
Beyond Row Counts: Enhancing Workload-Aware Data Synthesis
Anupam Sanghi

Technische Universität Darmstadt, Germany

Abstract
Synthetic database generation is critical for testing and benchmarking database systems and applications. Current approaches focus on
workload-aware data synthesis that ensures volumetric similarity, where the output row cardinalities of query operators closely match
those of customer workloads. However, they often neglect critical features like data duplication and value ordering, which influence
the performance of fundamental database operations like hashing and sorting. This work addresses this lacuna by incorporating two
additional data characteristics: Duplication Distribution and Presortedness. We present (a) mathematical models for these characteristics,
(b) techniques to extract them from query execution, and (c) strategies to mimic them in synthetic data generation. These enhancements
aim to better simulate real-world database performance.

Keywords
Synthetic Data Generation, Workload-Aware Data Synthesis, Database Testing and Benchmarking, Data Duplication, Presortedness

1. Introduction
Workload-Aware Data Synthesis is Essential. In in-
dustrial practice, database vendors often perform tasks such
as testing and benchmarking database systems and applica-
tions, data masking, and assessing the performance impacts
of planned engine upgrades. These tasks require data that
mirrors customer environments [1, 2]. However, transfer-
ring original client data is often impractical due to privacy
concerns, making the use of workload-aware data genera-
tors essential [3].

Current Focus on Volumetric Similarity. Contempo-
rary workload-aware data generators [4, 5, 6, 7, 8, 9, 10, 11,
12, 13, 14, 15] utilize query execution plans derived from
customer workloads to provide volumetric similarity [10],
i.e., ensuring that the intermediate row cardinalities pro-
duced by query plans on synthetic data closely match those
observed on the original data. This preserves data layout
and flow during query execution.

Overlooked Characteristics. Despite its significance,
volumetric similarity does not capture other crucial data
characteristics, such as data duplication, value ordering, data
skew, and correlations, which significantly affect query per-
formance. SQL constructs like JOIN, GROUP BY, DISTINCT,
and UNION rely heavily on hash-based computations and
sorting operations, which are sensitive to factors like the
duplication of values and the presortedness (i.e. the extent
to which the data is already ordered). Excessive duplication
can cause inefficient hash bucket usage, leading to spills and
longer probe times, while partially sorted data reduces sort-
ing complexity, improving execution speed by minimizing
tuple movement and comparison costs.

Our Contributions. In this paper, we include additional
data characteristics, namely Duplication Distribution and
Presortedness, within the ambit of workload-aware data syn-
thesis. Specifically, we contribute the following:

DOLAP 2025: 27th International Workshop on Design, Optimization, Lan-
guages and Analytical Processing of Big Data, co-located with EDBT/ICDT
2025, March 25, 2025, Barcelona, Spain
Envelope-Open anupam.sanghi@tu-darmstadt.de (A. Sanghi)
GLOBE https://anupamsanghi.github.io/ (A. Sanghi)
Orcid 0000-0003-4764-3583 (A. Sanghi)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

1. Case studies demonstrating the impact of these char-
acteristics on query performance,

2. Mathematical modeling of these characteristics,
3. Techniques for extracting them from query execu-

tion, and
4. Initial strategies to mimic them in data synthesis.

By addressing these aspects, our work enhances the fidelity
of synthetic data, enabling more accurate simulations of
real-world database performance scenarios.

Organization. The paper is organized as follows: Section
2 presents case studies on the impact of Duplication Distri-
bution and Presortedness on query performance. Sections 3
and 4 present the formal characterization, extraction meth-
ods, and integration strategies for Duplication Distribution
and Presortedness, respectively. Section 5 concludes the
paper and outlines future research directions.

