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Abstract
Aggregate queries are essential for summarizing data and obtaining condensed information. Explaining such queries—by identifying
how specific predicates influence the result—provides deeper insights into the factors shaping query outcomes. However, existing
statistical, interventional, and game theoretic explanation methods lack causal grounding, while causal methods require complete causal
graphs, which are rarely available in large databases. To address this, we propose Causal Banzhaf Value (CBV): introducing causal
awareness into Banzhaf values, our CBV method delivers explanations even in the absence of full causal graphs. Experiments on real
world data demonstrate that CBV is computationally efficient, aligns with human intuition, and is consistent with causal explanations.
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1. Introduction
The increasing reliance on data-driven decision-making in
fields such as business, healthcare, and science amplifies the
importance of query explanations in understanding patterns,
trends, and anomalies [1, 2, 3]. Aggregate queries, such as
averages or sums, play a pivotal role in summarizing high-
dimensional data but pose challenges for understandability.
Analysts often need explanations, such as the contributions
of individual data segments or predicates1 to understand
results, especially in high-dimensional datasets where inter-
actions and dependencies are complex [4, 5].

Example Consider the Stack Overflow Developer Survey
[6] with features such as age, developer role, education level,
and salary. An analyst might pose the aggregate query

SELECT AVG(Salary) FROM StackOverflow;

to retrieve the average salary. Still, understanding why it takes
a specific value requires additional explanation; e.g., predicate
{Role = C-level Executive} might increase salary, while
{Age = 25} might decrease it. Aggregate query explanation
breaks down results into additive contributions of predicates,
enabling analysts to identify key factors and make informed
decisions or policy recommendations.
However, accurately attributing the importance of indi-

vidual predicates is challenging due to feature interdepen-
dencies and causal relationships. Existing techniques, such
as DIFF [2] or MacroBase [4], fail to capture these depen-
dencies, while game-theoretic methods like Shapley [7] and
Banzhaf values [8] lack causal awareness [9]. Causal ap-
proaches, including XInsight [1] and CauSumX [10], rely
on fully specified causal models, which are often computa-
tionally expensive and impractical to construct [3].
To address these limitations, we introduce Causal

Banzhaf Values (CBV), a novel approach for causally in-
formed query explanations. CBV integrates causal knowl-
edge of feature dependencies and employs conditional sam-
pling [11] to estimate contributions accurately. E.g., it ac-
counts for interdependence between Age and Education,
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1Please note that we use the term ”predicate” to refer to feature values
for explanations rather than to selection predicates in SQL queries.

ensuring causal information is reflected in the explanation.
Unlike methods focusing on entire features, CBV evalu-
ates the importance of predicates, offering more granular
insights. For example, identifying that Role = C-level
drives salary outcomes is more informative than attribut-
ing importance to feature Role. Moreover, CBV does not
require a fully specified causal graph, making it suitable for
scenarios where defining complete causal models is infea-
sible. Finally, CBV is computationally efficient, balancing
accuracy with practicality for real-world applications.

2. Related Work
Statistical query explanation, e.g. [2, 4], finds associations;
relational methods, e.g. [12], trace data transformations
through relational operations like joins. Intervention-based
approaches, e.g. [13], detect outliers in aggregate queries.
All lack the ability to provide causal explanations. Game-
theoretic methods like Shapley [14] and Banzhaf values [15],
capture interactions between features, but assume feature
independence and disregard causal relationships [9]. Also,
the computational demands of simulating interventional
scenarios grow exponentially with dimensionality, limiting
scalability. OLAP explanations mostly focus on predefined
query structures (cubes) rather than analyzing feature inter-
actions. [16] extend OLAP operations with abstract high-
level interpretability mechanisms, such as unexpectedness.
[17] annotate OLAP cubes, focusing on statistical rather
than causal relationships [18]. Causal approaches, such
as XInsight [1] and CauSumX [10], assume fully specified
causal models between all features, which are often difficult
or infeasible to construct [3], or even completely unavail-
able, depending on the domain. Still, some knowledge about
causal feature interactions is usually available, e.g., from do-
main knowledge or causal knowledge discovery approaches.
Our approach can leverage partial causal knowledge, mean-
ing CBV can operate even when no complete causal graph
is available. This makes it more practical than fully inter-
ventional causal methods, while still incorporating causal
awareness beyond statistical or game-theoretic methods.

