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Abstract
Refinement is a critical step in supply-driven conceptual design of multidimensional cubes because it can hardly be automated. In fact,
it relies on the end-users’ requirements on the one hand, and on the semantics of measures, dimensions, and attributes on the other.
As a consequence, it is normally carried out manually by designers in close collaboration with end-users. The goal of this work is to
check whether LLMs can act as facilitators for the refinement task, so as to let it be carried out entirely —or mostly— by end-users.
The Dimensional Fact Model is the target formalism for our study; as a representative LLM, we use ChatGPT’s model GPT-4o. To
achieve our goal, we formulate two research questions aimed at understanding the basic competences of ChatGPT in refinement and
investigating if they can be improved via prompt engineering. The results of our experiments show that, indeed, a careful prompt
engineering can significantly improve the accuracy of refinement, and that the residual errors can quickly be fixed via one additional
prompt. However, we conclude that, at present, some involvement of designers in refinement is still necessary to ensure the validity
of the refined schemata.
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1. Introduction
Conceptual design is a key step in the development of data
warehouse (DW) systems and multidimensional databases,
since it determines their information content and, ultimately,
the set of queries they can answer. The goal is to create an
implementation-independent representation of one or more
cubes structured according to the multidimensional model,
i.e., described in terms of measures, dimensions, and at-
tribute hierarchies. A lot of research has been done over the
last couple of decades on conceptual design of cubes, mainly
distinguishing between supply-driven approaches, where the
conceptual schema is determined starting from the schema
of a source databases, and demand-driven approaches, where
it is created based on the end-users’ requirements.

An advantage of supply-driven design over demand-
driven design is that a draft conceptual schema can be ob-
tained from the source schema in automatic fashion, by
applying an algorithm that essentially chases the functional
dependencies coded in the source schema and uses them to
arrange hierarchies [1]. Although this significantly speeds
up design, the draft schema must then be refined in the light
of the end-users’ requirements. Refinement mainly implies
the following activities [2]:

• Removing attributes that are deemed not interesting for
analyses.

• Finding descriptive attributes, i.e., attributes that should
not be used for aggregation while being useful for analy-
ses (e.g., the name of a customer).

• Discretizing attributes with dense domains to make them
usable for aggregation (e.g., the weight of a product).

• Finding optional attributes, i.e., attributes that are unde-
fined for some instances of the hierarchy (e.g., the State
attribute in a geographical hierarchy that also includes
non-US nations).

DOLAP 2025: 27th International Workshop on Design, Optimization,
Languages and Analytical Processing of Big Data, co-located with
EDBT/ICDT 2025, March 25, 2025, Barcelona, Spain
" stefano.rizzi@unibo.it (S. Rizzi)
� 0000-0002-4617-217X (S. Rizzi)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

• Labeling measures based on whether the SUM operator
can be used or not to aggregate them (e.g., the exchange
rate of dollars to euros, which cannot be summed).

Unfortunately, these activities can hardly be automated by
an algorithm because they rely on the end-users’ require-
ments on the one hand, and on the semantics of measures,
dimensions, and attributes as expressed by their names on
the other. Then, they must be carried out manually by de-
signers in collaboration with end-users.

This is a typical situation in software engineering where
Large Language Models (LLMs) may come to the rescue.
LLMs have proven to be a great tool for mimicking hu-
man linguistic abilities because of their capacity to learn
from large corpora, which has had a disruptive effect in a
number of fields, and more specifically in software engi-
neering [3, 4, 5]. In particular, the experiments on using
LLMs for conceptual design [6, 7] showed that they can help
designers with this task by producing draft solutions in a
timely manner —although some human intervention is still
necessary to guarantee the accuracy of the outcomes.

The goal of this work is to check whether LLMs can act
as facilitators for the refinement of conceptual schemata
of multidimensional cubes, so as to relieve designers from
their role or even, if possible, let refinement be carried out
entirely by end-users. The Dimensional Fact Model (DFM
[1]) is the target formalism for our study; as a typical LLM,
we use ChatGPT’s model GPT-4o [8], which has gained pop-
ularity for its smooth user interface and natural language
generating capabilities [9]. To achieve our goal, we formu-
late two research questions aimed at (i) understanding the
basic competences of ChatGPT in the refinement of a draft
DFM schema and (ii) investigating if the latter can be im-
proved via prompt engineering. An extended version of this
work is available in [10].

