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Abstract

Entity Matching (EM) is a fundamental task in data management, involving the identification and linking of records that refer to the
same real-world entity across different datasets. While Large Language Models (LLMs) have shown promise in addressing complex
natural language processing tasks, their substantial computational requirements often limit their practical applicability. In this work,
we investigate the use of 7B parameter LLMs with 4-bit quantization for EM tasks executable on commodity hardware. We explore
various prompting strategies, including zero-shot, few-shot, and general matching definition prompts, to evaluate their effectiveness
in improving EM accuracy. Experiments are conducted on two benchmark datasets with products, which present varying levels of
complexity and challenge in product descriptions. Our findings demonstrate that 7B parameter LLMs can effectively perform EM, with
the Orca2 model consistently outperforming others across different prompting strategies and datasets. The study highlights that few-shot
prompting significantly enhances performance over zero-shot approaches, emphasizing the importance of task-specific examples and
careful prompt design. We also examine the impact of example order in few-shot prompts and find that it has a substantial effect on model
performance. Finally, we examine hardware limitations, demonstrating that effective EM can be achieved with resource-constrained

models.
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1. Introduction

Entity Resolution (ER) constitutes a vital task in data man-
agement that involves identifying and linking records from
different datasets that refer to the same real-world entity
[1, 2]. In many domains, including e-commerce, health-
care, and finance, accurate ER is essential for ensuring data
quality, enabling effective data integration, and supporting
informed decision-making [3]. However, this task is chal-
lenging due to data inconsistencies, incompleteness, and
ambiguity across different sources [4, 5].

As an example, consider the product descriptions in Fig-
ure 1. Despite corresponding to the same object (Sony head-
phones), there are significant variations in product names,
attributes, and dimensions. These discrepancies illustrate
the challenges in reconciling variations across datasets, par-
ticularly when dealing with unstructured text and linguistic
differences. Accurate ER in scenarios like this is crucial for
product catalog integration, price comparison, and recom-
mendation systems [6].

Due to its quadratic time complexity, ER solutions typ-
ically implement the Filtering-Verification framework [7].
The Filtering step, often called Blocking, significantly re-
duces the computational cost to the most similar candidate
pairs, which are the most likely matches [8]. The Verifica-
tion step performs Entity Matching (EM), which essentially
determines whether two records are duplicates, describing
the same real-world object. In the following, we exclusively
focus on EM.

Traditional EM solutions typically rely on rule-based ap-
proaches, string similarity metrics, or machine learning
algorithms [9, 10, 11]. However, these methods can strug-
gle with complex linguistic variations and contextual un-
derstanding, while requiring domain expertise and heavy
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1 Sony MDREX35LP VB Colorful Headphone with Case - Violet Blue MDREX35LPVB
13.540.05 Sony 7.25 x 2.0 x 1.25 inches

2 Sony MDR-EX35LP VB EX Style Headphones with Deep Bass Sound Violet Blue
MDR-EX35LPVB 12.991 Sony 7.2x 2.0 x 1.2 inches

Figure 1: Two records with major differences describing the same
product.

human involvement [12]. This is addressed by more recent
state-of-the-art approaches that leverage deep learning (DL)
techniques [13]. However, they require substantial amounts
of training data, which are rarely available.

Recent advancements in NLP, particularly in Large Lan-
guage Models (LLMs), offer new possibilities for addressing
EM challenges [14, 15]. LLMs possess advanced capabili-
ties for natural language understanding, which allows them
to process and interpret complex textual descriptions [16].
Most importantly, LLM-based EM can be performed in zero-
shot settings, requiring no training instances, a characteris-
tic particularly attractive for out-of-the-box solutions.

In this work, we evaluate the performance of 7B param-
eter LLMs in entity matching tasks. While larger LLMs
with hundreds of billions of parameters have shown impres-
sive results [15, 16], their computational requirements often
make them impractical for many real-world applications. By
employing these LLMs, which excel in natural language un-
derstanding and semantic similarity assessment, this work
seeks to address EM challenges in real-world datasets with
linguistic variations and unstructured text, while also high-
lighting their suitability for execution on commodity hard-
ware. The focus on 7B parameter LLMs is motivated by their
potential for efficient deployment on commodity hardware,
making them more suitable for practical applications.

