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Abstract
In rehabilitation settings, accurate monitoring of physiological parameters is critical for tailoring therapeutic
interventions and ensuring patient safety. This paper introduces ViSCOPE, a contactless vital sign estimation
pipeline, and its integration into a robotic rehabilitation platform, aimed at providing non-invasive monitoring of
heart rate, breathing rate, and oxygen saturation.

ViSCOPE was validated against gold-standard devices in both resting conditions and after physical exertion,
simulating the demands of rehabilitation exercises. In resting conditions, the system achieved mean absolute
errors of 5.50 ± 4.91 bpm for heart rate, 5.13 ± 2.86 bpm for breathing rate, and 1.23 ± 0.43% for oxygen saturation.
However, after physical activity, the error committed in estimating the heart rate significantly increased up to
13.10 ± 8.79 bpm (𝑝 < 1.00 ⋅ 10−3), indicating a reduced accuracy.

While ViSCOPE provides reliable monitoring in resting conditions, further refinement is required to improve
accuracy during physical exertion, a common scenario in rehabilitation. Future efforts will focus on optimizing the
system for real-world clinical applications, ensuring accurate monitoring throughout dynamic therapy sessions.
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1. Introduction

Rehabilitation robots have become indispensable instruments in both physical and cognitive therapy
[1]. Moreover, the introduction of multimodal monitoring systems enables the realization of sophis-
ticated physiological monitoring systems [2]. Such systems facilitate the continuous assessment of
vital parameters, thereby providing real-time insights into the patient’s health status during therapy
sessions [3]. This data-driven approach permits the continuous estimation of the complex user state to
dynamically adjust the therapeutic interventions, thereby ensuring that treatments are personalized to
the patient’s functional capacity and psychophysiological responses [4].

Conventional techniques for measuring vital signs are typically contact-based. For example, commer-
cial and low-cost wearable smart sensors enable signal processing algorithms to provide discrete Heart
Rate (HR), Breathing Rate (BR), or blood oxygenation (SpO2) values, becoming increasingly popular in
the market. The main problem with wearable sensor-based monitoring is that end-users with different
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levels of cognitive function must remember to wear the devices and charge them frequently, restricting
their use. Additionally, data quality can be compromised due to movement artifacts, environmental
factors, or improper sensor placement, further restricting the reliability of the monitoring. Alternatively,
contactless sensors are less invasive and can track vital signs in authentic, lifelike settings without
interfering with a person’s regular activities. It is important to note, also, that the COVID-19 pan-
demic has led to a rise in the use of noncontact technology for vital sign monitoring. The literature
review revealed that there are currently two primary categories of contactless vital sign estimation
methods from RGB images: motion-based methods and methods that assess color intensity changes.
The latter are the most widely used and effective techniques. Their foundation lies in the analysis of
the remote plethysmographic signal (rPPG) obtained from the vision sensor [5, 6]. The integration
of such technology on robotic platforms is widely investigated in the literature. For example, in [7]
the authors developed a camera system consisting of one Infrared camera and three monochrome
cameras to reliably facilitate the contactless acquisition of vital sign parameters. This camera system
was mounted on a teleoperated robot that can successfully and reliably deliver vital sign measurements
while navigating complex clinical environments and maintaining social distancing. Takir et al. [8]
published a study in which children with autism spectrum disorder interacted and played games with a
robot. rPPG signals were extracted using face images captured through the camera during the interac-
tion between the robot and the children. The study aimed to use rPPG signals in emotion recognition
as an alternative method since other emotion recognition modalities face challenges during robot-child
interaction. The authors of [9] proposed an agile quadruped robotic system that comprises a set of
contactless monitoring systems for measuring vital signs (skin temperature, BR, HR, and SpO2) and a
tablet computer to enable face-to-face medical interviewing. In the context of robotic platforms, the
topic under consideration (contactless vital signs evaluation) presents critical issues that have been
only partially addressed in scientific works, such as subject motion, ambient light illumination, distance
from the camera, estimation of non-at-rest vital signs, and motion artifacts. Also, most of the previous
studies of non-contact video-based vital signs monitoring have been on healthy volunteers, sometimes
in sunlight only, and have usually concentrated on HR estimation or BR estimation, without considering
other important vital signs such as SpO2.