2. Related work
An experiment to use LLMs for creating specifications from
requirements documents in the realm of smart devices is
described in [7]. The authors contend that the fundamental
skill of conceptual design is still lacking, but they acknowl-
edge that LLMs are very useful in later phases of the devel-
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opment process, like creating class diagrams and generating
source code. Additional experiments with ChatGPT for con-
ceptual modeling are discussed in [6]. The authors note that
ChatGPT can rapidly produce an initial draft diagram from
a natural language description; nevertheless, considerable
modeling expertise is still needed to improve and verify the
outcomes. The authors of [9] describe an experiment they
conducted using ChatGPT and come to the conclusion that
while adding LLMs to human-driven conceptual design does
not dramatically affect outcomes, it does greatly reduce the
time required to complete the design by requiring fewer
design steps. In [11], many conceptual schemata produced
by an LLM are contrasted with a baseline of crowdsourced
solutions. On average, it is shown that crowdsourced ideas
are more innovative, whereas LLM-generated solutions are
more practical. In [12], the benefits of utilizing LLMs to
improve morphological analysis in conceptual design are
examined. The tests demonstrate how LLMs give designers
access to interdisciplinary knowledge; for optimal outcomes,
LLMs and designers should work closely together and use
smart prompt engineering. With relation to use case and
domain modeling, [13] examines how users engage with
LLMs during conceptual modeling. The primary conclu-
sions speak to the necessity of particular prompt templates
to assist users.

As to multidimensional conceptual design, the main types
of methods in the literature are supply-driven (or data-
driven), demand-driven (or requirement-driven), mixed, and
query-driven. Supply-driven methods begin by designing
conceptual schemata from the schemata of the data sources
(such as relational schemata); end-user requirements in-
fluence design by enabling the designer to choose which
data are important for making decisions and by figuring out
how to structure them using the multidimensional model
[14]. Demand-driven techniques begin with identifying
end-users’ business requirements, and only then do they
look into how to map these requirements onto the available
data sources [15]. Mixed techniques integrate requirements-
driven and data-driven methods; here, both end-user re-
quirements and data source schemata are used simultane-
ously [16]. The set of OLAP queries that end-users are
willing to formulate is the starting point for the creation
of a multidimensional schema in query-driven approaches.
These queries can be specified using SQL statements [17],
MDX expressions [18], pivot tables [19], or query trees [20].
Multidimensional modeling techniques are reviewed in [21],
and their cost-benefit analysis is provided in [22].

3. The investigation process
As stated in the Introduction, our goal in this work is to
assess the performance of ChatGPT in the refinement of a
draft DFM schema obtained by supply-driven design start-
ing from a source relational schema. We take as a reference
an advanced form of the DFM including, besides the basic
constructs of fact, measure, dimension, and attribute, the
advanced constructs of descriptive attributes, optional at-
tributes, and additivity. In this form, a DFM schema is a
graph whose root is the fact (represented as a box with the
fact name —e.g., SALES— followed by a list of measures —
e.g., Amount), whose other nodes are attributes —e.g., Prod-
uct— represented as circles and connected by arcs repre-
senting many-to-one roll-up relationships, i.e., functional
dependencies (FDs, for instance, Product → Category). De-

scriptive attributes are represented without a circle; op-
tional attributes are dashed; a non-additive measures is
represented by adding its aggregation operator to its name
(e.g., ExchangeRate (AVG)).

3.1. Research questions
We formulate the following research questions:

RQ.1: Is ChatGPT capable of refining a draft DFM schema
by (i) making attribute names more intuitive for end-
users, (ii) showing additivity, (iii) finding descriptive
attributes or discretizing them, (iv) finding optional
attributes, (v) completing time hierarchies, and (vi)
removing uninteresting attributes?

RQ.2: Can the performance of ChatGPT in refining a draft
DFM schema be improved via prompt engineering?

3.2. Experiment design
Our experiment relies on five cornerstones, described in the
following subsections.

3.2.1. Base criteria and technology

The criteria we follow for our experiment are listed below:

• Learning. For learning we adopt a prompt-based learn-
ing method, which is often used as an alternative to fine-
tuning [23]. Specifically, for RQ.1 we adopt 0-shot learn-
ing (which operates with no labeled examples); for RQ.2
we adopt few-shot learning and provide two training ex-
amples [24]. To further improve learning, for RQ.2 we
also employ the chain-of-thought technique [25], which
includes a list of reasoning steps in the examples.

• Reproducibility. The lack of reproducibility of the tests
is a significant challenge when working with LLMs be-
cause of their non-deterministic nature. The level of “cre-
ativity” of ChatGPT is ruled by its temperature parameter;
in principle, no creativity is required for refining draft
schemata, so we set the temperature to 0 for every chat.

• Domain. The issue domain is acknowledged to be crucial
for LLMs; the more domain knowledge an LLM has, the
better the model it generates [26]. Every example we
present describes actual domains, some of which are well-
known (like purchases) and others are less common (like
crossfit workouts).

• Conversation-awareness. The answers obtained from
ChatGPT may depend heavily on the previous questions
asked during a conversation. Thus, as also suggested in
[26], we start a new chat for each case.