To this end, we perform an extensive experimental evalu-
ation that considers the models’ ability to handle different
types of EM scenarios. We explore novel zero-shot, few-
shot, and general matching definition prompting strategies
to assess their effectiveness in improving matching accuracy.
Our goal is to bridge the gap between the advanced capabil-
ities of LLMs and the practical constraints of real-world EM
applications, potentially paving the way for more efficient
and accurate ER techniques in diverse domains.
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2. Related Work

There is a plethora of recent LLM-based EM methods, be-
cause LLMs offer several advantages over traditional EM
solutions: (i) contextual understanding, as they understand
the context and semantics of entity descriptions better than
traditional string matching techniques. (ii) robustness, since
LLMs are typically more capable of addressing variations
in how entity information is expressed. (iii) zero-shot and
few-shot learning, i.e., LLMs can accomplish EM tasks with
no or minimal examples of matching decisions. These char-
acteristics render LLMs ideal for most EM tasks, especially
those with complex, unstructured product descriptions.

The seminal work on LLM-based EM [16] investigated
the effectiveness of GPT3-175B in EM, focusing on three
key parameters: (i) problem definition, exploring different
phrasings such as “Are Product A and Product B the same?”
or “Are Product A and Product B equivalent?”. (ii) in-context
learning, comparing zero-shot with few-shot approaches.
The former involve prompts with no examples in the prompt,
while the latter involve a couple of examples, which are
selected randomly or by experts. (iii) entity serialization,
testing the use of all attributes or just a subset of them.
Their experimental analysis led to the following conclusions:
(i) few-shot learning significantly outperforms zero-shot
approaches, (ii) attribute selection yields better results than
using all attributes, (iii) problem definition has a substantial
impact on performance, (iv) LLM performance is comparable
to the state-of-the-art DL-based matching algorithms.

A detailed study was conducted in [15], using six LLMs,
three hosted and three open-source ones. The experiments
explored additional parameters such as problem definition,
language complexity, output specification, entity serializa-
tion, in-context learning, instructions, and fine-tuning. The
experimental results revealed that: (i) no single prompt con-
sistently outperformed all others across different scenarios.
(if) Open-source LLMs showed comparable effectiveness
to hosted models. (iii) LLMs performed competitively with
deep learning-based matchers, even in zero-shot settings.(iv)
Few-shot and instruction-based prompts generally outper-
formed zero-shot approaches. (v) Fine-tuning significantly
improved effectiveness.

In another line of research, three distinct prompting
strategies were explored in [17]: (i) Match prompts, which
contain traditional pair-wise questions. E.g., “Do these two
records refer to the same real-world entity? Record 1: [de-
tails]. Record 2: [details]” (ii) Comparison prompts, which
ask for the most similar entity to a given reference. E.g.,
“Which of these two records is more consistent with the
given record? Given Record: [details]. (A) Record 1: [de-
tails]. (B) Record 2: [details]” (iii) Selection prompts, which
identify a matching entity from a set of candidates. E.g.,
“Select a record from the following list that refers to the
same real-world entity as the given record: Given Record:
[details]. Options: 1. [details] 2. [details] 3. [details]..”
The experimental results show that incorporating record
interactions through the comparison and selection prompts
significantly improves EM performance across various sce-
narios; among the two, the selection prompts are the top-
performers in most cases. However, they suffer from posi-
tion bias, because their accuracy decreases when the dupli-
cate record is placed lower in the list of candidates.

BatchER [18] aims to reduce the costs for hosted LLMs
through batch processing, exploring various methods for
question batching and demonstration selection. The exper-

SYSTEM:

"You are given two record descriptions and your task is to identify
a if the records refer to the same entity or not.

You must answer with just one word:

True. if the records are referring to the same entity,

False. if the records are referring to a different entity.

