for group-by query where uniform samples
might entirely miss small groups [30]. To avoid this issue
AQP method have been designed with many specific biased
sampling techniques. One such method is Congressional
Sampling [28] that simply ensures small groups are repre-
sented by at least 𝑛 element in the final sample. BlinkDB’s
[29] set of multi-dimensional, multi-resolution samples are
used with a selection strategy which determines automati-
cally the size of the sample based on accuracy or response
time constraints. However, AQP advanced sampling strate-
gies while useful for their specific use case of providing
accurate results over many different queries, may be an
unnecessary cost for our approach. Indeed if samples are
too small the statistical testing will simply fail to reject H0
which would already be more likely for smaller groups even
in the complete database.

8. Conclusion
We propose an approach to find comparison insights in a
multidimensional dataset, by sampling both the dataset and
the set of aggregate queries that can be computed over it.
Our approach makes use of both input space sampling, since
we sample the initial dataset for finding candidate compari-
son insights, and output space sampling, as we also sample
the set of aggregate queries to validate the candidates.

While our results are promising, the approach still needs
to be improved both in terms of effectiveness and efficiency.
We outline two promising directions. One could use fre-
quent pattern mining to extract frequent comparisons. How-
ever, this would require to first compute the datacube of the
dataset and then run a frequent pattern algorithm. Sampling
patterns could be used [31], and it is part of our future work
to compare our approach with frequent pattern sampling
approaches. Our future work will also investigate the use of
BlinkDB [29], that aims at answering SQL-based aggrega-
tion queries over stored data, by building and maintaining
a set of multi-dimensional, multi-resolution samples from
original data, over time. Its dynamic sample selection strat-
egy determines automatically the size of the sample based
on accuracy or response time constraints.

On the longer term, we plan to adapt the approach to
other types of insights and other data models.

References
[1] T. D. Bie, L. D. Raedt, et al., Automating data science,

Commun. ACM 65 (2022) 76–87.
[2] B. Tang, S. Han, M. L. Yiu, R. Ding, D. Zhang, Extract-

ing top-k insights from multi-dimensional data, in:
Proceedings of SIGMOD, Chicago, IL, USA, 2017, pp.
1509–1524.

[3] O. B. El, T. Milo, A. Somech, Automatically generating
data exploration sessions using deep reinforcement
learning, in: Proceedings of SIGMOD, Portland, OR,
USA, 2020, pp. 1527–1537.

[4] A. Chanson, N. Labroche, P. Marcel, S. Rizzi, V. T’kindt,
Automatic generation of comparison notebooks for in-
teractive data exploration, in: J. Stoyanovich, J. Teub-
ner, P. Guagliardo, M. Nikolic, A. Pieris, J. Mühlig,
F. Özcan, S. Schelter, H. V. Jagadish, M. Zhang (Eds.),
Proceedings of the 25th International Conference on
Extending Database Technology, EDBT 2022, Edin-
burgh, UK, March 29 - April 1, 2022, OpenProceed-
ings.org, 2022, pp. 2:274–2:284. URL: https://doi.org/10.
48786/edbt.2022.15. doi:10.48786/EDBT.2022.15.

[5] B. Youngmann, S. Amer-Yahia, et al., Guided explo-
ration of data summaries, Proc. VLDB Endow. 15 (2022)
1798–1807.

[6] E. Zgraggen, Z. Zhao, R. C. Zeleznik, T. Kraska, Investi-
gating the effect of the multiple comparisons problem
in visual analysis, in: R. L. Mandryk, M. Hancock,
M. Perry, A. L. Cox (Eds.), Proceedings of the 2018
CHI Conference on Human Factors in Computing Sys-
tems, CHI 2018, Montreal, QC, Canada, April 21-26,
2018, ACM, 2018, p. 479. URL: https://doi.org/10.1145/
3173574.3174053. doi:10.1145/3173574.3174053.

[7] T. Blount, L. Koesten, Y. Zhao, E. Simperl, Understand-
ing the use of narrative patterns by novice data story-
tellers, in: Proceedings of CHIRA, Budapest, Hungary,
2020, pp. 128–138.

[8] T. Siddiqui, S. Chaudhuri, V. R. Narasayya, COM-
PARE: accelerating groupwise comparison in rela-
tional databases for data analytics, Proceedings of
VLDB Endow. 14 (2021) 2419–2431. URL: http://www.
vldb.org/pvldb/vol14/p2419-siddiqui.pdf.