• Iteration. In all our tests, the first answer obtained is
considered. However, keeping in mind that the refine-
ment process is inherently iterative, in RQ.2 we tried to
improve the first answer by further prompting ChatGPT
with suggestions.

As to the technological environment, experiments have
been carried out on the ChatGPT-4o model.

3.2.2. Input/output format

A draft DFM schema must be provided in input for each
of our research questions, and a refined one must be pro-
vided as output. We employ YAML1, a human-readable data
1https://yaml.org/spec/history/2001-08-01.html
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serialization language that is frequently used for configu-
ration files and in applications where data is being saved
or communicated, as a format to express DFM schemata.
Since ChatGPT is familiar with YAML, it does not need any
further instruction on the syntax of the language; never-
theless, it needs to be taught about the particular tags we
added to denote multidimensional concepts (e.g., measures
to introduce the list of measures).

3.2.3. Prompt templates

Following the suggestions given in [3, 4], the prompts we
adopt during our chats are structured according to the fol-
lowing templates:

• Instruction prompts. These are used in RQ.1 and RQ.2
to assign ChatGPT a task and explain how to execute
it. Their structure includes: (1) ROLE: the specific roles
assigned to ChatGPT and to the user to provide a context
for the task; (2) FORMAT: how the input and output (i.e.,
the draft and refined DFM schemata) should be coded;
(3) TASK: the task assigned; (4) PROCEDURE (optional):
the method suggested to perform the task; (5) EXAMPLE
(optional): an example of some test cases, an explanation
of the procedure suggested to solve it (according to the
chain-of-thought principle), and the expected output.

• Case prompts. These are used in RQ.1 and RQ.2 to assign
a specific task to ChatGPT. Their structure includes: (1)
INPUT: the input of the task (a draft DFM schema coded
in YAML); (2) TASK: the task assigned; (3) OUTPUT: the
output required (a refined DFM schema coded in YAML).

3.2.4. Test cases

We created a set of five test cases with increasing difficulties,
based on some exercises in supply-driven design assigned
to the students of a master course in Business Intelligence.
Each exercise provided a source relational schema; from this
schema, a draft DFM schema was created in supply-driven
mode using the FD-chasing algorithm in [1]. The number
of dimensions and measures in the test cases ranges from 3
to 5 and from 0 to 5, respectively, while the overall number
of attributes (dimensions plus hierarchy levels) ranges from
10 to 34. Two of the test cases include shared hierarchies
(i.e., nodes entered by two or more arcs, as often is the case
with temporal hierarchies).

3.2.5. Evaluation of the results

Refinement is, to some extent, a subjective process because it
largely depends on the end-user requirements. For instance,
given a ProductWeight attribute, both making it descriptive
and discretizing it into WeightRanges are reasonable refine-
ments. As a consequence, creating a single ground truth
for each test case is hardly feasible. So we had to proceed
manually, by first identifying a set of feasible refinements
for each part of each draft DFM schema, and then count-
ing an error in the solution proposed by ChatGPT for each
deviation from this set of feasible refinements.

3.3. Answer to RQ.1: Refinement
To put ChatGPT to the test on refinement, we fed it with our
five test cases. In order to enable a more precise evaluation
of the abilities of ChatGPT, separate prompts are submit-
ted for each refinement step entailed by RQ.1. Thus, for

Figure 1: Draft schema for test case C2 (only the first four
letters of relation names are shown)

each test case we adopt a simple instruction prompt that
explains the DFM constructs followed by a request to carry
out a list of refinement steps; no PROCEDURE and EXAM-
PLE components are present that suggest ChatGPT how to
operate. Then we formulate a sequence of case prompts
that (i) specify a draft DFM schema in input, (ii) assign as a
task one single refinement step, and (iii) require a refined
DFM schema in output. In the following we will separately
consider each step and briefly review its result.

(i) Make names intuitive. The attribute and measure
names in the draft DFM schema have the form RELA-
TION_NAME.attributeName, being RELATION_NAME
a table of the source relational schema used for deriving
the draft schema and attributeName one of its attributes
(see Figure 1). Making these names more intuitive for
end-users is mostly done correctly even if no specific pro-
cedure is suggested. In some cases the relation name was
simply dropped, in others it was prefixed to the attribute
name (e.g., SUPPLIER.name became SupplierName). In
case C5, the most complex one, the shared hierarchy was
mistaken and the direction of some FDs was inverted.

(ii) Label measures. ChatGPT is quite good at dealing with
additivity. This is surprising, considering that this task
is often not easy even for end-users. The main errors we
found were syntactical: the measure was renamed in the
YAML code under the “measure” tag but not under the
“dependencies” tag, resulting in additional fake nodes.

(iii) Find descriptive attributes. ChatGPT performs poorly
in this task, with an average of almost four errors per test
case. On the one hand, it does not know under which
conditions an attribute should be made descriptive or dis-
cretized; on the other, it does not use the correct syntax as
stated in the FORMAT section of the instruction prompt.

