
Workload Cost Optimization Using Dynamic Replication in
Decentralized Systems

Ryoga Yoshida1,∗,†, Chuan Xiao1,† and Makoto Onizuka1,†

1Osaka University, Yamadaoka, Suita, Osaka, 565-0871, Japan

Abstract
Data replication plays a crucial role in decentralized systems by enhancing durability and availability. The ADR algorithm is a dynamic
replication method that optimizes communication costs by adaptively adjusting the number of replicas. However, it overlooks workload
costs, which are critical in real-world applications, leading to suboptimal performance, especially in parallel processing environments.
To address this limitation, we propose an enhanced ADR algorithm that incorporates both communication and computational costs.
Our method refines the cost model by considering the maximum-cost execution path in update transactions, ensuring a more accurate
workload estimation. Additionally, we introduce an improved expansion-contraction test that efficiently optimizes replication placement.
Experimental evaluations across various network topologies demonstrate that the proposedmethod achieves up to 12% higher throughput
than the existing ADR algorithm, particularly in read-heavy environments. These results indicate that our approach provides a more
balanced and efficient replication strategy, adapting to diverse workload patterns in decentralized systems.

Keywords
dynamic replication, decentralized systems, transaction management

1. Introduction
Data replication is a fundamental technique in decentralized
systems, where data is replicated and stored across multiple
processors. When writing data, transactions synchronize
update transactions on the replicas across multiple proces-
sors to ensure durability. When reading data, the data can
be retrieved from any processor holding the latest version,
thereby maintaining consistency.
The number of processors where the latest data is repli-

cated (we call replication processors) is a critical factor in
data replication and can significantly impact system perfor-
mance; e.g., in systems with read-heavy workloads, if the
number of replication processors is small, it leads to frequent
data retrieval from remote replication processors, degrad-
ing performance. In contrast, in systems with update-heavy
workloads, if the number of replication processors is large, it
increases the update load and degrades performance. Thus,
for read-heavy workloads, the number of replication proces-
sors should be large to reduce the number of data retrievals
from remote replication processors, while for update-heavy
workloads, the number of replication processors should be
small to decrease the update loads.
The optimal number of replication processors typically

depends on the frequency of read and update transactions
on each processor. In many decentralized systems, system
designers must define the number of replication processors
statically during the design phase, and then manually adjust
it during the production phase [1]. However, this approach
is suboptimal in environments with frequently fluctuating
read/update transactions and is also inefficient due to the
manual effort required by system designers. To overcome
this, dynamic replication techniques are promising in the
sense that they adaptively adjust the number of replication

DOLAP 2025: 27th International Workshop on Design, Optimization, Lan-
guages and Analytical Processing of Big Data, co-located with EDBT/ICDT
2025, March 25, 2025, Barcelona, Spain
∗Corresponding author.
Envelope-Open yoshida.ryoga@ist.osaka-u.ac.jp (R. Yoshida);
chuanx@ist.osaka-u.ac.jp (C. Xiao); onizuka@ist.osaka-u.ac.jp
(M. Onizuka)
GLOBE https://sites.google.com/site/chuanxiao1983 (C. Xiao); http:
//www-bigdata.ist.osaka-u.ac.jp/professor/onizuka/onizuka_en.html
(M. Onizuka)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

processors.
Specifically, the ADR algorithm [1] is one of these dy-

namic replication techniques. It adaptively changes the
number of replication processors according to the read/up-
date transactions by periodically making the expansion and
contraction tests. However, it has two issues: (1) it focuses
solely on optimizing communication cost and does not con-
sider workload cost, which is more critical in real-world
applications, and (2) prioritizes minimizing communication
cost, which can lead to longer overall transaction execution
times.
To overcome the above issues, we propose an enhanced

ADR algorithm. Specifically, in addition to communication
costs, we consider processor computational costs, allowing
for a more accurate estimation of overall workload cost.
Furthermore, since the execution time of update transac-
tions in parallel environments is determined by the heaviest
computational path, we redefine update transaction cost
by focusing only on the maximum cost path, rather than
summing up the weights of all paths.