[9] A. Chanson, N. Labroche, P. Marcel, V. T’Kindt, Com-
parison queries generation using mathematical pro-
gramming for exploratory data analysis, IEEE Trans-
actions on Knowledge and Data Engineering (2024).

[10] J. Gray, A. Bosworth, A. Layman, H. Pirahesh, Data
cube: A relational aggregation operator generalizing
group-by, cross-tab, and sub-total, in: S. Y. W. Su (Ed.),
Proceedings of the Twelfth International Conference
on Data Engineering, February 26 - March 1, 1996,
New Orleans, Louisiana, USA, IEEE Computer Society,
1996, pp. 152–159. URL: https://doi.org/10.1109/ICDE.
1996.492099. doi:10.1109/ICDE.1996.492099.

[11] Y. Benjamini, Y. Hochberg, Controlling the false dis-
covery rate - a practical and powerful approach to
multiple testing, J. Royal Statist. Soc., Series B 57
(1995) 289 – 300. doi:10.2307/2346101.

[12] J. Algina, T. Oshima, W.-Y. Lin, Type i error rates
for welch’s test and james’s second-order test under
nonnormality and inequality of variance when there
are two groups, Journal of Educational Statistics 19
(1994) 275–291.

[13] A. J. Bishara, J. B. Hittner, Testing the significance
of a correlation with nonnormal data: comparison of

pearson, spearman, transformation, and resampling
approaches., Psychological methods 17 (2012) 399.

[14] P. E. O’Neil, E. J. O’Neil, X. Chen, S. Revilak, The star
schema benchmark and augmented fact table index-
ing, in: R. O. Nambiar, M. Poess (Eds.), Performance
Evaluation and Benchmarking, First TPC Technology
Conference, TPCTC 2009, Lyon, France, August 24-28,
2009, Revised Selected Papers, volume 5895 of Lecture
Notes in Computer Science, Springer, 2009, pp. 237–
252. URL: https://doi.org/10.1007/978-3-642-10424-4_
17. doi:10.1007/978-3-642-10424-4_17.

[15] S. Idreos, O. Papaemmanouil, S. Chaudhuri, Overview
of data exploration techniques, in: SIGMOD, 2015,
pp. 277–281. URL: https://doi.org/10.1145/2723372.
2731084. doi:10.1145/2723372.2731084.

[16] T. Milo, A. Somech, Automating exploratory data anal-
ysis via machine learning: An overview, in: SIGMOD,
2020, p. 2617–2622. URL: https://doi.org/10.1145/
3318464.3383126. doi:10.1145/3318464.3383126.

[17] S. Sarawagi, R. Agrawal, N. Megiddo, Discovery-
driven exploration of OLAP data cubes, in: EDBT,
1998, pp. 168–182.

[18] S. Sarawagi, Explaining differences in multidimen-
sional aggregates, in: VLDB, 1999, pp. 42–53.

[19] S. Sarawagi, User-adaptive exploration of multidimen-
sional data, in: VLDB, 2000, pp. 307–316.

[20] G. Sathe, S. Sarawagi, Intelligent rollups in multidi-
mensional OLAP data, in: VLDB, 2001, pp. 531–540.

[21] S. Sarawagi, idiff: Informative summarization of
differences in multidimensional aggregates, Data
Min. Knowl. Discov. 5 (2001) 255–276. URL: https:
//doi.org/10.1023/A:1011494927464. doi:10.1023/A:
1011494927464.

[22] T. Milo, A. Somech, Next-step suggestions for modern
interactive data analysis platforms, in: SIGKDD, ACM,
2018, pp. 576–585.

[23] L. Geng, H. J. Hamilton, Interestingness measures for
data mining: A survey, ACM Comput. Surv. 38 (2006)
9.

[24] P. Marcel, V. Peralta, P. Vassiliadis, A framework for
learning cell interestingness from cube explorations,
in: ADBIS, 2019, pp. 425–440.

[25] R. Ding, S. Han, Y. Xu, H. Zhang, D. Zhang, Quick-
Insights: Quick and automatic discovery of insights
from multi-dimensional data, in: Proceedings of SIG-
MOD, Amsterdam, The Netherlands, 2019, pp. 317–332.
URL: https://doi.org/10.1145/3299869.3314037. doi:10.
1145/3299869.3314037.

[26] A. Personnaz, B. Youngmann, S. Amer-Yahia, Eda4sum:
Guided exploration of data summaries, Proc. VLDB
Endow. 15 (2022) 3590–3593. URL: https://doi.org/
10.14778/3554821.3554851. doi:10.14778/3554821.
3554851.