3. Predicate Attribution
The Banzhaf Value quantifies the influence of each predi-
cate (feature-value pair) on a query outcome by computing
its marginal contribution across all possible subsets of predi-
cates. Given a function 𝑣 ∶ 2𝑁 → ℝ that assigns a value to
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each subset 𝑆 of predicates, representing the query result
(e.g., average salary), the Banzhaf Value of predicate 𝑝(𝑖 = 𝑢)
(feature 𝑖 with value 𝑢) is:

𝛽𝑝(𝑖=𝑢) =
1

2𝑛−1
∑

𝑆⊆𝑁∖{𝑝(𝑖=𝑢)}
[𝑣(𝑆 ∪ {𝑝(𝑖 = 𝑢)}) − 𝑣(𝑆)] ,

where 𝑣(𝑆 ∪ {𝑝(𝑖 = 𝑢)}) − 𝑣(𝑆) measures the marginal con-
tribution of predicate 𝑝(𝑖 = 𝑢) when added to subset 𝑆.

Example Let predicates 𝑝1: {Education =
"Master’s"}, 𝑝2: {Role = "Software Engineer"},
𝑝3: {YearsCoding = 10}, and assumed salary:
𝑣(∅) = 50𝐾, 𝑣({𝑝1}) = 55𝐾, 𝑣({𝑝2}) = 60𝐾, 𝑣({𝑝3}) = 65𝐾,
𝑣({𝑝1, 𝑝2}) = 70𝐾, 𝑣({𝑝1, 𝑝3}) = 75𝐾, 𝑣({𝑝2, 𝑝3}) = 80𝐾,
𝑣({𝑝1, 𝑝2, 𝑝3}) = 85𝐾, we calculate Marginal Contributions
(MC) for 𝑝1: MC(∅, 𝑝1) = 55𝐾 − 50𝐾 = 5𝐾, MC({𝑝2}, 𝑝1) =
70𝐾 − 60𝐾 = 10𝐾, MC({𝑝3}, 𝑝1) = 75𝐾 − 65𝐾 = 10𝐾,
MC({𝑝2, 𝑝3}, 𝑝1) = 85𝐾 − 80𝐾 = 5𝐾. Their average is 𝑝1’s
Banzhaf Value:

𝛽𝑝1 =
1

23−1
(5𝐾 + 10𝐾 + 10𝐾 + 5𝐾) = 30𝐾

4
= 7.5𝐾.

Thus, on average, predicate Education = "Master’s"
contributes 7.5𝐾 to salary.

Banzhaf Value is particularly suited here because it
considers subsets, so is inherently order-independent. This
aligns with query explanations, where order of predicates
does not influence their contribution (e.g., {Education
= Master's, Developer Role = CTO} is equivalent to
{Developer Role = CTO, Education = Master's}). In
contrast, Shapley Value [14] relies on coalition-based
marginal contributions which inherently consider order.
Banzhaf Value computation is thus more efficient, as it
avoids the factorial complexity of Shapley Value [15].

Banzhaf Value (BV) offers a systematic framework for at-
tributing contributions by evaluating all possible subsets of
predicates. However, its limitations become evident when
applied to aggregate query explanations. BV assumes inde-
pendence among predicates, overlooking dependencies such
as between Age = 10 and Education level = Doctoral
Degree. This lack of causal awareness leads to misrepresen-
tation of contributions. Also, BV distributes contributions
symmetrically, failing to account for the hierarchical and
asymmetric nature of causal chains (e.g., Education affects
Role, which influences Salary). As a result, foundational
predicates are undervalued. BV also incurs high compu-
tational overhead by evaluating all subsets exhaustively,
which becomes impractical for high-dimensional datasets.
CBV addresses these issues by integrating causal knowl-
edge via partial DAGs to respect predicate dependencies,
enabling accurate attribution. Unlike BV, CBV attributes
contributions to specific predicate-value pairs, capturing
their individual impacts while reflecting causal asymmetry.
By focusing on causally valid subsets and using sampling
techniques, CBV achieves efficiency without sacrificing ac-
curacy. For predicates without causal ancestors, CBV de-
faults to BV, ensuring consistency.

4. Causal Banzhaf Value
Traditional Banzhaf Value fairly attributes contributions by
averaging marginal effects but assumes feature indepen-
dence. For instance, in a causal chain where Education

Years
Coding

Race
Ethnicity

Age

Major Student
Developer

role

Education

Salary

Figure 1: Partial causal DAG, adapted from the full causal model
in [10] by removing one feature and several edges.

