
Optimizing Big Active Data Management Systems⋆

Shahrzad Haji Amin Shirazi1, Xikui Wang2, Michael J. Carey2 and Vassilis J. Tsotras1

1University of California, Riverside
2University of California, Irvine

Abstract
Within the dynamic world of Big Data, traditional systems typically operate in a passive mode, processing and responding to user
queries by returning the requested data. However, this methodology falls short of meeting the evolving demands of users who not only
wish to analyze data but also to receive proactive updates on topics of interest. To bridge this gap, Big Active Data (BAD) frameworks
have been proposed to support extensive data subscriptions and analytics for millions of subscribers. As data volumes and the number
of interested users continue to increase, it is imperative to optimize BAD systems for enhanced scalability, performance, and efficiency.
To this end, this paper introduces three main optimizations, namely: strategic aggregation, intelligent modifications to the query plan,
and early result filtering, all aimed at reinforcing a BAD platform’s capability to actively manage and efficiently process soaring rates of
incoming data and distribute notifications to larger numbers of subscribers.

Keywords
big active data, scalable query processing, aggregation, optimization

1. Introduction
In today’s fast-paced digital world, we are inundated with a
tremendous amount of data every second. Managing and
analyzing this ocean of data, widely known as Big Data,
presents formidable challenges and numerous systems have
been developed for addressing them. However, the majority
of these systems operate in a passive mode, merely process-
ing and returning data in response to user queries. This pas-
sive approach often falls short for users who not only want
to analyze data but also actively receive updates on new
data items that interest them, explore their relationships
with other data, and even enrich themwith additional infor-
mation existing in different datasets. These demands have
led to the creation of Big Active Data (BAD) frameworks
[1, 2, 3] that aim to support extensive data subscriptions
and analytics for millions of subscribers.
The BAD framework is designed to address several es-

sential needs: (i) It ensures that data is not examined in
isolation but rather in the context of related information,
enhancing its overall significance. (ii) It enables data en-
richment by enhancing newly arriving data with data from
existing datasets, allowing for responses that enable person-
alized and actionable insights. (iii) It supports both real-time
processing and retrospective Big Data analytics, facilitating
deeper exploration and long-term analysis of stored data. By
integrating these capabilities, a BAD framework eliminates
the inefficiencies of cobbling together multiple independent
systems (each dealing with a part of the needed processing,
i.e., accessing Big Data, managing incoming streaming data,
matching subscribers to information, etc). As we confront
the relentless expansion of data volumes and the burgeon-
ing number of users interested in this data, the challenge to
manage ever-larger datasets becomes increasingly acute.

This work focuses on optimizing a BAD platform to bet-
ter handle soaring rates of incoming data and a growing

DOLAP 2025: 27th International Workshop on Design, Optimization, Lan-
guages and Analytical Processing of Big Data, co-located with EDBT/ICDT
2025, March 25, 2025, Barcelona, Spain
⋆
You can use this document as the template for preparing your publica-
tion. We recommend using the latest version of the ceurart style.
Envelope-Open Shaji013@ucr.edu (S. H. A. Shirazi); xikuiw@uci.edu (X. Wang);
mjcarey@ics.uci.edu (M. J. Carey); tsotras@cs.ucr.edu (V. J. Tsotras)
Orcid 0009-0005-9259-4997 (S. H. A. Shirazi); 0000-0002-8540-3436
(X. Wang); 0000-0003-1561-4059 (M. J. Carey); 0000-0001-5462-9451
(V. J. Tsotras)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

roster of subscriptions. By deploying a suite of optimiza-
tion techniques including strategic aggregation, intelligent
modifications to the query plan, and early result filtering we
have enhanced the BAD framework to its most optimized
form yet. These improvements not only streamline data
processing without adding more resources, but also signif-
icantly broaden the system’s ability to serve a larger and
more diverse subscriber base, marking a significant stride
forward in the ongoing quest to activate Big Data.

2. Related Work
Tapestry [4] first introduced Continuous Queries as queries
that are issued once and then return results continuously
as they become available. Tapestry also defined continuous
query semantics and created rewrite rules for transforming
user-provided queries into incremental database queries.
Subsequent research has primarily concentrated on queries
involving streaming data. NiagaraCQ [5] enhanced the
scalability and efficiency of continuous queries by break-
ing them down into smaller, manageable components and
clustering similar queries based on their expression signa-
tures. It organized signature constants in a specialized table
and used joins to process similar queries as a group. Fur-
thermore, to enhance computational efficiency, the system
employed delta files that allow for incremental updates and
evaluations of the data. STREAM represents a research
prototype that was designed to handle continuous queries
across both data streams and persistent storage [6]. It pro-
vided a Continuous Query Language (CQL) for constructing
continuous queries against streams and updatable relations
[7]. Most continuous query projects have struggled with
scalability, making them less suitable for Big Data use cases,
as they often fail to scale effectively in such environments.
Streaming engines can be used for data processing and

data customizing pipelines and to provide real-time analyt-
ics. Apache Kafka [8, 9], Apache NiFi [10], Apache Flink
[11], and Amazon Kinesis [12] are prominent platforms
designed to handle and process large-scale, real-time data
streams. Similarly, Azure Stream Analytics [13] and Google
Cloud Dataflow [14] are specialized for stream processing
and real-time analytics. These systems are optimized for
high-throughput and low-latency processing, enabling them
to handle vast amounts of data generated in real-time. How-
ever, they are not inherently equipped to provide long-term
data storage solutions. Instead, these systems typically re-

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:Shaji013@ucr.edu
mailto:xikuiw@uci.edu
mailto:mjcarey@ics.uci.edu
mailto:tsotras@cs.ucr.edu
https://orcid.org/0009-0005-9259-4997
https://orcid.org/0000-0002-8540-3436
https://orcid.org/0000-0003-1561-4059
https://orcid.org/0000-0001-5462-9451
https://creativecommons.org/licenses/by/4.0/deed.en

quire integration with external storage solutions to persist
processed data for later use or analysis. This “glued-systems”
approach has been shown to have performance disadvan-
tages in [3].
Traditional publication/subscription (pub/sub) systems

[15, 16, 17, 18, 19, 20] allow subscribers to register their in-
terests in events and to be asynchronously notified about
events from publishers. Although pub/sub services can
handle a large number of subscribers, users often have to
integrate such services with other systems for data process-
ing, and complex computations across multiple data sources
are not supported.
The systems mentioned above generally face challenges

in scaling, persisting data, or handling complex subscrip-
tion queries, which then requires integrating them with
additional systems for effective data processing. The BAD
platform, summarized in the next section, was designed
and built to address these constraints. In this current work,
we focus on further optimizing BAD. One of the key steps
involves creating the BAD index, an idea that is conceptu-
ally similar to partial indexing [21]; it focuses on indexing
only the most frequently accessed or queried segments of
a dataset, yet is distinct from partial indexing in its imple-
mentation as explained in Section 4.3.