2. Preliminaries
In decentralized systems, minimizing the workload cost
across the entire system is a critical factor. We focus on ap-
plications that perform system-wide operations with the ob-
jective of reducing overall workload cost. Various dynamic
replication algorithms have been proposed [1, 2, 3, 4, 5],
among which the ADR algorithm [1] is designed to opti-
mize overall communication cost by adaptively modifying
the replication scheme 𝑅. Given its objective, it is consid-
ered the most relevant algorithm for achieving the goal of
this study.

2.1. Replication Scheme
A replication scheme 𝑅 represents the set of processors that
hold the latest replicas and forms a variable-sized “amoeba”
that shifts toward the center of the network of read/write
(read/update) requests. 𝑅 is created for each data object.
When the number of read requests increases, the ADR al-
gorithm expands 𝑅 to reduce the communication cost by
responding to read requests from a local processor or nearby

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:yoshida.ryoga@ist.osaka-u.ac.jp
mailto:chuanx@ist.osaka-u.ac.jp
mailto:onizuka@ist.osaka-u.ac.jp
https://sites.google.com/site/chuanxiao1983
http://www-bigdata.ist.osaka-u.ac.jp/professor/onizuka/onizuka_en.html
http://www-bigdata.ist.osaka-u.ac.jp/professor/onizuka/onizuka_en.html
https://creativecommons.org/licenses/by/4.0/deed.en

p1 p2

p3

p4 p5

p6

p7

p8

Figure 1: Replication scheme example, which consists of proces-
sors 𝑝4 and 𝑝5, depicted in green.

processors. In contrast, when the number of write requests
increases, the ADR algorithm shrinks 𝑅 to reduce the over-
head of updating replicas in 𝑅. Hereafter, the processors
included in 𝑅 are referred to as 𝑅 processors.

For data reading, if the processor where a read request oc-
curs belongs to 𝑅, the processor reads the local replica. If the
processor does not belong to 𝑅, the processor sequentially
sends read requests to its neighboring processors. Once
the request reaches an 𝑅 processor, it returns the replica to
the requesting processor. For data writing, the replicas in
all 𝑅 processors are updated synchronously by repeatedly
sending the data to neighboring processors.
As an example, consider the communication network

shown in Figure 1. The replication scheme 𝑅 consists of
processors 𝑝4 and 𝑝5, depicted in green. When reading
data at processor 𝑝1, the nearest 𝑅 processor is processor
𝑝4, from which the data is fetched. When writing data at
processor 𝑝1, the update is sequentially sent to 𝑝4 and 𝑝5
via 𝑝2, and the replicas are updated on those processors.

Under the ADR algorithm, the replication scheme 𝑅 al-
ways forms a single connected set of processors. In addition,
𝑅 is created in various object units, such as a tuple, block, or
text file. It is guaranteed that when the read-write pattern
at each processor – the number of reads and writes issued
by each processor – is regular, the replication scheme con-
verges to the optimal configuration, regardless of the initial
scheme [1].

2.2. Expansion and Contraction
𝑅 is periodically adjusted through expansion and contrac-
tion1 every fixed period. Expansion occurs in systems
with read-intensive workloads, increasing the size of 𝑅 (i.e.,
adding more processors to 𝑅) to reduce the communication
cost between the requesting processor and the 𝑅 proces-
sors. In contrast, contraction occurs in systems with write-
intensive workloads, decreasing the size of 𝑅 (i.e., removing
processors from 𝑅) to reduce the communication cost be-
tween the 𝑅 processors. Whether to expand or contract 𝑅
is determined by executing the expansion and contraction
tests, respectively.