Level influences Job Role, which then affects Salary, it
treats Education Level and Job Role as independent con-
tributors, potentially misestimating their true impact.
We propose the Causal Banzhaf Value (CBV), which in-

corporates causal knowledge into attribution by working
with partial causal graphs to leverage available knowledge
without requiring complete DAGs. CBV focuses on causally
valid subsets to maintain consistency and employs condi-
tional sampling to estimate contributions efficiently. This
combination of partial causal integration, flexibility, and
efficiency makes CBV a practical alternative to causal meth-
ods. Unlike Banzhaf value in Explainable AI [19], which
focuses on features, CBV evaluates the contributions of fea-
ture values (predicates). This aligns with query explanation
needs, where specific feature values, such as Role = C-
level, drive outcomes. Here, causal relationships are at at-
tribute level (e.g., Education), and contributions at predicate
level (e.g., ”Master’s”). Predicate-level causal relationships
are left for future work.
CBV incorporates causal dependencies by considering

causally valid subsets of features, defined based on a partial
directed acyclic graph (DAG) 𝐺: for each feature 𝑖, we iden-
tify its ancestors 𝐴𝑖 = {𝑗 ∈ 𝑁 ∣ 𝑗 ≺𝐺 𝑖}, where ≺𝐺 represents
the causal ordering in 𝐺 (Algorithm 1, line 2). Then, we
identify the set of all causally valid subsets for feature 𝑖,
denoted as 𝒮𝑖 (Algorithm 1, line 3):

𝒮𝑖 ← {𝑆 ∣ 𝐴𝑖 ⊆ 𝑆, 𝑆 ⊆ 𝑁 ∖ {𝑖, 𝑌 }},

Thus, a subset 𝑆 is valid if it contains all causal ancestors
of 𝑖 (𝐴𝑖), and contains neither feature 𝑖 itself nor the tar-
get variable 𝑌. This ensures that attributions respect the
known causal structure, while otherwise adopting the as-
sumption of order independence as in the Banzhaf value for
feature combinations where order is not known to impact
outcomes. For example, 𝑣(Gender = Male ∣ Education =
Bachelor's, Age = 25) is identical to 𝑣(Gender = Male ∣
Age = 25, Education = Bachelor's).

The Causal Banzhaf Value (CBV) 𝛽C for a predicate
𝑝(𝑖 op 𝑢) of feature 𝑖, a comparison operator 𝑜𝑝 such as
equality =, and value 𝑢 is defined as:

𝛽C𝑝(𝑖 op 𝑢) =
1

2𝑛−1
∑
𝑆∈𝒮𝑖

∑
r∈ℛ(𝑆)

[𝑣(𝑆r ∪ {𝑝(𝑖 op 𝑢)}) − 𝑣(𝑆r)] ,

whereℛ(𝑆) is the set of all possible realizations (value as-
signments) of features in subset 𝑆, and 𝑣(𝑆r) is the expected
value of the target variable 𝑌 conditioned on subset 𝑆 with
realization r. For simplicity, we adopt the equality operator,
i.e. predicate 𝑝(𝑖 = 𝑢), in the following presentation.

To estimate 𝑣(𝑆r) and 𝑣(𝑆r ∪ {𝑝(𝑖 = 𝑢)}), we employ condi-
tional sampling [11], which maintains feature dependencies
and provides high estimation accuracy. For each subset 𝑆,



realizations r(𝑛) are sampled from the empirical distribution
̂𝑃 (𝑆) (Algorithm 1, line 7), while features not in 𝑆 ∪ {𝑖} are

sampled conditionally as x(𝑛) ∼ ̂𝑃(𝑋∖(𝑆 ∪ {𝑖}) ∣ 𝑆 = r(𝑛))
(Algorithm 1, line 8). These samples allow the estimation of
the expected value 𝑣(𝑆r) (Algorithm 1, line 13):

𝑣(𝑆r) ←
1
𝑀

𝑀
∑
𝑛=1

𝑌 (r(𝑛),x(𝑛)),

and similarly for 𝑣(𝑆r ∪ {𝑝(𝑖 = 𝑢)}), where 𝑝(𝑖 = 𝑢) is fixed
during sampling (Algorithm 1, line 14):

𝑣(𝑆r ∪ {𝑝(𝑖 = 𝑢)}) ← 1
𝑀

𝑀
∑
𝑛=1

𝑌 (r(𝑛), 𝑖 = 𝑢,x(𝑛)𝑖=𝑢).