3. BAD Preliminaries
The BAD platform can enable millions of users to subscribe
to data of interest and receive updates continuously. It is
different than continuous queries, streaming engines and
pub/sub systems as it also supports Big Data analytics with
a declarative language, SQL++ (a SQL-inspired query lan-
guage for semi-structured data [22, 23]).
An overview of the BAD platform is shown in Figure

1. BAD has five basic blocks [24]: (i) Data Feeds, which
manage the ingestion of rapidly arriving data; (ii) Persistent
Storage, responsible for storing the data; and an (iii) Analyti-
cal Engine, which enables analytic queries on the stored and
incoming data to reveal useful information. Additionally,
BAD includes (iv) Data Channels and (v) Brokers, which are
important for this paper and are described in detail later in
this section using an example application.

Figure 1: An overview of the BAD platform.

There are 3 different types of users for the BAD system;
Subscribers who subscribe to channels so they can get the
data of interest, Developers who create the BAD channels,
and Analysts who run queries on the data stored in the
system.

For this work we obtained a copy of the BAD open source
platform and have extended it further. The existing imple-
mentation of the BAD platform [2, 25, 3] was built as an ex-
tension of Apache AsterixDB [26], a Big Data Management
System (BDMS) that provides distributed data management
for large-scale, semi-structured data.

In AsterixDB, data is stored by creating a Datatype, which
describes known aspects of the data being stored, and then
a Dataset, which is a collection of records with a given
datatype. As an example, Figure 2 shows the DDLs that cre-
ate an open datatype named "EnrichedTweet" and a dataset
named "EnrichedTweets" based on that type. As the name
implies, this dataset includes enriched tweets that are de-
rived from original tweets [27, 28, 29], augmented with
additional fields that contain specific information extrap-
olated from the text of the tweets (like threatening_rate,
weapon_mentioned etc.) The keyword “ACTIVE” used in
the DDL for creating the dataset EnrichedTweets enables
continuous query semantics.

CREATE TYPE EnrichedTweet AS {
tid:int,
text:string,
retweet_count:int,
threatening_rate:int,
hate_speech_rate:int,
retweeted_status:string,
weapon_mentioned:boolean,
drug_activity:string,
about_country:string,
state:string,
location:point,
additional_info:string};
CREATE ACTIVE DATASET
EnrichedTweets(EnrichedTweet) PRIMARY KEY tid;

Figure 2: DDLs for creating a Datatype and its Dataset.

3.1. A BAD Application Example
Tweets can offer valuable insights into public opinions and
behaviors, with many people relying on them to stay in-
formed about important topics. However, given the volume
and velocity of tweets generated every second, it can be
very challenging to extract useful information from them.
Therefore, providing a way for users to focus on tweets that
are specifically relevant to their interests is highly beneficial.
People may be particularly interested in tweets related to
specific topics such as sports, politics, or various types of
crime. The BAD platform addresses this need by creating
channels that users can subscribe to, delivering relevant
data based on their preferences, and leveraging a broker
network to ensure that tweets are delivered to subscribers
in real time. This system enables different applications to
effectively manage the vast flow of information, allowing
users to focus on the content that matters most to them.

3.2. Brokers
To facilitate the distribution of results to millions of sub-
scribers, the BAD platform integrates a broker sub-system
to handle both subscription communication and result de-
livery [2]. Brokers can range from individual servers ded-
icated to relaying custom data to subscribers, to complex
networks offering features like load balancing, subscription
handover, and varied caching methods. Different brokers
can be registered as HTTP endpoints in the BAD platform,
and subscribing end users have the flexibility to select a
broker that aligns with their specific requirements. Once
results are prepared for subscribers, the BAD platform ef-
ficiently dispatches the relevant updates to all subscribed
individuals (end users) through the designated brokers.

3.3. Data Channels
The BAD platform user model exploits the shared structure
among subscriptions and offers it as a service, namely as a
data channel. Data channels allow developers to activate
parameterized queries as services for users to subscribe to

and continuously receive their data of interest. In practice,
the need for similar information among users would likely
result in the creation of comparable queries.
Consider a scenario where users might want the sys-

tem to “send them threatening tweets that relate to the US,
are widely retweeted, and the sender’s location is close to
their location”. The TweetsAboutCrime channel, depicted
in Figure 3, allows its subscribers to receive nearby en-
riched tweets that concern the United States, possess a
retweet_count greater than 10,000, and have a threaten-
ing_rate exceeding 5 (on a scale of 0 to 10). The term PE-
RIOD refers to how often the channel is executed, which
will be described later. To ensure that channels only process
and deliver newly incoming tweets between executions, the
is_new function is employed in the channel definition to
exclude already processed tweets and thus implement con-
tinuous query semantics. The channel’s parameters, such
as MyUserName in the TweetsAboutCrime channel, allow
the system to personalize results for each subscriber. Users
can subscribe to channels of interest by providing param-
eters through DDL commands, as demonstrated in Figure
4. In this example, the user selects “user123” as the parame-
ter. The system retrieves the subscriber’s location from the
UserLocations dataset by matching the username and will
provide results for the user based on their location.

BAD data channels provide twomodes for delivering data:
push and pull. In push mode, the data of interest is pushed
to brokers directly. In pull mode, the broker receives a no-
tification from the channel whenever new data of interest
becomes available for its subscribers; the subscribers can
then request (pull) their data at any time. However, since
many applications prefer immediate access to complete in-
formation rather than making requests to retrieve results,
this paper focuses exclusively on push channels. In this
approach, the broker receives data as soon as it is produced
after each channel execution and immediately disseminates
(pushes) it to subscribers. We defer the exploration of opti-
mizing pull channels to future work.

Considering the need to promptly inform subscribers, the
update interval for the TweetsAboutCrime channel (“period”
in Figure 3) has been set to every 10 minutes. Upon channel
creation, a dataset named TweetsAboutCrimeSubscriptions

is created for storing subscriptions. Each subscription is
identified by a unique ID with an associated broker and sub-
scription parameters. Every 10 minutes, a recurring query,
as shown in Figure 5, generates channel results and matches
them with the relevant subscriptions for distribution via
brokers. The broker information is stored in the Broker

metadata dataset. If results are not ready to be delivered to
the broker before the deadline, the channel is halted.

// Users can subscribe to the channel using
// their usernames to get the threatening tweets
// posted near their location.
CREATE CONTINUOUS PUSH CHANNEL
TweetsAboutCrime(MyUserName)
PERIOD duration ("PT10M") {
SELECT t.text
FROM EnrichedTweets t, UserLocations u
WHERE spatial_distance(u.location,t.location)<10

AND u.username=MyUserName AND is_new(t)
AND t.about_country="US"
AND t.retweet_count>10000
AND t.threatening_rate>5 };

Figure 3: DDL for the TweetsAboutCrime channel.