Previous studies exhibited some limitations. Firstly, to the best of the authors’ knowledge, there are
currently no contactless approaches that simultaneously estimate HR, BR, and SpO2 from RGB images,
as most techniques focus on one or, at best, two parameters. Secondly, the accuracy of contactless
systems has never been validated under conditions of physical exertion, which is commonly present
during rehabilitation sessions, where patients perform exercises that directly impact physiological
parameters. These gaps limit the applicability of existing systems in dynamic and intensive clinical
settings like rehabilitation.
Therefore, this paper aims to propose the Vital Signs Contactless Estimation Pipeline (ViSCOPE)

and its integration into a service robot employed in rehabilitative healthcare settings. Specifically, the
robot can act as a robotic coach in the context of robot-aided rehabilitation, administering rehabilitation
exercises, providing corrective feedback, and even physically interacting with the patient. Moreover,
the robotic therapist can guide the patient through exercises, offering corrective feedback, and assisting
in movement execution when needed [10]. Equipping robots used for rehabilitative coaching with
physiological monitoring tools like ViSCOPE simplifies the setup, ensuring physiological monitoring
throughout the therapy sessions. Moreover, the accuracy of the proposed ViSCOPE system is validated
with respect to gold-standard measurements, both in resting conditions and after physical activity,
resembling the altered physiological status of patients engaged in physical therapy.

2. Materials and Methods

2.1. Vital Sign Contactless estimation Pipeline

Our proposed ViSCOPE input is represented by a stream of images obtained from an RGB image,
collected by a service robot, from which the rPPG is extracted and processed for the subsequent vital



signs estimation. Figure 1 depicts the algorithmic pipeline through logical blocks. Regarding the pre-
processing phase, face detection is one of the most crucial algorithmic steps. Here, the Mediapipe library
[11] was used tomake face detection as independent of orientation and/or distance as feasible. Mediapipe
uses Machine Learning to create 3D surface geometry with only one camera input. Subsequently, for
effective signal extraction, a facial image-based remote rPPG algorithm also needs to choose a Region
of Interest (ROI) within the identified facial region. Numerous studies have demonstrated that the facial
regions where the rPPG signal is strongest are the forehead and the cheeks. Accordingly, in the present
work, the facial regions are identified by the corresponding facial landmarks returned by the Mediapipe
library and the rPPG signal was processed from the R, G, and B color information extracted from such
ROIs.

Figure 1: Graphical representation through block diagram of the pipeline designed and implemented for vital
signs estimation by rPPG signal extracted from the facial ROI

Subsequently, an algorithm for low-light image enhancement was employed for improving the
brightness of the chosen ROIs. The algorithm is designed to balance ROI brightness while preserving
the details, such as color variations within the forehead and cheeks that are related to blood volume
changes. Unlike traditional histogram equalization methods, the algorithm implements an approach
based on an upgraded version of Cuckoo Search methodology [12]. After applying the algorithmic
blocks included in the pre-processing step, the subject’s head motion and ambient lighting variations
are significantly less disruptive to the values in the RGB components.

Considering a continuous monitoring scenario, the video segment that is used for vital sign estimation
is represented by a sliding time window. This is the portion of the video through which the discrete value
of HR, BR, and SpO2 is computed. In our work, the raw RGB signals are segmented using a 30-second
moving window, with a 1-second scroll between consecutive windows. After extracting the raw signals
for each frame belonging to the sliding window, specific signal processing techniques are employed to
improve signal quality for the subsequent feature extraction steps. Consequently, detrending is applied
to remove linear trends from the raw signal and, since the interest is in the periodicity of the signal,
the resulting raw signal is normalized by dividing it by its maximum absolute value and smoothed
using a sliding average filter. To obtain accurate measurements of HR and BR, it is essential to process
the raw RGB signals by filtering out unrealistic frequencies. To this end, a third-order band-pass filter
with optimal characteristics is employed to eliminate both high and low-frequency noise. This filtering
process specifically targets frequency components outside the designated ranges: [0.75Hz – 3.5Hz] for
HR and [0.15Hz - 0.5Hz] for BR.