Example 1:
record 1: Panasonic 2-Line Integrated Telephone System - KXTS208W Panasonic 2-Line
Integrated Telephone System - KXTS208W/ 3-Way Conference/ One-Touch/Speed Dialer/
Speakerphone/ White Finish
record 2: Panasonic KX-TS208W Corded Phone 2 x Phone Line(s) - Headset - White
Answer: True.

(b)
Example 2:
record 1: Panasonic Corded Phone - KXTS3282B Panasonic Corded Phone - KXTS3282B/ 2
Phone Lines/ Call Waiting/ 50-Station Caller ID/ Speakerphone/ 3-Line LCD Display/ Black
Finish
record 2: Panasonic KX-TS208W Corded Phone 2 x Phone Line(s) - Headset - White
Answer: False."

Figure 2: (a) The basic zero-shot EM prompt, and (b) its few-shot
extension.

imental results demonstrate that batch prompting outper-
form match prompts in both effectiveness and cost, with
the top performance achieved by diversity-based question
batching combined with covering-based demonstration se-
lection.

These studies collectively demonstrate the potential of
LLMs in entity matching tasks, highlighting the importance
of prompt engineering, the competitiveness of open-source
models, and the effectiveness of batching strategies for im-
proved efficiency. This work builds upon and extends the
existing ones by focusing specifically on 7B parameter LLMs
with 4-bit quantization. Unlike previous studies that primar-
ily use larger, more resource-intensive models, our work
explores the potential of smaller and more accessible LLMs
for EM tasks. In this context, we perform a comprehen-
sive evaluation of various novel prompting strategies, in-
cluding zero-shot, few-shot, and general matching defini-
tion approaches, across multiple models and datasets. This
approach offers insights into the practical applicability of
LLMs in resource-constrained environments, bridging the
gap between advanced language models and real-world EM
challenges.

3. Problem Definition

Applied after Filtering, Entity Matching is typically formu-
lated as a binary classification problem [3, 4]. More formally:
Given two records r1 and r2, the task is to determine whether
they refer to the same entity. This is often expressed as a
function f(r1,72) — {0,1}, where 1 indicates a match
(also called duplicate) and 0 indicates a non-match.

In LLM-based settings, EM is framed as a natural language
inference task. The LLM is provided with descriptions of
two records and asked to determine if they refer to the same
entity, returning “True” for a match and “False” otherwise.

In all cases, EM performance is measured with respect to:

« Precision, ie., the proportion of correctly identified
matches out of all predicted matches.

«+ Recall, i.e., the proportion of correctly identified matches
out of all actual matches.

« F-measure, i.e., the harmonic mean of precision and recall,
providing a balanced measure of performance.

+ Run-time, i.e., the time taken to complete the ER process.

The first three measures are defined in [0, 1] with higher
values indicating higher effectiveness. For the last one, lower
values indicate higher time efficiency.



4. EM Prompts

We now present the EM prompts that are examined in our
work. The basic prompt is presented in Figure 2(a). It con-
sists of an instruction that describes the input and the de-
sired output. It lacks any examples, thus constitutes a zero-
shot EM prompt, which tests the model’s ability to generalize
to new tasks or domains it has not been trained on.

A concise few-shot EM prompt extends the zero-shot one
with the examples in Figure 2(b). To provide a balanced con-
text, there are two examples that include a pair of matching
entities and a pair of non-matching ones. These examples
serve as a form of weak supervision, allowing the LLM to
learn from the provided instances and generalize to simi-
lar cases. Note that the examples in Figure 2(b) have been
carefully selected from dataset D; (see Table 1) so that they
capture typical variations in product descriptions that are
encountered in the full dataset.

Note that LLM responses to few-shot prompts suffer from
position bias [17], because the order of examples in the EM
prompt might alter the matching decision. This means that
in the example of Figure 2(b), the response for a specific
candidate pair might be True (i.e., matching) if the posi-
tive example precedes the negative one and False (i.e., non-
matching) otherwise. For this reason, we define two types
of few-shot prompts:

1. TF, where the True example is followed by False one, as
in Figure 2(b).

2. FT, where the False example is followed by True one.

Note that with multiple examples per prompt, as in [17],
more arrangements are possible. In this work, though, we
exclusively consider the two variations of the few-shot EM
prompt that involves one example per match type.