4. Optimizing BAD
To address the challenges posed by escalating data volumes
and a rising count of subscriptions, it is imperative to im-
plement optimization strategies for the channels within the
BAD platform. These optimizations are crucial for ensuring
that the system can manage data effectively, accommodate
all subscriber requests promptly, expedite query processing,
and consistently meet designated delivery deadlines as its
users and data scale. When examining the processing per-
formed by the original implementation of the BAD platform,
we discovered three patterns which offer opportunities for
optimization. In particular, (1) Duplicate Processing: the
original BAD platform processes results for subscriptions
that ask for parameters that are identical as if they were dis-
tinct subscriptions, resulting in redundant computations. (2)
Overprocessing: subscription queries are executed on the
entire dataset that has accumulated since the last execution,
even when new records do not match existing subscriptions,
leading to superfluous processing. (3) Late Data Filtering:
in the origial BAD platform, although the query and all
predicates of a channel are defined during channel creation,
which occurs prior to any channel execution, the system
postpones processing and identifying the relevant data until
execution time. For each of these cases, below we discuss
the proposed solutions and their benefits, which are then
showcased in the experimental section. More details about
the proposed optimizations are available in [30].
SUBSCRIBE TO
TweetsAboutCrime("user123") ON BrokerA;

Figure 4: DDL for subscribing to the channel
TweetsAboutCrime.

SELECT result, current_datetime()
as deliveryTime, sub.subscriptionId as sId

FROM Metadata.`Broker` b,
TweetsAboutCrimeSubscriptions sub,
TweetsAboutCrime(sub.param0) result

WHERE result.BrokerName=b.BrokerName;

Figure 5: The query running under the hood for the channel
TweetsAboutCrime.

4.1. Duplicate Processing: Aggregating
Subscriptions

In systems designed to serve a large user base, multiple users
often create similar queries, leading to redundant processing
when retrieving results separately for each user. The BAD
platform introduced data channels to group common user
query patterns into a single parameterized query, allow-
ing users to select their own parameters. However, further
analysis has revealed additional areas where we can go a
step further by implementing even more efficient sharing
mechanisms. For instance, in use cases where users sub-
scribe to specific content categories like trending topics or
news alerts, the limited number of categories can result in
numerous subscriptions requesting the same data, differenti-
ated only by subscription IDs. This redundancy can burden
the system with multiple subscriptions that, upon closer
inspection, are requesting the same information. A similar
issue is observed in the BAD platform. For example, in the
TweetsAboutDrugs channel, shown in Figure 6, subscribers
must specify their state. Since there are only a finite number
of U.S. states, this setup often results in multiple records for
the same state, with the only variation being the users IDs.
To avoid the inefficiencies associated with storing duplicate
records, we propose grouping subscriptions based on their
parameters and associated brokers. As a result, we create

subscription-group records that maintain the group’s pa-
rameter and broker name, along with an array that includes
all subscription IDs requesting the respective parameter and
broker. Since groups may vary in size, these records are of
variable length.

Figure 7 illustrates the transformed subscription dataset
for the new optimized system. To minimize additional over-
head when grouping subscriptions, the groups are created,
and subscriptions are assigned to the appropriate group
as they enter the system. The ID of each new incoming
subscription is either allocated to a pre-existing group, or
it initiates a new subscription-group if its parameter and
broker combination is not yet represented.
Although grouping many subscriptions into a single

record may seem practical, it introduces certain system
challenges, which are discussed below along with potential
solutions. Note that subscription aggregation can be applied
in various domains where multiple users share common in-
terests or query parameters. For instance, in a financial mon-
itoring system, users may subscribe to get updates about
stock market trends based on specific conditions such as
price movements, trading volume, or company performance
metrics. Grouping these subscriptions by similar thresholds
or parameters allows the system to handle multiple users
with similar interests more efficiently, reducing duplicate
processing. Similarly, in a content recommendation system,
users may subscribe to updates about certain genres, au-
thors, or topics. Aggregating these subscriptions based on
similar preferences ensures more efficient content delivery
and query execution.

CREATE CONTINUOUS PUSH CHANNEL
TweetsAboutDrugs(Mystate) PERIOD duration ("PT10M") {
SELECT t.text
FROM EnrichedTweets t
WHERE t.state=Mystate AND is_new(t)

AND t.threatening_rate=10
AND t.drug_activity="Manufacturing Drugs" };

Figure 6: DDL for the TweetsAboutDrugs channel.

4.1.1. Parallelism in AsterixDB
In all scalable database management systems, when data
is overly aggregated, the ability to leverage the system’s
parallel architecture can be compromised, as fewer tasks
can be distributed simultaneously, leading to potential bot-
tlenecks and decreased performance efficiency. AsterixDB
faces similar challenges. To delve deeper into the opera-
tional mechanics, we first note that the unit of data which
is consumed and produced by different tasks in AsterixDB
is called a frame. It is a fixed-size chunk of contiguous bytes
which always contains complete records, ensuring that a
record is not split across multiple frames. An operator that
produces data packs a frame with a sequence of complete
records and sends it to the consumer operator who then
interprets the records.
Overall, the frame size in AsterixDB is selected to bal-

ance memory efficiency, data movement, and task execution
performance within the system. The optimal frame size
is typically chosen based on the characteristics of the data
being processed, the available memory resources, and the
specific requirements of the workload. Larger frame sizes
are often preferred for workloads involving complex data
processing or large records, as they can reduce the number
of I/O operations and enhance network efficiency. However,
this choice must be carefully managed to avoid memory con-
tention or excessive garbage collection, which can degrade
system performance.

After fixing the frame size, if a record is larger in size than
the standard frame size, the particular frame is enlarged to
include this record; as a result, there may be frames that
are longer than the fixed size. Consolidating many sub-
scriptions into a single, large record affects the distribution
of processing tasks across different operators. Let f de-
note the fixed frame size in bytes and s_i the record size
in bytes of subscription-group i . If the group consolidates
many subscriptions and s_i surpasses f, we must expand
the frame size to fully encompass the subscription-group
since a record cannot be fragmented across frames. This
may lead to fewer but larger frames and potentially reduce
parallelism. In this case dividing subscription-group i into
smaller subgroups can be another option to improve par-
allelism. However, dividing subscription-group i into too
many smaller subgroups will lead to significantly increasing
the computational load, since the system will calculate the
same result multiple times.
Clearly, there is a trade-off involved in optimizing the

number of subscriptions within each group. This trade-off
will be further examined in the experimental section.

Figure 7: Aggregation of subscriptions based on matching pa-
rameters and brokers.

4.1.2. Broker Benefits
Aggregating subscriptions extends advantages beyond
merely improving query execution times(the query execu-
tion time is defined as the duration measured from the start
to the end of the query execution). It also offers significant
advantages on the broker side by notably decreasing both
the communication time between the BAD platform and the
brokers, as well as the processing time required by brokers to
manage the results prior to dispatching them to subscribers.
Consider a scenario where a new EnrichedTweets instance
(which is around 32 KB) pertains to drug-related activities in
California, and suppose there are one million subscriptions
for this state on the TweetsAboutDrugs channel. Previously,
this would create 1 million individual but similar results,
each corresponding to a subscription, thereby burdening
the broker with the management of redundant outcomes.
By aggregating the subscriptions according to channel pa-
rameters we substantially decrease the volume of results
that need to be transmitted and processed by the broker.
Instead of sending results for each individual subscription,
results are sent out per group, decreasing the data volume
from 32 GB to just 0.07756 GB.