Next, in the proposed pipeline, after having assessed the latest findings in the scientific literature, the
chrominance-based method [13] is used for the temporal reconstruction of the rPPG signal. At this
point, given an estimate of the plethysmography signal, HR and BR can be estimated using frequency
analysis. For this purpose, this signal, which contains a distinct periodicity, is converted to the frequency



domain using the Fast Fourier Transform. To calculate the average estimations for HR and BR, the
frequencies associated with the peaks of the power spectrum are analyzed. For HR estimation, we
focus on the frequency that corresponds to the highest peak intensity within the range of [0.75Hz -
3.5Hz], whereas for BR estimation, we examine the frequency with the maximum peak intensity in
the range of [0.15Hz - 0.5Hz]. The HR and BR values, represented as average beats per minute, are
derived by multiplying the obtained frequency values by 60. Finally, to evaluate the values of SpO2
we have reproduced the approach described in [14] and based on the calculation of the ratio of the
concentration of oxygenated hemoglobin to the total concentration of hemoglobin present in the blood.

2.2. Experimental Evaluation

The experimental setup used for the software validation is shown in Fig. 2 and includes:

Figure 2: Experimental setup.

• the robot TIAGo (PAL Robotics S.L., Barcelona, Spain), whose head-mounted ASUS Xtion camera
works at 30 Hz and has a resolution of 640 × 480;

• the BioHarness 3.0 chest belt, developed by ZephyrTM Technology, to record the cardiorespiratory
activity (i.e. HR and BR). The chest belt is worn on the skin at the sternum level and works at a
frequency of 1 Hz;

• the MyKi Oxy pulse oximeter to record the oxygen saturation levels in the arterial blood (SpO2).
It works with a frequency of 1 Hz.

The overall systems were developed and integrated in Robot Operating System (ROS) Melodic
middleware on Ubuntu 18.04 LTS.
Six healthy subjects (4 males, 2 females, with an average age of 27.67 ± 2.58) were enrolled for the

ViSCOPE validation. The experimental procedure involved two recording sessions: one under resting
condition (denoted as Rest, 𝑅) and another following one minute of physical activity (denoted as Physical
Activity, 𝑃𝐴) performed by the subject. The physical activity consisted of performing jumping jacks for
one minute to elevate the subject’s physiological parameters. Each subject underwent both conditions,
each repeated five times and lasting 30 seconds, resulting in ten recordings per participant. The ambient
lighting was maintained between 300 and 500 lux throughout the experiment to ensure consistency.

During each recording session, the subject sat stationary in front of the TIAGo robot, positioned at a
fixed distance of 50 cm. The subject was instructed to maintain a steady gaze at the robot, avoiding any
movement, for the entire 30-second duration of the recording.

While the recordings were ongoing, physiological parameters were estimated by the software (HR𝑣𝑠,
BR𝑣𝑠, SpO2,vs), and a value was given at the end of each 30-second acquisition period. Simultaneously,
the gold-standard (GS) devices, BioHarness and Miki Oxy (as previously defined), continuously recorded
physiological parameters throughout the 30 seconds, providing measurements at their respective
sampling frequencies (HR𝑔𝑠, BR𝑔𝑠, SpO2,gs).



To validate the ViSCOPE software, the Absolute Error (𝐴𝐸) is calculated to assess how closely the
estimated values from the proposed approach match the values obtained from the GS devices. The
purpose of this comparison is to evaluate the accuracy of the ViSCOPE software in estimating the three
physiological parameters. The 𝐴𝐸 of the physiological parameters was computed with the following
equation:

|Δ𝑋 | = |𝑋𝑣𝑠 − 𝑋𝑔𝑠| (1)

where 𝑋 represents the physiological parameter (i.e. HR, BR, SpO2). Specifically, 𝑋𝑔𝑠 is the last value
recorded by the corresponding GS device, thus to the value acquired at the 30th second.
The closer the 𝐴𝐸 is to zero, the more reliable the ViSCOPE software is in reproducing the GS

measurements. This approach helps to demonstrate whether the proposed system can be trusted
for monitoring physiological data and how accurately it can replicate the true values obtained from
clinically validated devices. Therefore, 𝐴𝐸 serves as a critical metric for validating the performance of
the software in real-world scenarios.