To increase the robustness of LLMs to few-shot EM
prompts, we consider two matching approaches for each
candidate pair, query with both TF and FT prompts:

1. The union approach labels a candidate pair as True if
either the TF or FT prompt results in a True response.

2. The intersection approach labels a candidate pair as True
only if both the TF and FT prompts yield a True response.

4.1. Domain-specific Zero-Shot Prompts

The above prompts are generic enough to apply to any
domain. In our experimental analysis, we also consider
domain-specific ones, which are crafted for the product
matching task. More specifically, we devise a zero-shot
prompt that involves general matching definitions, provid-
ing the LLM with explicit guidance on how to determine if
two records refer to the same product.

The core assumption of this approach is that the records
are described by a clean, aligned schema. This is necessary
for building a schema-aware generic definition of dupli-
cate records. In the product matching task, we use four
key product attributes: (i) product name, (ii) features, (iii)
manufacturer, and (iv) model number. We use them in two
different configurations:

1. The composite domain-specific EM prompt concatenates
all four criteria in the above sequence, as in Figure 3. The
goal is to facilitate more nuanced matching decisions.

SYSTEM:
"You are given two record descriptions and your task is to identify
if the records refer to the same entity or not.

General Matching Definition:

1. Product Name: Check if the product names mentioned in both records are identical or
very similar, allowing for minor differences in spelling, punctuation, or formatting.

2. Features: Check if the features listed for both products are identical or very similar.
This can include things like size, color, weight, capacity, performance specifications, and
any special features or functions.

3. Manufacturer: Check if the manufacturers mentioned in both records are identical.
This is important because different manufacturers may produce products with the same or
similar names and features.

4. Model Number: Check if the model numbers mentioned in both records are identical.
This is often the most reliable way to determine if two records refer to the same product.

You must answer with just one word:

True. if the records are referring to the same entity,

False. if the records are referring to a different entity."

Figure 3: Domain-specific, zero-shot EM prompt for product
matching.

2. The atomic domain-specific EM prompt uses only the
model number as the matching criterion. We selected
this attribute because it provides the cleanest and most
distinctive values.

These two configurations were chosen after preliminary
tests that suggested that they yield the best performance
among all other combinations of these four attributes.

5. Experimental Analysis

Experimental Settings. All experiments were imple-
mented in Python v3.12.0 and Ollama' v0.1.22. All experi-
ments were carried out on a server running Ubuntu 22.04.1
LTS, equipped with Intel Core i7-9700K 8 core @ 3.6 GHz,
32GB RAM and NVIDIA GeForce GTX 1080 Ti 11GB.

Due to the limited size of the available VRAM, our study
focuses on 7-billion-parameter LLMs with optimizations
such as quantization, which in our case replaces the 32-
bit floating-point model weights with 4-bit integers. This
reduces the model size, while maintaining reasonable perfor-
mance levels. In other words, quantization lowers effective-
ness, due to the fewer parameters and the lower precision of
the model’s weights, but significantly reduces run-times and
memory consumption. Therefore, our experimental results
are useful for resource-constrained applications, which run
LLMs on commodity hardware.

LLMs. There is a plethora of open-source LLMs, with
newer models introduced on a rather frequent basis. During
our study, two models were quite popular: Llama 2 [19],
with 7B parameters and a context length of 4096, as well
as Mistal [20], with 7.3B parameters. However, preliminary
experiments demonstrated that both of them were inap-
propriate for the EM tasks considered in this work. Llama
2 consistently responded with “True” for every candidate
pair, while Mistral failed to provide a response according to
given instructions — it indicated an inability to respond in
certain cases or gave explanations for its decisions instead
of a “True” or “False” label.

In their place, we considered the following open-source
models, which demonstrated high effectiveness in our pre-
liminary experiments:

1. Orca2 [21]. Built by Microsoft Research, Orca2 is a fam-
ily of models fine-tuned on Meta’s Llama 2 using syn-
thetic data.