4.2. Overprocessing: Augmenting the Query
Plan to Align with User Preferences

Consider the MostThreateningTweets channel, shown in Fig-
ure 8, which allows users to learn about the most threat-
ening (level 10) tweets in their state. The query plan
for implementing this channel appears in Figure 9 (a).
Originally, the BAD platform would completely scan the
EnrichedTweets dataset, the channel’s subscription dataset
called MostThreateningTweetsSubscriptions, and the
Brokers datasets, and eventually perform several steps lead-
ing up to a join between the selected EnrichedTweets and

the MostThreateningTweetsSubscriptions dataset. This ap-
proach becomes wasteful if most of the incoming data rarely
meets the subscription criteria. This is the case when only
a tiny fraction of tweets pertain to criminal activities and
require law enforcement’s attention. Therefore, failing to
consider subscription parameters early in the query execu-
tion process can lead to creating a large volume of results
which will eventually be discarded due to not matching any
subscription criteria. Additionally, it is important to note
that some subscriptions might have similar parameters, and
thus it is also crucial to structure the query process to avoid
redundant computations. This scenario can arise in any
system that tries to align users’ interests with incoming or
stored data. Overloading operators with irrelevant data that
doesn’t contribute to the desired results is inefficient and un-
desirable. We propose an approach that selects only the data
satisfying at least one subscription. An initial solutionmight
involve identifying relevant results by performing a join be-
tween the dataset containing the required parameters, e.g.,
the Enriched tweets dataset, and the subscription dataset in
the first step. However this would result in a massive join
operation between two datasets with millions of records but
with a small number of results. For instance, in the case
of the MostThreateningTweets example, this solution would
involve joining EnrichedTweets with the subscriptions, lead-
ing to a large join that produces a small number of results.

CREATE CONTINUOUS PUSH CHANNEL
MostThreateningTweets(MyState) PERIOD duration ("PT10M") {
SELECT t.text
FROM EnrichedTweets t
WHERE t.state=MyState AND is_new(t)

AND t.threatening_rate=10 };

Figure 8: DDL of a channel created for the most threatening
tweets.

Figure 9: (a) Original vs. (b) Optimized channel plan.

4.3. Late Data Filtering: BAD Index
To address effectively, we introduce a “UserParameters”
dataset (a dataset which will be created by the system when
a channel is created), integrated into each channel’s plan,
replacing the direct use of subscription parameters. This
dataset includes fields for the channel’s parameter(s) and
the number of subscriptions interested in each. These fields
facilitate the dynamic addition or removal of parameters as
subscriber interests evolve.
The updated query advances the join operation be-

tween the UserParameters and EnrichedTweets datasets

to occur during the initial data scan, reducing pro-
cessing overhead. To further enrich channel results
with detailed subscription information, such as each sub-
scriber’s broker, an index nested loop join is applied be-
tween the outcomes derived from the above join and the
MostThreateningTweetsSubscriptions dataset. The revised
query plan is depicted in Fig 9 (b).

When a query is known in the system before execution, it
creates the possibility for the system to filter out irrelevant
incoming records based on the query’s specific conditions,
potentially improving execution efficiency. We can observe
a similar scenario in the BAD system, where channels incor-
porate fixed selection criteria to ensure only relevant data
is processed and delivered to subscribers.
For example, the TweetsAboutCrime channel appearing

in Figure 3 has three predicates that involve the incom-
ing data (combined with AND): t.about_country="US",

t.retweet_count>10000, t.threatening_rate>5. Knowing
these fixed predicates in advance allows for the integration
of an additional pre-execution filter, streamlining the query
evaluation process by focusing only on relevant data from
the outset before executing the main logic of the query. This
filter identifies an incoming record that meets all fixed se-
lection predicates specified in the channel query’s WHERE
clause and adds this record’s id in a dedicated secondary
index, known as the channel’s BAD index. The method for
creating the BAD index is described below.

CREATE CONTINUOUS PUSH CHANNEL
TweetsAboutCrime(MyUserName) PERIOD duration ("PT10M") {
SELECT t.text
FROM UserLocations u, EnrichedTweets t
WHERE spatial_distance(u.location,t.location)<10

AND u.username=MyUserName AND is_new(t)
AND t.about_country="US" //(I)
AND t.retweet_count>10000 //(II)
AND t.hate_speech_rate>5 //(III)
AND t.threatening_rate>5 //(IV)
AND t.weapon_Mentioned=true //(V) };

Figure 10: TweetsAboutCrime channel DDL with extra condi-
tions.
When a channel query is submitted to the system, a

BAD index is created for each active dataset involved in
the channel that has fixed selection predicates applied to
it. The fixed conditions for each dataset are grouped to-
gether and added to an ordered list, called conditionsList,
created for that active dataset, and when the channel is
deleted from the system its conditions are also deleted.
Conditions lists help determining whether incoming data
satisfies the conditions for any channel. Each new in-
coming record will be checked against all groups of con-
ditions in this list, and if it satisfies all conditions for a
given channel, it will be added to that channel’s BAD index.
For example, when the TweetsAboutCrime channel is cre-
ated (Figure 3), it includes three fixed conditions on the
active EnrichedTweets dataset. Consequently, the chan-
nel’s conditions are added to the EnrichedTweets dataset’s
conditionsList and a BAD index called TweetsAboutCrimeB-
ADindex is created for the channel. Any new tweet that
meets all three predicates in the TweetsAboutCrime channel
will be added to the TweetsAboutCrimeBADindex. Algorithm
1 demonstrates the procedure for adding entries to BAD
indexes for an active dataset.

Unlike general-purpose indexes, which store data for all
records, the BAD index focuses solely on records that meet
the fixed predicates of a channel’s query. The BAD index
offers amajor improvement over traditional indexes by filter-

ing and retrieving only the data relevant to a specific query
(we call this ‘early result filtering’), thus avoiding the ineffi-
ciencies of indexing all records in a dataset. This selective
indexing reduces storage overhead and eliminates the need
to scan irrelevant data, resulting in faster query execution.
This indexing approach facilitates the application of time
filters [31] to the BAD indexes, enabling efficient retrieval
of only the most recent tweets when the is_new function is
present the query. The time filter employs the timestamp
from the channel’s most recent execution to guarantee that
the index search includes only records that have arrived at
or since the time of the last execution. As a result, a BAD
index boosts channel execution by quickly locating data
that meets the channel criteria, eliminating the need to scan
the entire dataset (EnrichedTweets in the above example).
Algorithm 1 BAD Index Record Insertion
1: Input Variables:
2: 𝑟𝑒𝑐 ∶ the incoming record
3: 𝑑𝑠 ← 𝑟𝑒𝑐.𝑔𝑒𝑡𝐷𝑎𝑡𝑎𝑠𝑒𝑡() ▷ Dataset in which the record is being

inserted
4: 𝑐𝑜𝑛𝑑𝑠 ← 𝑑𝑠.𝑔𝑒𝑡𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠𝐿𝑖𝑠𝑡() ▷ List of fixed conditions for

each channel
5: 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑁 𝑎𝑚𝑒𝑠 ← 𝑑𝑠.𝑔𝑒𝑡𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑁 𝑎𝑚𝑒𝑠() ▷ Names of