2. Case Studies

2.1. Case Study 1: Data Duplication
Data duplication significantly impacts operations like hash-
ing, commonly used in SQL constructs such as hash joins,
group by, distinct, and union. To illustrate this, we cre-
ated two datasets, 𝐷1 and 𝐷2, each containing two tables,
𝑆𝑡𝑢𝑑𝑒𝑛𝑡(𝑆) and 𝑅𝑒𝑔𝑖𝑠𝑡𝑒𝑟(𝑅), with identical row counts (|𝑅| =
655 million, |𝑆| = 82 million rows) across the corresponding
tables. For simplicity, both tables have only one column,
𝑆𝑁 𝑜, and 𝑅.𝑆𝑁 𝑜 references 𝑆.𝑆𝑁 𝑜 as a foreign key. In 𝐷1,
𝑅.𝑆𝑁 𝑜 has a uniform distribution on all values in 𝑆.𝑆𝑁 𝑜,
while in 𝐷2, 𝑅.𝑆𝑁 𝑜 contains the same value for all rows. We
executed the following SQL query on both datasets using
identical hardware, database platform (a popular commer-
cial engine), and system configuration.

Select * From R, S where R.SNo = S.SNo;

Although the query optimizer chose identical physical plans
with hash joins and produced the same output cardinalities,
execution times varied significantly – 18 min for 𝐷1 and
28 min for 𝐷2 (Table 1). The increased time for 𝐷2 is due
to spilling in the hash table computation, caused by data
duplication. This underscores the importance of modeling
Duplication Distribution in synthetic data generation.

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:anupam.sanghi@tu-darmstadt.de
https://anupamsanghi.github.io/
https://orcid.org/0000-0003-4764-3583
https://creativecommons.org/licenses/by/4.0/deed.en

Table 1
Query Execution Time for Different Data Duplications

Distribution Type Running Time

𝐷1 18 min
𝐷2 28 min

2.2. Case Study 2: Presortedness
SQL operations such as order by, sort-merge joins, group by,
distinct, and union often rely on sorting. The complexity
of sorting depends on the tuple movements and number
of comparisons. The degree of presortedness, or the order
in the input data, directly influences this complexity. To
demonstrate this, we used an instance of the INVENTORY
table (8.4 GB, over 400 million tuples) from the TPC-DS [16]
benchmark. We selected the column inv_qty_on_hand and
created a new table 𝑇 (𝐴, 𝐵) with one sorted and one ran-
domized copy of the column. We then executed ORDER BY
ASC and ORDER BY DESC queries on both columns. Table 2
shows the execution times, where Column Order indicates
the existing order of the data, and Sort Order specifies the
query’s sorting direction. When the column order matched
the sort order, no tuple movement was required, resulting
in the shortest execution time.

3. Duplication Distribution (DD)
This section introduces a framework for Duplication Dis-
tribution (DD), covering its theoretical and computational
aspects. It presents a pair-based representation for quanti-
fying duplication, methods for measuring distance between
DD representations, and techniques for extracting dupli-
cation information. It also explores initial strategies for
mimicking DD in data generation.

3.1. Characterization
A DD, denoted as 𝑑, describes how often values are dupli-
cated in a table 𝑇 for a target set of columns 𝐶. It is repre-
sented as a set of pairs {(𝑚, 𝑓)}, denoting that the number
of distinct 𝐶 values with multiplicity 𝑚 is 𝑓. For example,
the column values [4, 2, 3, 1, 4] yield 𝑑 = {(1, 3), (2, 1)}: three
values (1, 2, 3) appear once (𝑚 = 1, 𝑓 = 3), and one value (4)
appears twice (𝑚 = 2, 𝑓 = 1).

The DD already captures the total row-cardinality infor-
mation. This can be computed as: ‖𝑑‖ = ∑𝑘

𝑖=1(𝑚𝑖 × 𝑓𝑖) = |𝑇 |,
where 𝑑 = {(𝑚1, 𝑓1), (𝑚2, 𝑓2), … , (𝑚𝑘, 𝑓𝑘)}, and 𝑘 is the num-
ber of (𝑚, 𝑓) pairs in 𝑑. Thus, ensuring that two tables have
matching DDs inherently implies volumetric similarity.
Note that the DD captures the frequency distribution

of value multiplicities, unlike histograms, which focus on
the frequency of individual values. This allows DD to bet-

Table 2
Query Execution Time for Varied Column and Sort Orders

Column Order Sort Order Time (in min)

Ascending Ascending 1.5
Random Ascending 5.1
Ascending Descending 3.9
Random Descending 4.9

ter account for data duplication without exposing data val-
ues. Furthermore, since histograms essentially capture row
counts over a range query, existing work, such as [17], can
integrate them into the data generation pipeline.