2. OpenHermes’. This is a Mistral 7B model fine-tuned with
fully open datasets, showcasing strong multi-turn chat

!https://ollama.com
Zhttps://huggingface.co/teknium/OpenHermes-2.5- Mistral-7B
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| Dataset #Entities  Duplicates  Cartesian Product  #Attributes  Candidate Pairs  Bl.Recall ~ Bl.Precision
Dy 1,076-1,076 1,076 1.16x10° 3 4,345 0.924 0.229
Do 2,554-22,074 853 5.64x107 6 5,163 0.910 0.150
Table 1

Technical characteristics of the datasets used in the experimental analysis.
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Figure 4: Effectiveness of the zero-shot prompt in Figure 2(a) on top of the selected LLMs over D; (left) and D3 (right).

skills and system prompt capabilities. It surpasses all
previous versions of Nous-Hermes 13B and below.

3. Zephyr [22]. A 7B parameter model fine-tuned on Mis-
tral, it achieves results similar to Llama 2 70B Chat in
various benchmarks. It is trained on a distilled dataset,
improving grammar and chat results.

4. Mistral-OpenOrea’. This is a 7B parameter model, fine-
tuned on top of Mistral 7B using the OpenOrca dataset.

5. Stable-Beluga'. This is a Llama 2 based model fine-tuned
on an Orca-style dataset.

6. Llama-Pro [23]: An 8B parameter expansion of Llama 2
that specializes in integrating both general language un-
derstanding and domain-specific knowledge, particularly
in programming and mathematics.

In all cases, we use the default latest model with 4-bit quan-
tization and 7B parameters.

Datasets. We used two real-world datasets with products
that are widely used in the ER literature: (i) D; is the Abt-
Buy dataset, which comprises product listings from two
online retailers, Abt Electronics and Buy.com. (ii) D3 is the
Walmart-Amazon dataset, which contains product listings
from two other online retailers, Walmart and Amazon. D,
primarily focuses on electronic products, while D5 covers a
broader range of product categories, matching diverse entity
types. Both datasets present important challenges, such
variations in product names and descriptions across retailers,
inconsistent use of model numbers and other identifiers,
differences in the level of detail provided for each product,
variations in formatting and units (e.g., dimensions, weights)
as well as missing or null values in certain fields.

Their technical characteristics are summarized in Table
1. Note that each dataset comprises two individually clean
data sources, whose sizes are reported in column #Enti-
ties. Note also that we apply the prompts to the candidate
pairs generated by a state-of-the-art blocking implemented

*https://huggingface.co/Open-Orca/Mistral-7B-OpenOrca
*https://huggingface.co/stabilityai/StableBeluga2

by PyJedAlI [24] , version 0.1.6. Following [25], we kKNN-
Join, which identifies the k£ nearest neighbors of each en-
tity. We fine-tuned it, maximizing blocking precision for a
blocking recall of at least 90%, as reported in the rightmost
columns of Table 1. This configuration uses cleaning (i.e.,
stop-word removal and stemming) and cosine similarity in
both datasets. For Abt-Buy, k was set to 4, while the at-
tribute values were converted into a multiset of character
trigrams. For Walmart-Amazon, k was set to 2, while the
attribute values were converted into a multiset of character
four-grams.

5.1. Zero-Shot Prompting Results

We now examine the relative performance of the selected
LLMs over Dy and D3, when coupled with the basic zero-
shot EM prompt of Figure 2(a).

We observe that Orca2, OpenHermes, and Zephyr con-
sistently rank as the top three models with respect to F-
Measure in both datasets. The last two models switch
their ranking positions in the two datasets, whereas Orca2
maintains the lead. The superior performance of Orca2,
which demonstrates Orca2’s robustness under diverse EM
settings, can be attributed to its fine-tuning on synthetic
data designed for reasoning tasks. This enhances its capa-
bility to understand and compare complex product descrip-
tions. OpenHermes is fine-tuned on fully open datasets with
strong multi-turn chat skills, leveraging advanced language
understanding to perform well. Zephyr’s competitive per-
formance probably results from its training on a distilled
dataset that improves grammar and chat results, aiding in
better interpretation of entity attributes. The lower perfor-
mance of Mistral-OpenOrca, Stable-Beluga, and Llama-Pro
is probably due to the less specialized training data or the
smaller model capacities for the specific nuances of EM.