2.3. Issues of the ADR Algorithm
The ADR algorithm focuses solely on optimizing communi-
cation cost and does not consider workload cost, which is
more critical in real-world applications. As a result, it fails
to consider disparities in processing costs among processors
or disparities in the execution times of transactions between
read and write operations.
Additionally, in parallel processing environments, there

are cases where communication time increases, but trans-

1There is also an operation called “Switch”. However, since the main
algorithm consists primarily of expansion and contraction, it is omitted
here for simplicity.

action execution time decreases. In such situations, the
ADR algorithm prioritizes minimizing communication cost,
which can inadvertently prolong overall transaction execu-
tion time.

3. Proposed Method
This section introduces an improved version of the ADR
algorithm. As noted earlier, the ADR algorithm optimizes
only communication cost, neglecting workload cost, which
is more crucial in real-world applications. To overcome this
issue, the proposed method modifies the cost function of
the ADR algorithm and redefines the optimization equation
for a more realistic workload representation.

Specifically, in addition to communication costs, the pro-
posed method considers processor computational costs, al-
lowing for a more accurate estimation of overall workload
cost. Furthermore, since update transaction processing time
in parallel execution environments is determined by the
heaviest computational path, the proposedmethod redefines
update transaction cost by focusing only on the maximum
cost path, rather than summing up the weights of all paths.

3.1. Optimization Formula
We revise the ADR algorithm to optimize the workload cost
across the entire system. To optimize the workload cost
rather than the communication cost, we extend the objective
formula using not only the number of communications but
also its associated read/update cost.
The workload cost and optimization formulation are de-

fined as follows:

Cworkload(𝑅) ∶= ∑
𝑣∈𝑉

(#U(𝑣 , 𝑅) × Cu(𝑣 , 𝑅)

+ #F(𝑣 , 𝑅) × Cr(𝑣 , 𝑅))
argmin

𝑅
Cworkload(𝑅)

where 𝑣 denotes a processor in the network, 𝑉 denotes the set
of all processors, 𝑅 denotes the replication scheme, #U(𝑣 , 𝑅)
denotes the number of update transactions, Cu(𝑣 , 𝑅) denotes
the cost of an update transaction, #F(𝑣 , 𝑅) denotes the num-
ber of fetch transactions, and Cr(𝑣 , 𝑅) denotes the cost of a
read transaction. The goal of the optimization formula is to
find the replication scheme 𝑅 that minimizes the workload
cost. In practice, 𝑅 is gradually adjusted to progressively
reduce the workload cost as much as possible.
In the proposed method, #F(𝑣 , 𝑅), Cr(𝑣 , 𝑅), and Cu(𝑣 , 𝑅)

are defined as follows:

Cu(𝑣 , 𝑅) ∶= Lu(𝑣 , 𝑅)
#F(𝑣 , 𝑅) ∶= #R(𝑣 , 𝑅)𝛽(𝑣 , 𝑅)
Cr(𝑣 , 𝑅) ∶= Lr(𝑣 , 𝑅)

where Lu(𝑣 , 𝑅) is the distance to the farthest 𝑅 processor
from processor 𝑣, 𝛽(𝑣 , 𝑅) is the cache miss rate, and Lr(𝑣 , 𝑅)
is the distance from the nearest 𝑅 processor to processor 𝑣.

When a cache hit occurs, no fetch operation is triggered,
allowing local reads with zero cost. Therefore, the workload
cost at a processor considers only the read costs incurred by
fetch operations, which is determined by multiplying the
number of read transactions #R(𝑣 , 𝑅) by the cache miss rate
𝛽(𝑣 , 𝑅), resulting in #F(𝑣 , 𝑅).