3.2. Distance Between DDs
Linearization. To compare two DDs, each is transformed
into a one-dimensional array 𝜆(𝑑). This is done by repeat-
ing each value 𝑚 exactly 𝑓 times and sorting in descending
order. For example, 𝑑1 = {(5, 1), (4, 2), (3, 1), (1, 2)} becomes
𝜆(𝑑1) = [5, 4, 4, 3, 1, 1]. This transformation simplifies the
comparison while preserving the multiplicity distribution.
When comparing DDs having linearizations of differing
sizes, the shorter array is padded with zeros, reflecting that
any additional values in the distribution have a frequency of
zero. For 𝑑2 = {(4, 4), (2, 1)} compared to 𝜆(𝑑1), the padded
form is 𝜆(𝑑2) = [4, 4, 4, 4, 2, 0]. This ensures equal-length
arrays, maintaining semantic fidelity while facilitating com-
putation.

DistanceMetric. The distance between two DDs is calcu-
lated as the normalized sum of absolute differences between
their corresponding elements in the linearized arrays:

Δ(𝑑1, 𝑑2) =
1
2|𝑇 |

|𝜆(𝑑1)|
∑
𝑖=1

|𝜆(𝑑1)[𝑖] − 𝜆(𝑑2)[𝑖]| (1)

For the above example, the distance is Δ(𝑑1, 𝑑2) =
|5−4|+|4−4|+|4−4|+|3−4|+|1−2|+|1−0|

2×18 = 0.11. The normalization
factor ensures that Δ ranges between 0 (identical) and 1
(maximum disparity). The maximum possible distance oc-
curs between two extremes: {(|𝑇 |, 1)}, where all values in
𝑇 are identical, and {(1, |𝑇 |)}, where all values are distinct.
The distance is Δ𝑚𝑎𝑥 = 1 − 1

|𝑇 | , which approaches 1 as the
table size increases.
This metric works effectively by first aligning the dis-

tributions in descending order and then comparing them
element-wise. This ensures minimal dissimilarity, as match-
ing the largest values first minimizes the difference.

3.3. DD Size
For scalability in data synthesis, the DD must remain com-
pact. Its size, denoted as 𝑘, is determined by the number of
distinct multiplicities for 𝐶 values in 𝑇. The size is maximum
for the case where 𝑑𝑚𝑎𝑥 = {(1, 1), (2, 1), … , (𝑘, 1)}. Here,
‖𝑑𝑚𝑎𝑥‖ = 1 + 2 + … + 𝑘 = |𝑇 |, leading to:

𝑘 = 𝒪(√|𝑇 |) (2)

Thus, even for a table with a trillion rows, the DD can be
stored in just a fewmegabytes. Experimental results confirm
this: for non-key columns in four tables from the 1 GB TPC-
DS benchmark, the total size of DD vectors was under 40 KB.
Table 3 summarizes the minimum, average, and maximum
𝑘 values across these tables.