(iv) Find optional attributes. The identification of optional
attributes is strictly related to the end-user requirements.
Thus, for this refinement step the prompt simulates an
end-user statement; for instance, “Not all regions have
a state”. As in the previous case, ChatGPT always fails
in the syntax used (although it correctly identifies the
optional attribute).

(v) Complete time hierarchies. Here, ChatGPT correctly
adds Month → Year hierarchies to Date attributes. How-
ever, it always fails in recognizing and managing shared
hierarchies (in C4 and C5).

(vi) Remove attributes. For the last refinement step, an indi-
cation from end-users about which attributes are deemed
uninteresting for their analyses is required. Thus, like
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Figure 2: Number of errors in the refinement of draft DFM
schemata (top: basic prompts, bottom: improved prompts)

Figure 3: Refined schema for test case C2 with basic prompt
(top) and improved prompt (bottom; descriptive attributes are
shown with no circle, optional attributes with dashed circles)

for optional attributes, the prompt simulates an end-user
statement; for instance, “StoreId is not interesting to me”.
ChatGPT does not know how to correctly rearrange FDs
after removing an attribute, so it makes an average of 2
errors per test case for this refinement step.

The number of errors made at each step for each test
case is shown in Figure 2 (top). As an example, Figure 3
(top) shows the final DFM schema for test case C2; note
that descriptive and optional attributes are not shown as
such because the visualizer does not recognize the wrong
YAML syntax for them, and that the graph is non-connected
because some FDs were dropped. Overall, the performance
are not very good but acceptable, with an average number
of total refinement errors per test case equal to 9. The errors
clearly tend to increase with the complexity of the draft
schema; the main problems are due to the YAML syntax and
to the presence of shared hierarchies. The most critical re-
finement steps appear to be the identification of descriptive
attributes and the removal of uninteresting attributes.

3.4. Answer to RQ.2: Improved refinement
To answer RQ.2 we incrementally crafted an instruction
prompt by first trying to address the main issues emerged
in RQ.1, then progressively adding specific sentences to try
to fix the residual (or new) errors. The ROLE, FORMAT, and
TASK components are exactly like in RQ.1. However, for
each refinement step, we added a PROCEDURE component
to suggest ChatGPT how to operate and an EXAMPLE com-
ponent with two examples. The case prompts are exactly
the same used for RQ.1.

No errors in additivity and optional attributes are made
when the improved prompt is used. A single renaming error
is made in C5, due to an unrecognized shared hierarchy. A
few errors are made on time hierarchies, again due to shared
hierarchies. Overall, the main causes of errors are related
to descriptive/discretized attributes (in some cases, a few of
them are not identified) and to the removal of uninteresting
attributes (sometimes, arcs are not correctly repositioned).
Noticeably, all these errors could be fixed in a single iteration
via specific prompts, e.g., “Merge drop-off date and pick-up
date into a single date node” to fix a shared hierarchy. In
some cases, even generic prompts were used successfully to
fix errors, e.g., “Some arcs are missing, please try again” to
fix the FDs after removal. Figure 3 (bottom) shows the final
DFM schema obtained for C2 after correcting two errors in
descriptive attributes via an iteration prompt.

The results, in terms of number of errors made at each
step, are summarized in Figure 2 (bottom). It appears that
prompt engineering can significantly improve the accuracy
of refinement, with the average number of total refinement
errors per test case decreasing from 9 to 4. The main residual
errors are related to the recognition of shared hierarchies
and of descriptive/discretized attributes, as well as to the
removal of uninteresting attributes. In our tests, all these
errors could be fixed via an additional prompt that either
explains exactly how to proceed, or simply suggests to try
again paying more attention to some specific aspect.

4. Conclusion
In this work we have investigated the capabilities of Chat-
GPT to cope with a specific task in conceptual design,
namely, the refinement of draft DFM schemata obtained
by supply-driven conceptual design of multidimensional
data cubes —a task that is normally carried out manually
by designers and end-users in close collaboration. It turned
out that, although ChatGPT tends to mix the conceptual
level (DFM) with the logical level (star/snowflake schemata),
it can provide some acceptable results on test cases with
different degrees of complexity using simple prompts. No-
ticeably, our tests show that, when prompts are enhanced
with detailed instructions and examples, the results pro-
duced significantly improve in all cases. Indeed, when using
an improved prompt the average number of errors per multi-
dimensional concept across all test cases decreases from 0.5
to 0.2. In practice, the residual errors are still too many to
state that no involvement of designers is necessary and that
end-users can carry out refinement by directly interacting
with an LLM. However, we can conclude that LLMs can sig-
nificantly support designers in refinement, even considering
that all residual errors in our tests could quickly be fixed
via a simple additional prompt.
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