2

3.2. Expansion-Contraction Test
The workload cost is optimized through an expansion-
contraction test, which is executed after every 𝑘 successfully
completed transactions. In the expansion-contraction test,
for each expansion-contraction pattern, the system deter-
mines whether to expand expandable processors or shrink
shrinkable processors by calculating the differential work-
load cost.
Similar to the ADR algorithm, each expansion-

contraction test restricts operations such as expanding or
contracting beyond one hop and forming a discontinuous
𝑅. These restrictions are imposed due to computational
complexity concerns and the potential excessive fluctuation
in #F(𝑣) and #U(𝑣) before and after expansion-contraction.
Next, we explain the method for computing 𝛿(𝑅), the

optimal expansion-contraction pattern set that minimizes
the differential workload cost. 𝛿(𝑅) is calculated as follows:

𝛿(𝑅) = argmin
𝐸𝑖⊆𝐸,𝐶𝑗⊆𝐶

Cworkload(𝑅𝐸𝑖,𝐶𝑗) − Cworkload(𝑅)

= argmin
𝐸𝑖⊆𝐸,𝐶𝑗⊆𝐶

∑
𝑣∈𝑉

#U(𝑣 , 𝑅𝐸𝑖,𝐶𝑗) × Lu(𝑣 , 𝑅𝐸𝑖,𝐶𝑗)

+∑
𝑣∈𝑉

#F(𝑣 , 𝑅) × Δ𝐸𝑖,𝐶𝑗Lr(𝑣 , 𝑅))

−∑
𝑣∈𝑉

#U(𝑣 , 𝑅) × Lu(𝑣 , 𝑅) (1)

where 𝐸 denotes the set of expandable processors, and 𝐶
represents the set of contractible processors. 𝑅𝐸𝑖,𝐶𝑗 denotes
the replication scheme after expanding processors 𝐸𝑖 and
contracting processors 𝐶𝑗. Δ𝐸𝑖,𝐶𝑗𝑓 (𝑅) denotes 𝑓 (𝑅𝐸𝑖,𝐶𝑗) −
𝑓 (𝑅). Here, assuming that Δ𝐸𝑖,𝐶𝑗𝑅 = 𝑅𝐸𝑖,𝐶𝑗 − 𝑅 is sufficiently
small, it is approximated that #U(𝑣 , 𝑅) = #U(𝑣 , 𝑅𝐸𝑖,𝐶𝑗) and
#F(𝑣 , 𝑅) = #F(𝑣 , 𝑅𝐸𝑖,𝐶𝑗).

3.3. Reduction of the Search Space
Equation 1 requires evaluating all possible patterns, where
each expandable processor can either be expanded or not,
leading to 2|𝐸| possibilities, and each contractible processor
can either be contracted or not, leading to 2|𝐶| possibilities.
A straightforward computation results in an exponential
search space of 𝑂(2|𝐸|+|𝐶|), which is impractical for scalabil-
ity. Thus, reducing the search space is necessary.
Figure 2 illustrates the concept of reducing the search

space (processors and nodes are treated as equivalent in this
figure). For simplicity, assume that updates originate only
from the center processor of the 𝑅-tree (we call 𝑅-center
processor) and that all processor-to-processor distances are
1. After expansion-contraction, processors can be grouped
based on their distance from the 𝑅-center processor, referred
to as the maximum 𝑅-center distance in this paper. Graphs
with identical maximum 𝑅-center distances exhibit the same
update costs, making total cost dependent solely on read
operations. Since read costs decrease as 𝑅 expands, only the
case with the largest 𝑅 set within each group needs to be
considered. Thus, the number of such groups determines
the search space, which corresponds to the possible values of
themaximum𝑅-center distance after expansion-contraction,
resulting in a complexity of 𝑂(|𝐸| + |𝐶|).
Only 𝑅-leaf processors can become maximum 𝑅-center

processors after expansion-contraction. The number of pos-
sible types of 𝑅-leaf processors after expansion-contraction
consists of the original 𝑅-leaf processors (|𝐶|), newly ex-
panded 𝑅-leaf processors (|𝐸|), and processors that became

Distance from

-center node is 2

Distance from

-center node is 1

The one with the most

node is optimal

Enumerate of

expansion-contraction

pattern

-center node
1

2

Assume that updates occur only from the -center node

Figure 2: Illustration of search space reduction in expansion-
contraction tests.