Scalable Approximation. To further enhance scalability,
binning strategies approximate the DD by grouping similar
multiplicities into fewer bins. Geometric means are used
as bin representatives to minimize q-error [18], a common
distance metric for cardinality estimation. Two alternative
strategies can be employed for binning:

Table 3
DD vector Size

Table 𝑘 size 𝒪(√|𝑇 |)
(#Rows in million) Min., Avg., Max.

store_sales (2.6) 6, 257, 924 1620
catalog_sales (1.4) 6, 194, 864 1195
customer (0.1) 5, 24, 37 317
inventory (11.7) 1, 3, 5 3428

1. Error Threshold, which minimizes the number of
bins while maintaining multiplicity error within a
specified threshold 𝜖. This greedy method (also op-
timal) groups multiplicities incrementally, creating
a new bin whenever the distance between extreme
multiplicities and the bin’s mean exceeds 𝜖; and

2. Size Threshold, which fixes the number of bins
and minimizes error within this constraint. This
approach reduces to one-dimensional k-means clus-
tering, for which established techniques [19] can
compute optimal bin boundaries.

These approximations balance accuracy and storage, ensur-
ing DD’s scalability for deployment, with the choice guided
by priorities on error control or storage.

3.4. Extraction
Database systems expose input/output row cardinalities for
operators in a query execution plan but lack duplication
details. This necessitates DD extraction for target operators,
who are sensitive to duplicates. We propose two strategies:

Offline Approach. This non-invasive approach com-
putes the DD for 𝐶 at the input of a target operator 𝑜𝑝 using
an SQL query. Two GROUP BY operations are performed:
the first calculates the multiplicity of each distinct 𝐶 value
in table 𝑇 (the input to 𝑜𝑝), and the second aggregates these
multiplicities into the DD. The SQL query is:

Select 𝑚, count(*) as 𝑓 From
(Select 𝐶, count(*) as 𝑚 FROM 𝑇 Group By 𝐶)
Group By 𝑚;

Here, to capture the intermediate table serving as 𝑜𝑝’s input,
the inner query can include relevant constraints.

Online Approach. This dynamic method com-
putes the DD incrementally during query execution
using two structures: (a) ValueMultiplicity, track-
ing the multiplicity of each distinct 𝐶 value, and (b)
MultiplicityFrequency, counting values with specific
multiplicity. As each row hits 𝑜𝑝, the multiplicity of its value
is incremented in ValueMultiplicity. Simultaneously,
MultiplicityFrequency is adjusted by decrementing the
old count and incrementing the new one. This mirrors
the offline approach, where the inner query computes
value multiplicities, and the outer query aggregates them.
Implementing this approach requires query executor
modifications, enabling real-time updates of the DD during
execution.

Performance Considerations. Since system testing is
not a real-time activity, the offline approach remains vi-
able. However, for complex queries or large datasets, the

additional queries per target operator may pose scalability
challenges. In such scenarios, the online approach can offer
better performance. It can also leverage advancements in
approximate frequency counting for streaming data [20],
enabling rapid computations with minimal accuracy loss.

3.5. Mimicking
Mimicking duplication distribution is closely tied to sat-
isfying projection constraints [21], which take the form
|𝜋𝐴(𝜎𝑝(𝑇1 ⋈ 𝑇2 ⋈ … ⋈ 𝑇𝑁))| = 𝑐. Here, |𝜋𝐴(𝜎𝑝(⋅))| rep-
resents the count of distinct values in column-set 𝐴 after
applying a filter predicate 𝑝 on the join of tables 𝑇1, 𝑇2, … , 𝑇𝑁,
constrained to equal a constant 𝑐. Projection constraints, in
fact, are a special case of DD constraints, as the DD vector
encapsulates both distinct counts and their multiplicities.

To highlight the key difference in incorporating DD into
the data generation pipeline, this section focuses on the sim-
pler case of single-column table synthesis. This approach
can be extended to the more general case of constraints
spanning multiple columns or overlapping column sets us-
ing techniques from [21, 22]. We now formally discuss the
specific case under consideration.