Here, 𝑌 (r(𝑛), x(𝑛)) is the estimated value of target variable 𝑌
given a sampled realization r(𝑛) of the subset 𝑆 (Algorithm
1, line 9), and x(𝑛), which includes the sampled values for all
features not in 𝑆 ∪ {𝑖}. This term reflects the target outcome
based on the sampled configuration of the subset 𝑆 and
the conditionally sampled remaining features. Similarly,
𝑌 (r(𝑛), 𝑖 = 𝑢, x(𝑛)𝑖=𝑢) captures target variable 𝑌 under the same
realization of 𝑆, but with feature 𝑖 explicitly set to value 𝑢
(Algorithm 1, line 10). The term x(𝑛)𝑖=𝑢 corresponds to the
sampled values of the remaining features conditioned on
𝑆 = r(𝑛) and 𝑖 = 𝑢. By setting 𝑖 = 𝑢, this estimate reflects
the impact of the specific value 𝑢 for feature 𝑖 on the target
variable 𝑌, considering the dependencies defined in the data
distribution (Algorithm 1, line 11).

Example Respecting causal dependencies (Fig. 1), for e.g.
Education = Master's, CBV finds causally valid subsets
𝒮Education, and for each 𝑆 ∈ 𝒮Education, marginal contribution
𝑣(𝑆r∪{𝑝(Education = Master's)})−𝑣(𝑆r), where 𝑣(𝑆r) is the
average salary conditioned on r, the realization of predicates
in 𝑆. CBV aggregates these contributions across all subsets and
realizations to quantify causally consistent importance.

Enumerating all subsets and performing conditional sam-
pling can be computationally intensive, especially for high-
dimensional datasets. To address this, We propose to approx-
imate CBV by employing Monte Carlo sampling [20], which
involves randomly selecting a suitable number of subsets𝑀
from 𝒮𝑖 and estimating the corresponding expected values.
This approach balances efficiency and accuracy (Alg. 1).

5. Experimental Evaluation
We implement Banzhaf Value (BV) [14] and Causal Banzhaf
Value (CBV) using PyTorch with GPU acceleration on
an NVIDIA T4 GPU, with 500 Monte Carlo samples for
marginal contribution estimates via conditional sampling.
Experiments are conducted on Stack Overflow Developer
Survey [6], offering insights into developer demographics,
education, roles, and salaries. A partial causal DAG is cre-
ated from the complete version in [10] by excluding one
feature and several edges, see Figure 1.
Figure 2 illustrates BV and CBV contributions for dif-

ferent features (plots (a)-(g)), and for different equality and
range predicates. For features without ancestors in the DAG
(race/ethnicity, age in Fig. 2g, Fig. 2f), BV and CBV produce
identical results, as causal dependencies are absent. We now
discuss cases where CBV and BV differ.
For FormalEducation (Fig. 2a), BV underestimates con-

tributions of advanced degrees (Doctoral, Master’s, Profes-
sional) and overestimates those of elementary and secondary

Algorithm 1 CBV

Require: Dataset 𝐷, features 𝑁 = {1, 2, … , 𝑛}, target variable 𝑌;
partial causal DAG 𝐺; number of samples 𝑀

Ensure: Contributions 𝛽CBV
𝑝(𝑖=𝑢) for all features 𝑖 ∈ 𝑁 and unique

values for that feature 𝑢 ∈ 𝑈𝑖
1: for 𝑖 ∈ 𝑁 do
2: 𝐴𝑖 ← {𝑗 ∈ 𝑁 ∣ 𝑗 ≺𝐺 𝑖}
3: 𝒮𝑖 ← {𝑆 ∣ 𝐴𝑖 ⊆ 𝑆, 𝑆 ⊆ 𝑁 ∖ {𝑖, 𝑌 }}
4: for 𝑢 ∈ 𝑈𝑖 do
5: for 𝑆 ∈ 𝒮𝑖 do
6: for 𝑚 = 1 to 𝑀 do
7: r(𝑛) ∼ ̂𝑃(𝑆)
8: x(𝑛) ∼ ̂𝑃(𝑋∖(𝑆∪{𝑖}) ∣ 𝑆 = r(𝑛))
9: 𝑌 (𝑛) = 𝑌(r(𝑛),x(𝑛))
10: x(𝑛)𝑖=𝑢 ∼ ̂𝑃(𝑋∖(𝑆∪{𝑖}) ∣ 𝑆 = r(𝑛), 𝑝(𝑖 = 𝑢))
11: 𝑌 (𝑛)

𝑝(𝑖=𝑢) = 𝑌(r(𝑛), 𝑝(𝑖 = 𝑢),x(𝑛)𝑖=𝑢)
12: end for
13: 𝑣(𝑆r) ←

1
𝑀

𝑀
∑
𝑛=1

𝑌 (𝑛)