Note that all models exhibit much higher recall than pre-
cision in both datasets. This means that they are prone to
label a candidate pair as matching, at the cost of introducing
numerous false positives. Orca2 consistently exhibits the
highest precision, thus yielding the highest F-Measure, too.

Note also that all models exhibit markedly lower effective-
ness in Dy compared to D;. This suggests that Dy presents
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Figure 5: Effectiveness of the few-shot prompts in Figure 2(b) on top of selected LLMs over D; (left) and D2 (right). From top
to bottom, the TF promps are presented first, followed by the FT prompts, the Union and the Intersection approaches.

greater EM challenges, potentially due to more diverse or
complex product descriptions. While D; is restricted to
electronics, D2 covers a broader range of products and in-
cludes more variation in descriptions, attributes, and data
quality, rendering EM more difficult. Furthermore, D; has
a 1:1 matching between its two data sources, whereas Ds
has a much lower ratio of matches, adding another layer of
complexity to the task. The substantial performance gap
between D, and D5 underscores the significant impact of
data characteristics on model effectiveness.

5.2. Few-Shot Prompting Results

We now examine the performance of the aforementioned
few-shot prompts over D; and D>. We disregard Mistral-
OpenOreca, Stable-Beluga, and Llama-Pro, because they ex-
hibited significantly lower effectiveness and less consistent
performance in the zero-shot experiments — preliminary
experiments verified their poor performance in few-shot
settings, too. For brevity, we focus on the top three perform-
ing models, namely Orca2, OpenHermes, and Zephyr.

The results are reported in Figure 5. Based on preliminary
experiments, we randomly select the examples included in
the few-shot prompts from the candidate pairs of the same
dataset. The same examples are used in all prompts issued
on a particular dataset.

In both datasets, we observe the same patterns as regards
the relative performance of TF and FT few-shot prompts:
For Orca2, there is a substantial improvement when using
the latter; OpenHermes is more robust to position bias, as
there is no significant difference between the two prompt
strategies; Zephyr works best when coupled with the TF
few-shot prompts. These patterns highlight that the impact
of position bias on each model is consistent across the two
datasets. Note also that with the exception of Orca2 with
TF prompts, all models achieve higher recall than precision,
remaining more prone to label a candidate pair as matching.

It is also interesting to compare the union approach with
the intersection one. For OpenHermes and Zephyr, the lat-
ter yields significantly higher F-Measure: by considering
as duplicates only the candidate pairs that are marked as
matching by both TF and FT few-shot prompts, the reduc-
tion in recall is much lower than the increase in precision
(as a result, recall remains much higher than precision for
both models). This means that considering only the com-
mon matches of TF and FT prompts leads to more accurate
performance. Note that these patterns are consistent for
both models over both datasets.

This is not the case with Orca2, whose performance varies
significantly across the two datasets. In D1, the same F1
score is achieved for both approaches, because the intersec-
tion raises recall by 12%, while reducing precision to the
same degree. In Do, though, the intersection reduces recall
by 23% and increases precision by 16%, thus yielding a much
lower F-Measure. Note that in both datasets, the recall of
the model gets lower than its precision in combination with
the intersection approach, unlike the union one.

Overall, we can conclude that Orca2 works best when
coupled with FT few-shot prompts, while OpenHermes and
Zephyr maximize their effectiveness when intersecting the
matches of TF and FT prompts. Among them, the top per-
formers over Dy and D5 are Orca2 (F1=0.799) and Zephyr
(F1=0.531), respectively.

5.3. Domain-specific Zero-Shot Prompting
Results

In this section, we compare the atomic domain-specific
prompt with the composite one. As in Section 5.2, we ex-
clusively consider the three top performing models with
respect to the zero-shot prompts: Orca2, OpenHermes, and
Zephyr. Their performance is reported in Figure 6.