Consider a single-column table 𝐶 with a set of filter pred-
icates 𝑃. For each predicate 𝑝 ∈ 𝑃, let the corresponding DD
of values satisfying 𝑝 be 𝑑𝑝. The predicates in 𝑃 can be used
to partition the domain of 𝐶 into a set of disjoint intervals
𝐼, where each interval is fully included in or excluded from
each predicate [10]. Define a mapping 𝜙(𝑝) ⊆ 𝐼 as the set of
intervals 𝑖 ∈ 𝐼 contained in the predicate 𝑝.
For each interval 𝑖 ∈ 𝐼, we identify predicates in 𝑃 that

include 𝑖. For each multiplicity 𝑚 common to the DDs
of these predicates, a variable 𝑥𝑚,𝑖 represents the num-
ber of values with multiplicity 𝑚 in 𝑖. The DD 𝑑𝑝 =
{(𝑚1, 𝑓1), (𝑚2, 𝑓2), … , (𝑚𝑘, 𝑓𝑘)} is expressed as a system of
equations enforcing that the sum of variables corresponding
to 𝑚𝑗 across all intervals in 𝜙(𝑝) containing 𝑚𝑗 equals 𝑓𝑗:

∑
𝑖∈𝜙(𝑝)

𝑥𝑚𝑗,𝑖 = 𝑓𝑗 ∀(𝑚𝑗, 𝑓𝑗) ∈ 𝑑𝑝 (3)

Solvers like Z3 [23] can compute non-negative integral
solutions to this linear feasibility problem. The solution
provides the DD (𝑑𝑖) for each interval 𝑖. To generate values
for an interval 𝑖 based on 𝑑𝑖 = {(𝑚1, 𝑓1), (𝑚2, 𝑓2), … , (𝑚𝑘, 𝑓𝑘)},
we select 𝑓1+𝑓2+…+𝑓𝑘 distinct values within 𝑖, generating
𝑚1 copies for the first 𝑓1 values, 𝑚2 copies for the next 𝑓2
values, and so forth.

4. Presortedness
This section formalizes the concept of Presortedness,
presents a method to extract it from query execution, and
outlines initial strategies for integrating Presortedness into
data synthesis pipelines.

4.1. Characterization
Given a table 𝑇, let 𝐶 denote the target set of columns defin-
ing the sorting criteria. To compute the degree of Presort-
edness of 𝑇 with respect to 𝐶, we quantify how closely the
values in 𝐶 align with their sorted counterpart. Let 𝑋 repre-
sent the original values in 𝐶 and 𝑌 represent the fully sorted
version of these values. The Spearman’s rank correlation co-
efficient [24] captures the monotonic relationship between

Table 4
Execution Time of Order By Queries on various base tables and
columns of TPC-DS 1 GB instance without and with Presorted-
ness computation

Table Name
(Row Count)

Column
Name

Running Time
original with 𝜌

store (12) store_name 0.1 ms 0.2 ms
customer_address (50K) city 0.7 s 0.9 s

customer (100K) first_name 0.9 s 0.9 s
store_sales (2.6M) quantity 9 s 10 s
inventory (11.7M) warehouse_sk 28 s 29 s

𝑋 and 𝑌 by computing the correlation between their respec-
tive rank transformations. In this case, the rank of a value is
its position in the sorted array 𝑌. Therefore, Presortedness
𝜌 is given by:

𝜌 =
cov(rank(𝑋), rank(𝑌))

𝜎rank(𝑋)𝜎rank(𝑌)
, (4)

where rank(𝑋) and rank(𝑌) denote the ranks of the original
and sorted values, cov represents covariance, and 𝜎 denotes
standard deviation. When the values in 𝐶 are distinct, the
formula simplifies to:

𝜌 = 1 −
6∑|𝑇 |

𝑖=1(rank(𝑋𝑖) − rank(𝑌𝑖))2

|𝑇 |(|𝑇 |2 − 1)
. (5)

The value of Presortedness ranges from -1 to 1. A value
of 0 reflects maximum randomness in the arrangement of
the data. A positive value suggests that more elements are
closer to their sorted positions, whereas a negative value
indicates greater deviation from sorted order.