𝑅-leaf processors due to contraction (|𝐶|). Since all pre-
expansion 𝑅-leaf processors must be contractible, there are
exactly |𝐶| such processors. Consequently, the worst-case
search space is 𝑂(|𝐶| + |𝐸| + |𝐶|) = 𝑂(|𝐸| + |𝐶|). In Figure 2,
there are only two groups based on the maximum 𝑅-center
distance: 1 and 2, meaning that only these two groups need
to be considered for optimal expansion-contraction patterns.
However, in real scenarios, updates originate from mul-

tiple processors, not just the center processor. In such
cases, even if the maximum 𝑅-center distance remains un-
changed, the 𝑅-eccentric distance (the maximum shortest
distance from an 𝑅 processor to any other 𝑅 processor) may
vary, requiring separate calculations. By treating these sep-
arately, the search space is proven (proof omitted) to be
𝑂((|𝐸| + |𝐶|)2|𝑁𝑅(𝜎𝑅)|) where 𝑁𝑅(𝜎𝑅) denotes neighboring
𝑅 processors of the 𝑅-center processor. Additionally, using
tree dynamic programming (DP) and the sliding window
technique, the expansion-contraction test can be computed
in 𝑂(|𝑉 | + |𝑁𝑅(𝜎𝑅)|(|𝐸| + |𝐶|) log(|𝐸| + |𝐶|)) time.

4. Experiments
This section presents experimental evaluations comparing
the proposed method 2 with the ADR algorithm across three
characteristic topologies.

4.1. Experimental Setup
We conducted the experiments on an EC2 m5.16xlarge in-
stance using Dejima [6, 7, 8, 9, 10]. Dejima is a decentralized
data management system designed for flexible data integra-
tion at the database level with global consistency. Each
processor was represented by deploying multiple Docker
containers on a singlemachine. For concurrency control, the
Two-Phase Locking (2PL) protocol [11, 12, 13] was adopted.
The evaluation criterion is throughput. Throughput was
calculated by dividing the total number of successful trans-
actions (reads and updates) executed across all processors
by the execution time of 300 seconds. Additionally, the
throughput was measured after the replication scheme 𝑅
had converged and stabilized. The replication scheme 𝑅
was created at the record level to minimize expansion cost.
The expansion-contraction test was triggered every 𝑘 = 5
transactions. The topologies used in the experiments are
shown in Figure 3. The numbers in parentheses indicate the
number of processors (nodes) in each topology.
We consider two types of transactions: (1) Update that

modifies a column in a record, and (2) Read that reads all
columns of a record. The table structure, update method,
and read method in the RDBMS adhered to the YCSB [14].

2source code is available at: https://github.com/OnizukaLab/dejima-
dynamic-replication

3

Star(4) Line(9) General(10)

Figure 3: Topologies used in the experiments.

Table 1
Comparison of throughput between min |𝑅| and max |𝑅| in Star
topology.

Star(4)
Read ratio 10 50 90
min |𝑅| 41.5 79.5 242.8
max |𝑅| 40.1 71.7 327.4

When generating the initial records for each table, record
insertions into the base table of each processor were prop-
agated to multiple processors via Dejima’s data-sharing
mechanism. In this experiment, 100 records were inserted
into each processor as initial records, and these records
were propagated across the entire system. For example,
in General(10), 100 records are initially inserted into each
processor, resulting in a total of 1,000 records.

4.2. Experimental Results
4.2.1. Star Topology

The experimental results for the star topology are shown
in Table 1 and Table 2. Table 1 compares the case where
the replication scheme 𝑅 is minimized, meaning only the
center processor is part of 𝑅, and the case where 𝑅 is max-
imized, meaning updates are propagated to all processors.
Table 2 shows the results of the existing method (the ADR
algorithm) and the proposed method, along with their ratio
(relative throughput).