We observe that in all cases, the atomic prompt outper-
forms the composite one to a significant extent — the only
exception corresponds to Zephyr in D1, where the compos-
ite prompt increases F-Measure almost by 15%. This pattern
should be attributed to the short, distinctive and clean val-
ues provided by the model number. This way, it reduces
the noise from other product attributes like product name,
which are typically associated with long and diverse texts.

Similar to the above strategies, all LLMs exhibit much
higher recall than precision. This means that they remain
prone to mark a candidate pair as a match at the cost of
introducing false positives — a behavior that permeates all
prompt strategies we have examined.

Among the three models, Orca2 is consistently better,
albeit to a minor extent in Dy. This consistent performance
underscores Orca2’s effectiveness in EM tasks under quite
different prompt designs.

We can conclude that domain-specific zero-shot prompts
offer an effective and reliable alternative in datasets with a
clean schema of known characteristics.
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Figure 6: Effectiveness of the atomic and composite domain-specific zero-shot prompts in Figure 2(a) on top of the selected
LLMs over Dy (left) and Da (right).

Table 2

Prompt Strategy D D2
Precision  Recall ~F-Measure  Run-time Precision  Recall =~ F-Measure  Run-time
Zero-shot 0.664 0.956 0.784 32 min 0.397 0.740 0.517 23 min
FT Few-shot 0.768 0.834 0.799 41 min 0.420 0.515 0.463 33 min
Atomic Domain-specific 0.689 0.934 0.793 33 min 0.434 0.708 0.538 25 min
(a) Orca2
Zero-shot 0.584 0.963 0.727 31 min 0.309 0.864 0.455 23 min
Intersection Few-shot 0.683 0.718 0.700 40 min 0.378 0.585 0.459 33 min
Atomic Domain-specific 0.556 0.969 0.707 33 min 0.306 0.876 0.453 25 min
(b) OpenHermes
Zero-shot 0.572 0.965 0.718 32 min 0.329 0.942 0.488 24 min
Intersection Few-shot 0.667 0.877 0.757 43 min 0.408 0.761 0.531 34 min
Composite Domain-specific 0.573 0.960 0.718 39 min 0.372 0.913 0.529 30 min
(c) Zephyr

Best performance per LLM in combination with the top performing variant per prompt strategy across both datasets.

5.4. Comparison of Prompting Strategies [ _Method || D1 Source [| D2 Source |
ZeroER 0.520 [26] 0.644 [27]

We now compare the three top-performing models (Orca2, Magellan 0.436 [28] 0.719 [28]

OpenHermes, and Zephyr) with respect to effectiveness and DeepMatcher || 0.628 [28] 0.669 [28]

time efficiency across the three strategies of EM prompts
discussed in Section 4. Note that among the few-shot and
domain-specific variants, for each LLM we only consider
the one with the highest F-Measure in both datasets. Their
performance is reported in Table 2.

For Orca2, we observe that the FT few-shot prompts are
the top performers in D1. The atomic domain-specific ones
follow in very close distance in terms of F-Measure, while
exhibiting a much lower run-time. This means that the
domain-specific prompts offer a significantly better balance
between effectiveness and time efficiency. In D5, this strat-
egy scores the highest F-Measure for a slightly higher run-
time than the second best approach (zero-shot prompts).
For these reasons, Orca2 works best in combination with
the atomic domain-specific prompts.

Regarding OpenHermes, the differences between the
three types of prompts are minor in terms of F-Measure.
As expected, the fastest approach in both datasets corre-
sponds to the zero-shot prompts. This configuration also
achieves the highest F-Measure in D1, while in Da, it ranks
second, within a negligible distance from the top (<0.5%).
Therefore, we can conclude that the zero-shot prompts are
the best choice for OpenHermes.

For Zephyr, there is a clear winner in the case of D;: the
intersection of few-shot prompts. It exhibits, though, the
highest run-time by a large extent. This is expected, as it
queries the LLM twice per candidate pair. In the case of Da,
the same strategy takes a minor lead over the composite

Table 3
The F-Measure per dataset reported in the literature for three
state-of-the-art EM algorithms.

domain-specific prompts, which are faster by more than
10%. Due to its consistency, the best choice for Zephyr cor-
responds to the intersection of TF and FT few-shot prompts.