4.2. Extraction
To extract Presortedness for 𝐶 used by the target sort opera-
tor 𝑜𝑝 during query execution, we provide the input tuples
(original array) to and output tuples (sorted array) from 𝑜𝑝
to a Spearman’s rank correlation coefficient calculator. The
calculator computes the ranks using the sorted array and
calculates Presortedness as described in Section 4.1.
We implemented the above strategy within the Post-

greSQL engine. The time overheads incurred due to the
additional code for Presortedness computation are shown in
Table 4. The results indicate that the overheads are viable.
A non-invasive extraction would require materializing the
input and output tables of the sort operator and performing
the same implementation outside the system.

4.3. Mimicking
To replicate Presortedness from the original data in synthetic
data, we utilize the relationship between the percentage of

(a) Ascending (b) Descending

Figure 1: Presortedness vs. Percentage of Sorted Tuples

Table 5
Comparing Expected vs Obtained Presortedness

#Tuples Desired 𝜌 Obtained 𝜌

1000 0.53 0.58
10000 -0.67 -0.65
10000 0.12 0.13
100000 0.82 0.84

sorted tuples and Presortedness.

Presortedness vs. Percentage of Sorted Tuples. To
establish this relationship, we begin with an array of 𝑛 val-
ues ranging from 1 to 𝑛, which is shuffled to achieve a 𝜌
value close to 0. Next, we incrementally select different
percentages of the array, sort them, and replace the selected
tuples in their original positions, but in sorted order. Specif-
ically, if the tuples are selected from positions 𝑖1, 𝑖2, … , 𝑖𝑘,
the first tuple in the sorted order is placed at 𝑖1, the sec-
ond at 𝑖2, and so on. This process is repeated for varying
percentages of sorted tuples and different values of 𝑛, consid-
ering both ascending and descending order. The resulting
relationship, illustrated in Figure 1 for 𝑛 = 10000, shows
similar behaviour for other values of 𝑛 as well. The Presort-
edness for each percentage is averaged over different sets
of selected tuples.

Mimicking Presortedness. To achieve the desired Pre-
sortedness in a table 𝑇, we sort the required percentage of
tuples. This percentage can be determined using the inverse
of the established relationship between sorted tuples and
Presortedness or by applying binary search, as the relation-
ship is monotonic. In our experiments, we implemented
the binary search that iteratively adjusts the percentage
to match the desired Presortedness. For each percentage,
the selected tuples are chosen randomly. The results, com-
paring the desired and obtained Presortedness values, are
shown in Table 5. The computed correlation coefficient is
very close to the actual correlation coefficient, suggesting
that this method offers a promising direction for mimicking
Presortedness.

5. Conclusion
This paper highlights the need to go beyond volumetric
similarity in workload-aware data synthesis by incorporat-
ing critical characteristics like Duplication Distribution and
Presortedness. Case studies demonstrate their impact on
query performance, underscoring their importance for real-
istic data generation. We formalized these characteristics,
proposed extraction methods, and outlined strategies to in-
tegrate them into synthesis pipelines, enhancing the fidelity
of synthetic data for benchmarking. Future work will ex-
plore incorporating query execution metrics, such as buffer
usage, CPU load, and disk I/O patterns, to further simulate
real-world scenarios.

Acknowledgments
I would like to thank Jayant Haritsa, Carsten Binnig, Tarun
Patel and Shadab Ahmed for their support and feedback.

References
[1] T. Rabl, M. Danisch, M. Frank, S. Schindler, H.-A. Jacob-

sen, Just can’t get enough: Synthesizing big data, in:
Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’15,
2015, p. 1457–1462. doi:10.1145/2723372.2735378.

[2] E. Shen, L. Antova, Reversing statistics for scalable
test databases generation, in: Proceedings of the
Sixth InternationalWorkshop on Testing Database Sys-
tems, DBTest ’13, 2013, pp. 1–6. doi:10.1145/2479440.
2479445.

[3] A. Sanghi, J. R. Haritsa, Synthetic data generation
for enterprise dbms, in: Proceedings of the 2023
IEEE 39th International Conference on Data Engi-
neering, ICDE ’23, 2023, pp. 3585–3588. doi:10.1109/
ICDE55515.2023.00274.