14: 𝑣(𝑆r ∪ {𝑝(𝑖 = 𝑢)}) ← 1
𝑀

𝑀
∑
𝑛=1

𝑌 (𝑛)
𝑝(𝑖=𝑢)

15: 𝛽CBV
𝑝(𝑖=𝑢) ←

1
2𝑛−1

[𝑣(𝑆r ∪ {𝑝(𝑖 = 𝑢)}) − 𝑣(𝑆r)]
16: end for
17: end for
18: end for

school by treating all effects as direct, ignoring downstream
roles like developer role and upstream factors likeAge, which
significantly drive salaries. A notable example is ”No Formal
Education”, which BV incorrectly attributes as highly impor-
tant for higher salaries. CBV reveals that its apparent impor-
tance is actually due to its causal ancestor Age—many indi-
viduals in the dataset with no formal education are older and
hold senior roles. For UndergradMajor (Fig. 2b), BV overes-
timates contributions for fields like Mathematics and Social
Science, which often affect salaries indirectly through roles
or skills. CBV reduces these contributions while increasing
contributions for fields like Computer Science, which have
direct links to high-paying roles, aligning better with do-
main knowledge in the causal model. For DevType (Fig. 2c),
BV misses the importance of roles like Marketing and C-
level. CBV redistributes contributions, assigning higher
values to roles like C-level, influenced by education and
age (experience), and lower values to roles like Marketing.
While negative attribution to ”Marketing”, and minor attri-
bution to ”Student” may be surprising, it actually captures
the underlying causality: Age is ancestor of DevType. Stu-
dents tend to be young, and with limited work experience,
which is captured by CBV. People in marketing roles ex-
hibit a different distribution concerning age and experience,
where others with similar age and experience tend to have
higher salaries. Unlike BV, CBV recognizes this pattern. For
YearsCoding (Fig. 2d), BV attributes all contributions directly
to coding experience, inflating the importance of mid-level
ranges (12–14 years, 15–17 years). CBV incorporates the
causal dependency of YearsCoding on Age, recognizing that
older individuals naturally accumulate more experience,
which indirectly influences salary. This adjustment results
in more accurate contributions. For Student status (Fig. 2e),
BV suggests similar contributions for full-time and part-time
students, which contradicts domain knowledge, as full-time
students typically have less time for work and lower salaries.
This issue arises because BV ignores Age as an ancestor of
student status in the DAG, which appears to be the main
cause for salary levels, whereas CBV contributions are in



(a) Predicates in Formal Education (b) Predicates in Undergraduate Major

(c) Predicates in Developer Type (d) Predicates in Years Coding

(e) Predicates in Student (f) Predicates in Race / Ethnicity (g) Predicates in Age

Figure 2: CBV and BV Stack Overflow predicate importance for salary. CBV obtains predicate importance in line with the partial causal
model in Figure 1. Plots (a)-(e) show CBV finds notably different importance attributions where BV may result in misleading conclusions.
For features in plots (f) and (g) without any ancestors in the causal model, BV and CBV results are identical (thus single bar only).

Figure 3: Runtime of predicate explanations aggregated per
feature. CBV consistently outperforms BV.

line with domain knowledge. For race/ethnicity (RaceEth-
nicity, Fig. 2f) and Age (Age, Fig. 2g), BV and CBV results
coincide exactly, as the DAG has no causal incoming edges
for these features. Both methods highlight disparities in
salary outcomes for e.g. Native Americans and higher age.
CBV is much faster than BV ( Fig. 3). By focusing only

on causally valid subsets, CBV avoids unnecessary compu-
tations on infeasible configurations, substantially reducing
runtime. This improvement is especially notable for fea-
tures with many causal dependencies, such as developer role.
Even with Monte Carlo sampling applied to both methods,
CBV is faster as it limits sampling and evaluation to valid
combinations, reducing overhead and effort. For features

age and race/ethnicity, without causal parents, BV and CBV
produce identical results represented as a single bar for both.

6. Conclusion and Future Work
CBV presents a novel efficient causally consistent method
for predicate attribution for aggregate query explanations,
addressing the limitations of traditional game-theoretic or
causal methods. CBV integrates partial causal knowledge
without requiring complete causal graphs, making it a valu-
able contribution in practice. In real-world applications
where causal knowledge is incomplete, the quality of ex-
planations naturally depends on how well the available
causal information reflects actual data-generating mecha-
nisms. While conditional sampling preserves feature depen-
dencies and enhances accuracy, it introduces computational
overhead, particularly in high-dimensional settings. CBV
could be extended to handle continuous domains directly,
without the need to define predicate ranges (e.g., for age).
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