For Star(4), as shown in Table 1, as the read ratio increases,
max |𝑅| achieves higher throughput than min |𝑅|, with the
performance gap widening at higher read ratios. As the pro-
portion of read transactions increases, their impact becomes
greater than that of update transactions, making it more
effective to expand 𝑅 to reduce workload cost.
A comparison of the existing method and the proposed

method in Star(4) is shown in Table 2. In the existingmethod,
performance remains stable when the read ratio is low but
degrades significantly as the read ratio increases. This is
because the existing method tends to overestimate update
costs in parallel processing environments, leading to an un-
necessarily small |𝑅| and performance degradation in read-
heavy environments. This overestimation occurs because
the existing method only considers communication cost,
ignoring cases where updates can be executed concurrently
without increasing execution time.

In contrast, the proposed method mitigates performance
degradation due to its consideration of parallel execution
costs. However, a slight performance decline was still ob-
served, possibly due to the small 𝑘 value, which affects the
accuracy of statistical data in the expansion-contraction test.
Increasing 𝑘 could improve the accuracy and lead to better
performance.

Table 2
Comparison of throughput between the existing method and the
proposed method in Star topology.

Star(4)
Read ratio 10 50 90
Existing 41.8 77.2 297.4
Proposed 41.4 76.5 324.6
Ratio -1% -1% +9%

Table 3
Comparison of throughput betweenmin |𝑅| andmax |𝑅| in Linear
and General topologies.

Line(9) General(10)
Read ratio 10 50 90 10 50 90
min |𝑅| 57.9 99.4 298.9 38.0 76.8 279.8
max |𝑅| 34.2 62.5 286.5 32.8 59.5 284.5

Table 4
Comparison of throughput between the existing method and the
proposed method in Linear and General topologies.

Line(9) General(10)
Read ratio 10 50 90 10 50 90
Existing 53.7 94.5 291.0 37.5 68.0 255.1
Proposed 54.4 95.2 293.6 37.8 74.9 286.1
Ratio +1% +1% +1% +1% +10% +12%

4.2.2. Linear and General Topologies

The experimental results for Linear(9) and General(10)
topologies are shown in Table 3 and Table 4.
In Linear(9), as shown in Table 3, as the read ratio in-

creases, the throughput gap between min |𝑅| and max |𝑅|
widens, favoring min |𝑅|. This is because a lower read ra-
tio results in a higher proportion of update transactions,
making a smaller |𝑅| more advantageous. Table 4 shows
that both methods achieve performance close to the optimal
min |𝑅| case, demonstrating successful optimization. The
reason for the lack of a significant difference between the
two methods is that, unlike Star topology, Linear topology
has a lower degree of parallelism, which reduces the perfor-
mance gap between the methods.

In General(10), similar to Linear(9), as shown in Table 3, as
the read ratio increases, the throughput gap betweenmin |𝑅|
and max |𝑅| widens, favoring min |𝑅|. Additionally, at a 10%
read ratio, Table 4 shows that both methods achieve optimal
values with no notable difference. At 50% and 90% read
ratios, the proposed method achieves higher throughput
than the existing method. This result, as in Star topology,
is attributed to the consideration of parallel computation
and per-processor costs. At a 90% read ratio, the existing
method underperforms both min |𝑅| and max |𝑅|, while the
proposed method surpasses both. This indicates that the
ADR algorithm sometimes converges to a worse solution
than eithermin |𝑅| ormax |𝑅|, whereas the proposed method
has the potential to reach an optimal solution that is neither
the smallest nor the largest |𝑅|.

Acknowledgements
This work is supported by JSPS Kakenhi JP23K17456,
JP23K25157, JP23K28096, and JST CREST JPMJCR22M2.