[4] C. Binnig, D. Kossmann, E. Lo, M. T. Özsu, Qagen: gen-
erating query-aware test databases, in: Proceedings of
the 2007 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’07, 2007, p. 341–352.
doi:10.1145/1247480.1247520.

[5] E. Lo, C. Binnig, D. Kossmann, M. Tamer Özsu, W.-
K. Hon, A framework for testing dbms features,
The VLDB Journal 19 (2010) 203–230. doi:10.1007/
s00778-009-0157-y.

[6] E. Lo, N. Cheng, W.-K. Hon, Generating databases
for query workloads, Proc. VLDB Endow. 3 (2010)
848–859. doi:10.14778/1920841.1920950.

[7] E. Lo, N. Cheng, W. W. Lin, W.-K. Hon, B. Choi, My-
benchmark: generating databases for query work-
loads, The VLDB Journal 23 (2014) 895–913. doi:10.
1007/s00778-014-0354-1.

[8] A. Arasu, R. Kaushik, J. Li, Data generation us-
ing declarative constraints, in: Proceedings of the
2011 ACM SIGMOD International Conference on Man-
agement of Data, SIGMOD ’11, 2011, p. 685–696.
doi:10.1145/1989323.1989395.

[9] A. Arasu, R. Kaushik, J. Li, Datasynth: generating syn-
thetic data using declarative constraints, Proc. VLDB
Endow. 4 (2011) 1418–1421. doi:10.14778/3402755.
3402785.

[10] A. Sanghi, R. Sood, J. R. Haritsa, S. Tirthapura, Scalable
and dynamic regeneration of big data volumes, in:
Proceedings of the 21st International Conference on
Extending Database Technology, 2018, EDBT ’18, 2018,
pp. 301–312. doi:10.5441/002/edbt.2018.27.

[11] A. Sanghi, R. Sood, D. Singh, J. R. Haritsa, S. Tirthapura,
Hydra: a dynamic big data regenerator, Proc. VLDB
Endow. 11 (2018) 1974–1977. doi:10.14778/3229863.
3236238.

[12] A. Gilad, S. Patwa, A. Machanavajjhala, Synthesizing
linked data under cardinality and integrity constraints,
in: Proceedings of the 2021 ACM SIGMOD Interna-
tional Conference on Management of Data, SIGMOD
’21, 2021, p. 619–631. doi:10.1145/3448016.3457242.

[13] Y. Li, R. Zhang, X. Yang, Z. Zhang, A. Zhou,
Touchstone: generating enormous query-aware test
databases, in: Proceedings of the 2018 USENIX An-
nual Technical Conference, USENIX ATC ’18, 2018, p.
575–586.

[14] Q. Wang, Y. Li, R. Zhang, K. Shu, Z. Zhang, A. Zhou, A
scalable query-aware enormous database generator for
database evaluation, IEEE Transactions on Knowledge
and Data Engineering 35 (2023) 4395–4410. doi:10.

1109/TKDE.2022.3153651.
[15] J. Yang, P. Wu, G. Cong, T. Zhang, X. He, Sam:

Database generation from query workloads with su-
pervised autoregressive models, in: Proceedings of
the 2022 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’22, 2022, p. 1542–1555.
doi:10.1145/3514221.3526168.

[16] Transaction Processing Performance Council, TPC
BenchmarkTM DS Standard Specification, 2021. URL:
http://www.tpc.org/tpcds/, version 3.2.0.

[17] A. Sanghi, R. Santhanam, J. R. Haritsa, Towards gen-
erating hifi databases, in: Proceedings of the 26th
International Conference on Database Systems for
Advanced Applications, 2021, DASFAA ’21, 2021, p.
105–112. doi:10.1007/978-3-030-73194-6_8.

[18] G. Moerkotte, T. Neumann, G. Steidl, Preventing bad
plans by bounding the impact of cardinality estimation
errors, Proc. VLDB Endow. 2 (2009) 982–993. doi:10.
14778/1687627.1687738.