Among the three 7B LLMs, the configuration consistently
achieving (almost) the highest effectiveness in both datasets
is Orca2 coupled with atomic domain-specific prompts. Its
efficiency is also rather high, given that its run-time is
marginally higher than that of the fastest (zero-shot) con-
figuration of the other two models.

5.5. Comparison to Baselines

To put the performance of the selected 7B LLMs into per-
spective, we compare it with three state-of-the-art EM ap-
proaches from the literature:

1. ZeroER [26], an unsupervised approach that requires
no labelled datasets, learning Gaussian mixture mod-
els for matching and non-matching candidate pairs.

2. Magellan [29], a supervised approach combining bi-
nary classifiers with a series of hand-crafted features
based on string similarity measures.



3. DeepMatcher [28], a framework leveraging the syn-
ergy between language models and Deep Learning
classification.

For each method, we consider its best performance as re-
ported in the literature. The results are reported in Table 1.

We observe mixed patterns. In Dy, all LLM configura-
tions in Table 2, even the zero-shot prompts, outperform
all three baseline methods to a significant extent (> 21%).
This is remarkable, because the simplest prompt strategy
requires neither domain expertise nor the labeling candi-
date pairs, unlike Magellan and DeepMatcher, whose per-
formance is derived from large training and validation sets,
which amount to 60% and 20% of all candidate pairs, resp.

The situation is reversed in Do, where all baseline meth-
ods achieve a much better performance. In fact, the highest
F-measure of Orca2 is lower by 16.5% than the worst baseline
(ZeroER). This should be attributed to the more challenging
settings of Do, which have already been discussed in Sec-
tion 5.1. Note also that the records in D> are noisier, with
a much higher portion of missing values. Its records are
also longer, an aspect that is crucial for the 7B LLMs we are
considering in this study, due to their limited attention win-
dow. These settings favor the learning-based functionality
of the baseline methods, which take a clear lead over the
learning-free functionality of 7B LLMs. Another reason for
the poor performance of the latter is that they emphasize
recall at the expense of precision, significantly decreasing
their F-Measure in Do, due the very low portion of matches
in comparison to the total number of entities from each data
source. Therefore, more advanced strategies are required
for boosting the performance of 7B LLMs in datasets with
characteristics similar to that of Ds.

6. Conclusions & Future Work

Focusing on 7B open-source LLMs, we examined the per-
formance of three main prompt strategies: (i) the basic,
domain-agnostic zero-shot prompt, (ii) the few-shot prompt
with one example per type of matches, and (iii) the domain-
specific zero-shot prompt. We considered several variants
for the last two strategies and applied all of them on two es-
tablished benchmark datasets for product matching. Testing
six popular LLMs, we reached the following conclusions:

« Few-shot and domain-specific prompting significantly
improve the performance of the zero-shot approaches,
highlighting the value of task-specific prompts.

« In few-shot prompts, the response of LLMs is generally
sensitive to order of examples. This suggests that a careful
prompt engineering is crucial for optimal performance in
real-world ER applications.

« This sensitivity can be addressed by the intersection
approach to few-shot prompting, which consistently
achieves much better results, increasing precision at a
higher rate than it reduces recall.

+ Orca2 consistently outperformed the other LLMs across
most prompting strategies and datasets, demonstrating
high robustness and effectiveness. In fact, the relative
performance of the best models (Orca2 > OpenHermes >
Zephyr) remained largely consistent across prompt strate-
gies and datasets, suggesting inherent strengths in their
base architectures.

« The use of 4-bit quantization and 7B parameter models
demonstrated the potential for effective EM with limited
computational resources. The effectiveness of the con-
sidered models is competitive with established, learning-
based EM approaches, especially in datasets with low
portion of missing values and short entity descriptions.

In the future, we plan to explore LLMs’ capability in
matching entities across different languages and to enhance
the interpretability and explainability of LLM decisions.
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