channels with fixed predicates on the dataset
6: 𝑖𝑛𝑑𝑒𝑥𝐿𝑖𝑠𝑡 ← 𝑑𝑠.𝑔𝑒𝑡𝐵𝐴𝐷𝐼𝑛𝑑𝑒𝑥𝐿𝑖𝑠𝑡() ▷ List of BAD indexes for

the dataset
7: Algorithm:
8: for each 𝑖 ← 1 to 𝑐𝑜𝑛𝑑𝑠.𝑠𝑖𝑧𝑒() do ▷ Check if the record

satisfies all conditions for channel 𝑖
9: if checkConditions(𝑟𝑒𝑐, 𝑐𝑜𝑛𝑑𝑠[𝑖]) then
10: 𝑖𝑛𝑑𝑒𝑥 ← 𝑖𝑛𝑑𝑒𝑥𝐿𝑖𝑠𝑡 .𝑔𝑒𝑡(𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑁 𝑎𝑚𝑒𝑠[𝑖])
11: 𝑖𝑛𝑑𝑒𝑥.𝑎𝑑𝑑𝑅𝑒𝑐𝑜𝑟𝑑(𝑟𝑒𝑐) ▷ Add the record to the

corresponding index

12: function checkConditions(𝑟𝑒𝑐, 𝑐𝑜𝑛𝑑𝐺𝑟𝑝)
13: for each 𝑗 ← 1 to 𝑐𝑜𝑛𝑑𝐺𝑟𝑝.𝑠𝑖𝑧𝑒() do
14: if not satisfy(𝑟𝑒𝑐, 𝑐𝑜𝑛𝑑𝐺𝑟𝑝[𝑗]) then
15: return False
16: return True

Note that this pre-processing is reminiscent of, but differ-
ent from, Partial Indexing [21], which focuses on indexing
only the most frequently accessed or queried segments of
a dataset. A BAD index does not index any attributes of
the dataset; instead it consolidates the primary keys of all
records that satisfy all the fixed predicates of a channel. This
enables quicker access to the relevant records as opposed
to scanning the entire dataset or using a traditional index
which includes entries for all records, not just the ones that
meet the specific criteria of the channel. To ensure that
each channel query effectively utilizes the BAD index, the
query plan must be adjusted to replace full dataset scans or
the use of other secondary indexes with the BAD index. As
explained earlier, regular secondary indexes contain both
relevant and irrelevant records, making the BAD index a
more efficient choice. Additionally, since the fixed predi-
cates are already processed when data enters the system,
they should be removed from the query plan to avoid re-
dundant computations.

5. Experimental Evaluation
We proceed with outlining a series of experiments designed
to assess the performance improvements of the optimized
BAD platform as compared to its original configuration.
Further experiments are detailed in [30]. We first evalu-
ate the performance of each individual optimization and
subsequently examine how the collective implementation

of all optimizations provides comprehensive benefits. It
should be highlighted that, previous research has already
established the superiority of the BAD platform over a tradi-
tional, pieced-together solution with similar functionalities
[3]. Given this, we can assert that an optimized version of
the BAD platform would also outperform other comparable
systems. Therefore, we have chosen not to repeat those
earlier experiments here in this study.
For the following experiments, we used the example ap-

plication that has been discussed throughout this paper,
including its data model, datasets, and data channels. For
all experiments we deployed the BAD platform on a 4-node
cluster. Each node has an Intel(R) Xeon(R) CPU E5-2603 v4
@1.70GHz processor, with 64 GB of RAM, 10 TB of HDD,
and 2×6-core processors.

5.1. Data
We initialize our experiments by loading the BAD platform
with an initial EnrichedTweets dataset that contains 2 mil-
lion synthetic tweets. This preloading was performed to
ensure that the size of the EnrichedTweets dataset does not
impact the performance of channel execution. Following the
system’s initiation, the BAD platform consistently receives
2000 EnrichedTweets per second, with each EnrichedTweet

being approximately 30 KB in size. For each channel, we uti-
lized datasets containing 1 million subscribers. Detailed
descriptions of these subscriptions will be provided for
each experiment. We have also created a dataset called
UserLocations which is being used in the TweetsAboutCrime
channel and includes people’s usernames and their loca-
tions; each such record is 38 bytes. We assume that this
dataset is continuously updated as the data is received as
subscribers change their device’s location. Only the most
recent location for each user is maintained in the system.
In this study, synthetic tweets were used to assess sys-

tem performance, allowing precise manipulation of field
attributes to evaluate their impact on channel and query op-
erations. By altering these parameters, we gained insights
into system behavior under varying conditions, analyzing
the efficiency and scalability of the indexing mechanism.
To demonstrate the applicability of our optimizations, ex-
periments were also conducted with a real-world Twitter
dataset, detailed in Section 5.6.

5.2. Subscription Aggregation Experiments
Firstly, we examine the effectiveness of subscription group-
ing in the TweetsAboutDrugs channel (Figure 6). We begin
by examining the trade-off presented in Section 4.1.1 regard-
ing the optimal size for subscription groups. We conducted
an experiment with a specially created dataset of 1 mil-
lion subscriptions, all of which are interested in “CA”. This
setup allows us to examine the impact of large and small
subscription-group sizes on system performance. In this
experiment the AsterixDB frame size f is set to 40 KB while
each original subscription is around 40 bytes.
Initially, we consolidate all “CA” subscriptions into a

single subscription-group (that is 1024 times bigger than
the size of the frame), which we then systematically halve
to evaluate smaller subgroup sizes. Execution times for
these various configurations are depicted in Figure 11. Each
execution time is the time involved in running the chan-
nel after receiving 10 minutes of incoming tweets (at 2K
tweets/sec). The left side (denoted as 1024𝑓) corresponds
to having a single subscription-group of 1M subscriptions,
while the right side (𝑓/1024) corresponds to splitting this
subscription-group into subgroups with 1 subscription each.

As it is shown in the figure, the execution time decreases
when we have more than a single group, benefiting from
enhanced parallelism, but the performance begins to suffer
when we create many smaller subgroups, due to increased
computational demands. The channel achieves the shortest
execution times when the size of each subgroup matches
the frame size, effectively balancing computational load
and parallelism efficiency. As a result, we see that larger
subscription-groups should be split into smaller ones to
match the frame size.

Figure 11: Determining the ideal subgroup subscription size
relative to frame size f.

Next, we compare the execution time of the original BAD
channel to the optimized BAD channel, which incorporates
aggregated subscriptions with subgroup sizes of 𝑓. Both
configurations assume a total of 1 million subscriptions
distributed across the 50 U.S. states, reflecting real-world
population densities. Consequently, highly populous states
such as California and Texas have a greater number of sub-
scribers, whereas less populous states, such as Wyoming,
have fewer. For instance, California’s subscription group
consists of 118,118 subscriptions divided into 116 subgroups,
whileWyoming’s group contains 1,723 subscriptions divided
into 2 subgroups. Execution times demonstrate significant
improvements with grouped subscriptions, decreasing from
255.23 seconds in the original BAD system to 57.23 seconds,
highlighting the efficiency of aggregation.