4

References
[1] O. Wolfson, S. Jajodia, Y. Huang, An adaptive data

replication algorithm, ACM Trans. Database Syst. 22
(1997) 255–314.

[2] D.-W. Sun, G.-R. Chang, S. Gao, L.-Z. Jin, X.-W. Wang,
Modeling a dynamic data replication strategy to in-
crease system availability in cloud computing environ-
ments, in: Journal of Computer Science and Technol-
ogy, 2012, pp. 256–272.

[3] Q. Wei, B. Veeravalli, B. Gong, L. Zeng, D. Feng,
Cdrm: A cost-effective dynamic replication manage-
ment scheme for cloud storage cluster, in: 2010 IEEE
International Conference on Cluster Computing, 2010,
pp. 188–196.

[4] W. Li, Y. Yang, D. Yuan, A novel cost-effective dynamic
data replication strategy for reliability in cloud data
centres, in: 2011 IEEE Ninth International Conference
on Dependable, Autonomic and Secure Computing,
2011, pp. 496–502.

[5] J.-W. Lin, C.-H. Chen, J. M. Chang, Qos-aware data
replication for data-intensive applications in cloud
computing systems, IEEE Transactions on Cloud Com-
puting 1 (2013) 101–115.

[6] O. Lab, Dejima architecture, https://github.com/
OnizukaLab/dejima-prototype, 2023.

[7] Y. Asano, S. Hidaka, Z. Hu, Y. Ishihara, H. Kato, H. Ko,
K. Nakano, M. Onizuka, Y. Sasaki, T. Shimizu, V. Tran,
K. Tsushima, M. Yoshikawa, Making view update
strategies programmable - toward controlling and
sharing distributed data, CoRR abs/1809.10357 (2018).
arXiv:1809.10357.

[8] Y. Asano, Z. Hu, Y. Ishihara, H. Kato, M. Onizuka,
M. Yoshikawa, Controlling and sharing distributed
data for implementing service alliance, in: BigComp,
IEEE, 2019, pp. 1–4.

[9] Y. Asano, D. Herr, Y. Ishihara, H. Kato, K. Nakano,
M. Onizuka, Y. Sasaki, Flexible framework for data
integration and update propagation: System aspect,
in: BigComp, IEEE, 2019, pp. 1–5.

[10] Z. Hu, M. Onizuka, M. Yoshikawa, Bidirectional collab-
orative data management, Bidirectional Collaborative
Data Management: Collaboration Frameworks for De-
centralized Systems (2024) 63–119.

[11] P. A. Bernstein, V. Hadzilacos, N. Goodman, Con-
currency Control and Recovery in Database Systems,
Addison-Wesley, 1987.

[12] C. H. Papadimitriou, The Theory of Database Concur-
rency Control, Computer Science Press, 1986.

[13] K. P. Eswaran, J. Gray, R. A. Lorie, I. L. Traiger, The no-
tions of consistency and predicate locks in a database
system, Commun. ACM 19 (1976) 624–633.

[14] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan,
R. Sears, Benchmarking cloud serving systems with
ycsb, in: Proceedings of the 1st ACM Symposium on
Cloud Computing, SoCC ’10, Association for Comput-
ing Machinery, New York, NY, USA, 2010, p. 143–154.

5

https://github.com/OnizukaLab/dejima-prototype
https://github.com/OnizukaLab/dejima-prototype
http://arxiv.org/abs/1809.10357

	1 Introduction
	2 Preliminaries
	2.1 Replication Scheme
	2.2 Expansion and Contraction
	2.3 Issues of the ADR Algorithm

	3 Proposed Method
	3.1 Optimization Formula
	3.2 Expansion-Contraction Test
	3.3 Reduction of the Search Space

	4 Experiments
	4.1 Experimental Setup
	4.2 Experimental Results
	4.2.1 Star Topology
	4.2.2 Linear and General Topologies