[27] M. Francia, M. Golfarelli, P. Marcel, S. Rizzi, P. Vassil-
iadis, Assess queries for interactive analysis of data
cubes, in: EDBT, 2021, pp. 121–132.

[28] S. Acharya, P. B. Gibbons, V. Poosala, S. Ramaswamy,
The aqua approximate query answering system, in:
A. Delis, C. Faloutsos, S. Ghandeharizadeh (Eds.), SIG-
MOD 1999, Proceedings ACM SIGMOD International
Conference on Management of Data, June 1-3, 1999,
Philadephia, Pennsylvania, USA, ACM Press, 1999, pp.
574–576.

[29] S. Agarwal, B. Mozafari, A. Panda, H. Milner, S. Mad-
den, I. Stoica, Blinkdb: queries with bounded er-

https://doi.org/10.48786/edbt.2022.15
https://doi.org/10.48786/edbt.2022.15
http://dx.doi.org/10.48786/EDBT.2022.15
https://doi.org/10.1145/3173574.3174053
https://doi.org/10.1145/3173574.3174053
http://dx.doi.org/10.1145/3173574.3174053
http://www.vldb.org/pvldb/vol14/p2419-siddiqui.pdf
http://www.vldb.org/pvldb/vol14/p2419-siddiqui.pdf
https://doi.org/10.1109/ICDE.1996.492099
https://doi.org/10.1109/ICDE.1996.492099
http://dx.doi.org/10.1109/ICDE.1996.492099
http://dx.doi.org/10.2307/2346101
https://doi.org/10.1007/978-3-642-10424-4_17
https://doi.org/10.1007/978-3-642-10424-4_17
http://dx.doi.org/10.1007/978-3-642-10424-4_17
https://doi.org/10.1145/2723372.2731084
https://doi.org/10.1145/2723372.2731084
http://dx.doi.org/10.1145/2723372.2731084
https://doi.org/10.1145/3318464.3383126
https://doi.org/10.1145/3318464.3383126
http://dx.doi.org/10.1145/3318464.3383126
https://doi.org/10.1023/A:1011494927464
https://doi.org/10.1023/A:1011494927464
http://dx.doi.org/10.1023/A:1011494927464
http://dx.doi.org/10.1023/A:1011494927464
https://doi.org/10.1145/3299869.3314037
http://dx.doi.org/10.1145/3299869.3314037
http://dx.doi.org/10.1145/3299869.3314037
https://doi.org/10.14778/3554821.3554851
https://doi.org/10.14778/3554821.3554851
http://dx.doi.org/10.14778/3554821.3554851
http://dx.doi.org/10.14778/3554821.3554851

rors and bounded response times on very large data,
in: Eighth Eurosys Conference 2013, EuroSys ’13,
Prague, Czech Republic, April 14-17, 2013, 2013, pp.
29–42. URL: https://doi.org/10.1145/2465351.2465355.
doi:10.1145/2465351.2465355.

[30] A. Galakatos, A. Crotty, E. Zgraggen, C. Bin-
nig, T. Kraska, Revisiting reuse for approxi-
mate query processing, Proc. VLDB Endow. 10
(2017) 1142–1153. URL: http://www.vldb.org/pvldb/
vol10/p1142-galakatos.pdf. doi:10.14778/3115404.
3115418.

[31] A. Giacometti, A. Soulet, Anytime algorithm
for frequent pattern outlier detection, Int. J.
Data Sci. Anal. 2 (2016) 119–130. URL: https:
//doi.org/10.1007/s41060-016-0019-9. doi:10.1007/
S41060-016-0019-9.

https://doi.org/10.1145/2465351.2465355
http://dx.doi.org/10.1145/2465351.2465355
http://www.vldb.org/pvldb/vol10/p1142-galakatos.pdf
http://www.vldb.org/pvldb/vol10/p1142-galakatos.pdf
http://dx.doi.org/10.14778/3115404.3115418
http://dx.doi.org/10.14778/3115404.3115418
https://doi.org/10.1007/s41060-016-0019-9
https://doi.org/10.1007/s41060-016-0019-9
http://dx.doi.org/10.1007/S41060-016-0019-9
http://dx.doi.org/10.1007/S41060-016-0019-9

	1 Introduction
	2 Formal background
	3 Approach overview
	4 Statistical test to obtain candidate comparisons
	4.1 Devising candidate statistics
	4.2 Decision model

	5 Validating candidate comparisons
	6 Experiments
	6.1 Settings
	6.2 Effectiveness
	6.3 Efficiency
	6.4 Lessons learned

	7 Related work
	8 Conclusion