5.3. Augmenting The Query Plan
Experiments

In this section, we undertake an experiment utilizing the
MostThreateningTweets channel (Figure 8) to demonstrate
the impact of augmenting the query plan to integrate the
UserParameters dataset. In particular we focus on varying
the proportion of relevant EnrichedTweets and examine the
system’s responsiveness and efficiency while adjusting the
percentage of EnrichedTweets that align with subscribers’
preferences. We use three subscription datasets that are
specifically designed to match a certain percentage of rele-
vant tweets: in set 1 10% of the subscriptions are matching
tweets, in set 2 15%, and in set 3 20% of the subscriptions
are matching tweets.
As depicted in Figure 12, re-configuring the query plan

to address user interests early on significantly decreases
channel execution times for all sets. This optimization is
particularly crucial for set 3 due to the higher proportion of
relevant data, which necessitates producing a larger number
of results. This need for efficiency is much higher when
running the original BAD plan. For instance, with the third
set of subscriptions, the optimized plan is essential as it
allows the channel to process data efficiently and meet time-
sensitive deadlines, capabilities that are not as achievable
with the original query plan.

Figure 12: The execution time of channel MostThreatening
Tweets with different sets of subscriptions.

5.4. BAD Index Experiments
To test the BAD index, we employ a variation of the channel
TweetsAboutCrime where we have added more fixed predi-
cates (see Figure 10). The goal is to illustrate the impact of
the BAD index under different levels of channel selectivity.
The full version of the channel contains 5 predicates (marked
I through V). To enhance the selectivity of the channel the
predicates are incrementally applied to the channel query.
The first three predicates (I,II and III) each have selectivity
50%, while the next two conditions (IV and V) each have
selectivity 20%. By having only the first two conditions we
will select around 17% of the incoming tweets. After apply-
ing the first three conditions, the channel selects about 10%
of the incoming tweets. When a fourth condition is added,
the selection is reduced to approximately 4.2%. Finally, ap-
plying all five conditions narrows it down significantly to
just 0.07%.
We maintain a dataset called UserLocations, which in-

cludes the saved locations of users. This dataset contains 1
million entries. Note that changing the subscription dataset
does not impact the comparison of execution times between
the original BAD system and the optimized version since
the BAD index is updated as new tweet records are ingested.

Figure 13: The execution time of the channel TweetsAboutCrime
under varying conditions.

To ensure an equitable comparison, we assess the chan-
nel’s execution times using a traditional index crafted on the
attribute that is most selective under the given conditions.
As an example, for the scenario with 2 conditions (I+II), this
index is based on the retweet_count and when having 4 con-
ditions, the index will be based on the threatening_rate as
these are the most selective conditions respectively. Figure
13 shows the channel execution time measured with a tradi-
tional index as well as the BAD index. The creation of the
BAD index significantly enhances the data retrieval capa-
bilities. As illustrated in the figure, it reduces the execution
time across various channel selectivities. Notably, the bene-
fits of the BAD index increase as the channels become more
selective, enabling more efficient filtering of unsatisfactory
records prior to channel execution.

5.5. Comprehensive Performance of
Optimized BAD

We now proceed with an experiment that synthesizes all
three distinct optimization strategies that were proposed
to enhance the BAD channel performance. It is important
to note that each optimization may be particularly bene-
ficial for specific scenarios. For instance, the BAD index
proves most advantageous in channels which have very
selective fixed conditions, the subscription aggregation ex-
cels in channels with a limited range of possible parameter
values, while customizing the query plan is most effective
when the user parameters significantly restrict the dataset
that needs to be processed. An important comparison met-
ric is the maximum number of subscriptions that the opti-
mized channel can support; more supported subscriptions
reflects the system’s improved functionality to process and
deliver timely and accurate results to an expanded number
of subscribers within set deadlines (in our environment, the
maximum number of subscribers that can be supported in
the 10 minutes between subsequent channel invocations).

Figure 14 showcases the enhanced capacity of three spe-
cific channels to manage subscriptions using different opti-
mizations; the original BAD, each optimization alone, and
the fully optimized BAD as shown. As illustrated in the
figure, implementing any combination of the proposed op-
timizations, or all of them, increases the capacity of each
channel to support more subscriptions in the BAD platform.

Figure 14: Maximum number of subscriptions supported.

5.6. Experiments with Real-world Data
To demonstrate the real-world applicability of our methods,
this section utilizes actual tweets collected from Twitter [32].
According to the study [33], the most common languages
in the overall dataset of real tweets are English, Japanese,
Spanish, Arabic, and Portuguese. In the subset of the dataset
used for our experiments, English was the dominant lan-
guage, followed by Portuguese, with the other languages
being less represented. As a result, we focused on the two
most prevalent languages English and Portuguese. The first
channel, called EnglishTrendingTweetsInACountry, shown
in Figure 15, sends subscribers trending tweets in English
(those with retweet_counts greater than 100,000). Similarly,
the second channel, PortugueseTrendingTweetsInACountry,
targets trending tweets in Portuguese.

Users can subscribe to either channel based on their coun-
try of interest, and every 10 minutes, they receive trending
tweets from that location. For this experiment, the tweet
inflow rate was set to 6,000 tweets per second, which aligns
with the average tweet generation rate reported in [34].
Each tweet averages about 3.5 KB, including details like
user data, retweet counts, and location. In total, 1 mil-
lion subscriptions were generated, with the distribution
proportional to each country’s population, meaning more
populous countries had a larger number of subscribers. Fig-
ure 16 shows the execution times for both channels. In

this figure, we compare the performance of the original
BAD system with a traditional index on the most selec-
tive field, retweet_count, along with various optimizations.
As depicted, each optimization reduces execution time for
both channels. Notably, the BAD index offers greater time
reduction when the PortugueseTrendingTweetsInACountry

channel. This occurs because most tweets are in English,
making Portuguese queries more selective and leading to a
significant difference in the number of records stored in a
traditional index compared to the BAD index. It is impor-
tant to note that channels can be created with varying levels
of complexity, from simple to highly sophisticated, depend-
ing on specific needs. Different channels may benefit from
particular optimizations based on their characteristics. How-
ever, the experiment in Figure 16 demonstrates that even for
simpler channels like EnglishTrendingTweetsInACountry

and PortugueseTrendingTweetsInACountry, that use non-
enriched tweets, the execution time is reduced by 62% and
70%, highlighting the benefits of our optimizations.

CREATE CONTINUOUS PUSH CHANNEL
EnglishTrendingTweetsInACountry(countryName)
PERIOD duration ("PT10M") {
SELECT t.text
FROM Tweets t
WHERE t.country=countryName AND is_new(t)

AND t.retweet_count>100000 AND t.lang="en" };

Figure 15: TrendingTweetsInACountry channel DDL.

Figure 16: TrendingTweetsInACountry execution time in dif-
ferent conditions.