[19] H. Wang, M. Song, Ckmeans. 1d. dp: optimal k-
means clustering in one dimension by dynamic pro-
gramming, The R journal 3 (2011) 29. doi:10.32614/
RJ-2011-015.

[20] G. S. Manku, R. Motwani, Approximate frequency
counts over data streams, Proc. VLDB Endow. 5 (2012)
1699. doi:10.14778/2367502.2367508.

[21] A. Sanghi, S. Ahmed, J. R. Haritsa, Projection-
compliant database generation, Proc. VLDB Endow.
15 (2022) 998–1010. doi:10.14778/3510397.3510398.

[22] A. Sanghi, S. Ahmed, P. Rawale, J. R. Haritsa, Data
Generation using Join Constraints, Technical Report,
Indian Institute of Science, 2022. URL: https://dsl.cds.
iisc.ac.in/publications/report/TR/TR-2022-01.pdf.

[23] L. De Moura, N. Bjørner, Z3: an efficient smt solver,
in: Proceedings of the Theory and Practice of Soft-
ware, 14th International Conference on Tools and Al-
gorithms for the Construction andAnalysis of Systems,
TACAS’08/ETAPS’08, 2008, p. 337–340. doi:10.1007/
978-3-540-78800-3_24.

[24] Spearman’s rank correlation coefficient, In Wikipedia,
URL: https://en.wikipedia.org/wiki/Spearman%27s_
rank_correlation_coefficient, 2024. Accessed: 16-02-
2025.

http://dx.doi.org/10.1145/2723372.2735378
http://dx.doi.org/10.1145/2479440.2479445
http://dx.doi.org/10.1145/2479440.2479445
http://dx.doi.org/10.1109/ICDE55515.2023.00274
http://dx.doi.org/10.1109/ICDE55515.2023.00274
http://dx.doi.org/10.1145/1247480.1247520
http://dx.doi.org/10.1007/s00778-009-0157-y
http://dx.doi.org/10.1007/s00778-009-0157-y
http://dx.doi.org/10.14778/1920841.1920950
http://dx.doi.org/10.1007/s00778-014-0354-1
http://dx.doi.org/10.1007/s00778-014-0354-1
http://dx.doi.org/10.1145/1989323.1989395
http://dx.doi.org/10.14778/3402755.3402785
http://dx.doi.org/10.14778/3402755.3402785
http://dx.doi.org/10.5441/002/edbt.2018.27
http://dx.doi.org/10.14778/3229863.3236238
http://dx.doi.org/10.14778/3229863.3236238
http://dx.doi.org/10.1145/3448016.3457242
http://dx.doi.org/10.1109/TKDE.2022.3153651
http://dx.doi.org/10.1109/TKDE.2022.3153651
http://dx.doi.org/10.1145/3514221.3526168
http://www.tpc.org/tpcds/
http://dx.doi.org/10.1007/978-3-030-73194-6_8
http://dx.doi.org/10.14778/1687627.1687738
http://dx.doi.org/10.14778/1687627.1687738
http://dx.doi.org/10.32614/RJ-2011-015
http://dx.doi.org/10.32614/RJ-2011-015
http://dx.doi.org/10.14778/2367502.2367508
http://dx.doi.org/10.14778/3510397.3510398
https://dsl.cds.iisc.ac.in/publications/report/TR/TR-2022-01.pdf
https://dsl.cds.iisc.ac.in/publications/report/TR/TR-2022-01.pdf
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-540-78800-3_24
https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient
https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient

	1 Introduction
	2 Case Studies
	2.1 Case Study 1: Data Duplication
	2.2 Case Study 2: Presortedness

	3 Duplication Distribution (DD)
	3.1 Characterization
	3.2 Distance Between DDs
	3.3 DD Size
	3.4 Extraction
	3.5 Mimicking

	4 Presortedness
	4.1 Characterization
	4.2 Extraction
	4.3 Mimicking

	5 Conclusion