6. Conclusions And Future Work
In this paper, we concentrated on enhancing scalability,
performance, and efficiency of a Big Active Data (BAD) plat-
form. We discussed different example use cases where users
use BAD services to monitor a high speed incoming data
source like tweets. In order to reduce the execution time and
increase the supportable number of users, we introduced
three different approaches including: (i) strategically consol-
idating subscriptions, (ii) revising (augmenting) query plans,
and (iii) implementing the BAD index (for early result filter-
ing). Our findings demonstrate a significant enhancement in
system performance. In this paper, our optimization efforts
have focused solely on individual channels. Looking ahead,
our future work will focus on strategies for optimizing mul-
tiple channels concurrently, which holds great potential.
For example, we will explore grouping channels and refin-
ing the BAD index to synchronize indexing activities across
channels.

Acknowledgements
This work was supported in part by NSF awards CNS-
1925610, CNS-1924694, NIFA award 2024-67022-43695, an
industrial gift from Google, and funding from the Donald
Bren Foundation (via a Bren Chair at UC Irvine).

References
[1] M. J. Carey, S. Jacobs, V. J. Tsotras, Breaking BAD: a

data serving vision for big active data, in: Proc. of ACM
DEBS, 2016, pp. 181–186. URL: https://doi.org/10.1145/
2933267.2933313. doi:10.1145/2933267.2933313.

[2] S. Jacobs, X. Wang, M. J. Carey, V. J. Tsotras,
M. Y. S. Uddin, BAD to the Bone: Big Active
Data at its Core, VLDB J. 29 (2020) 1337–1364.
doi:s00778-020-00616-7.

[3] X. Wang, M. J. Carey, V. J. Tsotras, Subscrib-
ing to big data at scale, Distributed and Par-
allel Databases 40 (2022) 475–520. URL: https:
//doi.org/10.1007/s10619-022-07406-w. doi:10.1007/
S10619-022-07406-W.

[4] D. Terry, D. Goldberg, D. Nichols, B. Oki, Continuous
queries over append-only databases, SIGMOD Rec. 21
(1992) 321–330. URL: https://doi.org/10.1145/141484.
130333. doi:10.1145/141484.130333.

[5] J. Chen, D. J. DeWitt, F. Tian, Y. Wang, Nia-
garaCQ: A scalable continuous query system for in-
ternet databases, in: Proc. ACM SIGMOD, 2000, pp.
379–390. URL: https://doi.org/10.1145/342009.335432.
doi:10.1145/342009.335432.

[6] A. Arasu, B. Babcock, S. Babu, J. Cieslewicz,
M. Datar, K. Ito, R. Motwani, U. Srivastava,
J. Widom, STREAM: The Stanford Data Stream
Management System, Springer Berlin Heidelberg,
Berlin, Heidelberg, 2016, pp. 317–336. URL: https:
//doi.org/10.1007/978-3-540-28608-0_16. doi:10.1007/
978-3-540-28608-0_16.

[7] A. Arasu, S. Babu, J. Widom, The CQL continuous
query language: semantic foundations and query ex-
ecution, The VLDB Journal 15 (2006) 121–142. URL:
https://api.semanticscholar.org/CorpusID:6407934.

[8] J. Kreps, N. Narkhede, J. Rao, Kafka: A distributed
messaging system for log processing, in: Proceedings
of the NetDB, 2011, pp. 1–7.

[9] Apache Kafka, Kafka streams, https://kafka.apache.
org/documentation/streams/, 2010. Accessed: 2024-
10-10.

[10] Apache NiFi, Apache NiFi Documentation, 2006.
[11] A. Katsifodimos, S. Schelter, Apache Flink: Stream

analytics at scale, in: 2016 IEEE International Confer-
ence on Cloud Engineering Workshop (IC2EW), 2016,
pp. 193–193. doi:10.1109/IC2EW.2016.56.

[12] Amazon Web Services, Inc., Amazon Kinesis, https:
//aws.amazon.com/kinesis/, 2013. Accessed:2024-04-
10.

[13] Azure Stream Analytics, https://azure.microsoft.com/
en-us/services/stream-analytics/, 2008.

[14] Google LLC, Google Cloud Dataflow Documenta-
tion, https://cloud.google.com/dataflow/docs, 2024.
Accessed: 2024-05-10.

[15] P. T. Eugster, P. A. Felber, R. Guerraoui, A.-M. Ker-
marrec, The many faces of publish/subscribe, ACM
Comput. Surv. 35 (2003) 114–131. URL: https://doi.org/
10.1145/857076.857078. doi:10.1145/857076.857078.

[16] M. K. Aguilera, R. E. Strom, D. C. Sturman, M. Astley,
T. D. Chandra, Matching events in a content-based
subscription system, in: Proceedings of the Eighteenth
Annual ACM Symposium on Principles of Distributed
Computing, PODC ’99, Association for Computing
Machinery, New York, NY, USA, 1999, p. 53–61. URL:
https://doi.org/10.1145/301308.301326. doi:10.1145/

301308.301326.
[17] M. Hong, A. J. Demers, J. E. Gehrke, C. Koch, M. Riede-

wald, W. M. White, Massively multi-query join pro-
cessing in publish/subscribe systems, in: Proceed-
ings of the 2007 ACM SIGMOD International Confer-
ence on Management of Data, SIGMOD ’07, Associa-
tion for Computing Machinery, New York, NY, USA,
2007, p. 761–772. URL: https://doi.org/10.1145/1247480.
1247564. doi:10.1145/1247480.1247564.

[18] M. M. Moro, P. Bakalov, V. J. Tsotras, Early profile
pruning on xml-aware publish-subscribe systems, in:
Proceedings of the 33rd International Conference on
Very Large Data Bases, VLDB ’07, VLDB Endowment,
2007, p. 866–877.

[19] A. Carzaniga, D. S. Rosenblum, A. L. Wolf, Design and
evaluation of a wide-area event notification service,
ACM Trans. Comput. Syst. 19 (2001) 332–383. URL:
https://doi.org/10.1145/380749.380767. doi:10.1145/
380749.380767.

[20] A. Carzaniga, M. Papalini, A. L. Wolf, Content-based
publish/subscribe networking and information-centric
networking, in: Proceedings of the ACM SIGCOMM
Workshop on Information-Centric Networking, ICN
’11, Association for Computing Machinery, New York,
NY, USA, 2011, p. 56–61. URL: https://doi.org/10.1145/
2018584.2018599. doi:10.1145/2018584.2018599.

[21] M. Stonebraker, The case for partial indexes, SIGMOD
Rec. 18 (1989) 4–11. URL: https://doi.org/10.1145/74120.
74121. doi:10.1145/74120.74121.

[22] M. J. Carey, D. Chamberlin, A. Goo, K. W. Ong, Y. Pa-
pakonstantinou, C. Suver, S. Vemulapalli, T. West-
mann, SQL++: We Can Finally Relax!, in: Proceedings
of the 40th IEEE International Conference on Data En-
gineering, Utrecht, Netherlands, 2024. Invited paper.

[23] J. Fang, D. Lychagin, M. J. Carey, V. J. Tsotras, A new
window clause for SQL++, VLDB J. 33 (2024) 595–623.
URL: https://doi.org/10.1007/s00778-023-00830-z.
doi:10.1007/s00778-023-00830-z.

[24] S. Jacobs, M. Y. S. Uddin, M. Carey, V. Hristidis, V. J. Tso-
tras, N. Venkatasubramanian, Y. Wu, S. Safir, P. Kaul,
X. Wang, M. A. Qader, Y. Li, A BAD demonstra-
tion: towards Big Active Data, Proc. VLDB Endow.
10 (2017) 1941–1944. URL: https://doi.org/10.14778/
3137765.3137814. doi:10.14778/3137765.3137814.

[25] S. H. A. Shirazi, M. Carey, V. Tsotras, Building
an end-to-end BAD application, in: Proceedings
of the 15th ACM International Conference on Dis-
tributed and Event-Based Systems, DEBS ’21, Associa-
tion for Computing Machinery, New York, NY, USA,
2021, p. 184–187. URL: https://doi.org/10.1145/3465480.
3467840. doi:10.1145/3465480.3467840.

[26] Apache AsterixDB, https://asterixdb.apache.org/,
2009.

[27] W. Y. Alkowaileet, S. Alsubaiee, M. J. Carey, et al., En-
hancing big data with semantics: The AsterixDB ap-
proach (poster), in: Proceedings of the 12th IEEE Inter-
national Conference on Semantic Computing (ICSC),
IEEE Computer Society, 2018, pp. 314–315.

[28] R. Grover, M. J. Carey, Data ingestion in AsterixDB,
in: Proceedings of the 18th International Conference
on Extending Database Technology (EDBT), 2015.

[29] X. Wang, M. J. Carey, An IDEA: An ingestion frame-
work for data enrichment in asterixdb, Proceedings of
the VLDB Endowment (PVLDB) 12 (2019) 1485–1498.

https://doi.org/10.1145/2933267.2933313
https://doi.org/10.1145/2933267.2933313
http://dx.doi.org/10.1145/2933267.2933313
http://dx.doi.org/s00778-020-00616-7
https://doi.org/10.1007/s10619-022-07406-w
https://doi.org/10.1007/s10619-022-07406-w
http://dx.doi.org/10.1007/S10619-022-07406-W
http://dx.doi.org/10.1007/S10619-022-07406-W
https://doi.org/10.1145/141484.130333
https://doi.org/10.1145/141484.130333
http://dx.doi.org/10.1145/141484.130333
https://doi.org/10.1145/342009.335432
http://dx.doi.org/10.1145/342009.335432
https://doi.org/10.1007/978-3-540-28608-0_16
https://doi.org/10.1007/978-3-540-28608-0_16
http://dx.doi.org/10.1007/978-3-540-28608-0_16
http://dx.doi.org/10.1007/978-3-540-28608-0_16
https://api.semanticscholar.org/CorpusID:6407934
https://kafka.apache.org/documentation/streams/
https://kafka.apache.org/documentation/streams/
http://dx.doi.org/10.1109/IC2EW.2016.56
https://aws.amazon.com/kinesis/
https://aws.amazon.com/kinesis/
https://azure.microsoft.com/en-us/services/stream-analytics/
https://azure.microsoft.com/en-us/services/stream-analytics/
https://cloud.google.com/dataflow/docs
https://doi.org/10.1145/857076.857078
https://doi.org/10.1145/857076.857078
http://dx.doi.org/10.1145/857076.857078
https://doi.org/10.1145/301308.301326
http://dx.doi.org/10.1145/301308.301326
http://dx.doi.org/10.1145/301308.301326
https://doi.org/10.1145/1247480.1247564
https://doi.org/10.1145/1247480.1247564
http://dx.doi.org/10.1145/1247480.1247564
https://doi.org/10.1145/380749.380767
http://dx.doi.org/10.1145/380749.380767
http://dx.doi.org/10.1145/380749.380767
https://doi.org/10.1145/2018584.2018599
https://doi.org/10.1145/2018584.2018599
http://dx.doi.org/10.1145/2018584.2018599
https://doi.org/10.1145/74120.74121
https://doi.org/10.1145/74120.74121
http://dx.doi.org/10.1145/74120.74121
https://doi.org/10.1007/s00778-023-00830-z
http://dx.doi.org/10.1007/s00778-023-00830-z
https://doi.org/10.14778/3137765.3137814
https://doi.org/10.14778/3137765.3137814
http://dx.doi.org/10.14778/3137765.3137814
https://doi.org/10.1145/3465480.3467840
https://doi.org/10.1145/3465480.3467840
http://dx.doi.org/10.1145/3465480.3467840
https://asterixdb.apache.org/

[30] S. H. A. Shirazi, X. Wang, M. J. Carey, V. J. Tso-
tras, Optimizing big active data management sys-
tems, arXiv preprint arXiv:2412.14519 (2024). URL:
https://arxiv.org/abs/2412.14519.

[31] S. Alsubaiee, M. J. Carey, C. Li, LSM-based stor-
age and indexing: An old idea with timely bene-
fits, GeoRich’15, Association for Computing Ma-
chinery, New York, NY, USA, 2015. URL: https://doi.
org/10.1145/2786006.2786007. doi:10.1145/2786006.
2786007.

[32] Twitter, Twitter Platform, 2024. URL: https://twitter.
com, [Accessed: 2024-09-05].

[33] T. M. Luu, S. Ram, F. Rangel, P. Rosso, F. Menczer,
On the persistence of linguistic inequality: English
and the global balance of languages in wikipedia,
EPJ Data Science 10 (2021). URL: https://doi.org/10.
1140/epjds/s13688-021-00271-0. doi:10.1140/epjds/
s13688-021-00271-0.

[34] X Corp. Engineering, New Tweets per
Second Record, and How, 2013. URL:
https://blog.x.com/engineering/en_us/a/2013/
new-tweets-per-second-record-and-how, [Accessed:
2024-09-05].

https://arxiv.org/abs/2412.14519
https://doi.org/10.1145/2786006.2786007
https://doi.org/10.1145/2786006.2786007
http://dx.doi.org/10.1145/2786006.2786007
http://dx.doi.org/10.1145/2786006.2786007
https://twitter.com
https://twitter.com
https://doi.org/10.1140/epjds/s13688-021-00271-0
https://doi.org/10.1140/epjds/s13688-021-00271-0
http://dx.doi.org/10.1140/epjds/s13688-021-00271-0
http://dx.doi.org/10.1140/epjds/s13688-021-00271-0
https://blog.x.com/engineering/en_us/a/2013/new-tweets-per-second-record-and-how
https://blog.x.com/engineering/en_us/a/2013/new-tweets-per-second-record-and-how

	1 Introduction
	2 Related Work
	3 BAD Preliminaries
	3.1 A BAD Application Example
	3.2 Brokers
	3.3 Data Channels

	4 Optimizing BAD
	4.1 Duplicate Processing: Aggregating Subscriptions
	4.1.1 Parallelism in AsterixDB
	4.1.2 Broker Benefits

	4.2 Overprocessing: Augmenting the Query Plan to Align with User Preferences
	4.3 Late Data Filtering: BAD Index

	5 Experimental Evaluation
	5.1 Data
	5.2 Subscription Aggregation Experiments
	5.3 Augmenting The Query Plan Experiments
	5.4 BAD Index Experiments
	5.5 Comprehensive Performance of Optimized BAD
	5.6 Experiments with Real-world Data

	6 Conclusions And Future Work