Moreover, the Mann-Whitney U test with a p-value of 0.05 was applied on the 𝐴𝐸 of each parameter
to evaluate if there were statistically significant differences between the two conditions (i.e. 𝑅 and 𝑃𝐴).

3. Results and Discussion

The results obtained in terms of 𝐴𝐸 and with the statistical test application are shown in Fig. 3.

Figure 3: Results in terms of absolute error between the value estimated by the software and the gold-standard
value for each physiological parameter (i.e. |Δ𝐻𝑅|, |Δ𝐵𝑅|, |Δ𝑆𝑝𝑂2|) under both condition (Rest 𝑅 and after Physical
Activity 𝑃𝐴). Moreover, statistical results are shown: applying Mann-Withney U test are shown. The statistical
test was applied between the 𝑅 and 𝑃𝐴 conditions. *** means that the statistical difference between those
groups has achieved a 1.00 ⋅ 10−4 < 𝑝-value ≤ 1.00 ⋅ 10−3.

For the 𝑅 condition, the mean 𝐴𝐸 for HR (i.e. |Δ𝐻𝑅|) is 5.50 ± 4.91 bpm, indicating relatively low
error and variability in HR estimation during rest. The |Δ𝐵𝑅| shows a mean error of 5.13 ± 2.86 bpm,
demonstrating a moderate error and lower variability in BR measurements. Lastly, the |Δ𝑆𝑝𝑂2| has a
mean of 1.23 ± 0.43%, indicating a small and consistent error in SpO2 estimation.
For the 𝑃𝐴 condition, the |Δ𝐻𝑅| increases significantly with respect to the same metric in the 𝑅

condition, with a mean of 13.10 ± 8.79 bpm, reflecting a statistically significant higher error and greater
variability during physical exertion. The |Δ𝐵𝑅| shows a slightly higher error than the one obtained in 𝑅,
pointing to more variability in BR measurements during activity (5.93 ± 3.96 bpm). The |Δ𝑆𝑝𝑂2| also
increases slightly, with a mean of 1.43 ± 1.59%, indicating more variability but still relatively low error
in oxygen saturation estimation.
These results suggest that while the ViSCOPE system performs reasonably well in the 𝑅 condition,

with results comparable to previous studies [6], there is a notable increase in error, particularly in HR,
in the acquisition made after 𝑃𝐴. Importantly, the 𝑃𝐴 condition represents a novelty in this study
and can not be directly compared to earlier research, as similar conditions have not been previously
addressed. Since the ViSCOPE acquisitions will be performed using the robot in a rehabilitation context



for hospitalized patients, it is crucial to optimize the software to ensure more accurate monitoring of
physiological parameters after subjects have undergone rehabilitation (i.e. in 𝑃𝐴 condition). Enhancing
the accuracy of the software in these scenarios will improve the reliability of the data collected during
rehabilitation sessions.

4. Conclusions

This study introduced ViSCOPE, a contactless vital sign estimation pipeline integrated into a robotic
platform, aimed at enhancing physiological monitoring during rehabilitation sessions. The system
was validated by comparing its accuracy against GS devices in both resting and post-physical activity
conditions. Results indicate that ViSCOPE performs reliably in resting conditions, with a mean absolute
error of 5.50 ± 4.91 bpm for HR, 5.13 ± 2.86 bpm for BR, and 1.23 ± 0.43% for SpO2, demonstrating
low error and variability. However, a notable increase in error was observed in post-physical activity
conditions, with heart rate error rising to 13.10 ± 8.79 bpm, highlighting a statistically significant
difference from resting values (𝑝 < 1.00 ⋅ 10−3).

These findings suggest that while ViSCOPE provides reliable estimates in resting conditions, further
refinement is needed to improve its accuracy during and after physical exertion, a scenario common in
rehabilitation sessions. Future works will be devoted to enhancing the system performance in presence
of physical exertion to provide accurate estimations in real clinical settings. Additionally, increasing the
participant pool can be useful to strengthen the validity of the results, and comparing outcomes from
the current environmental conditions with those from a brighter lighting environment will provide
insights into the impact of environmental factors on accuracy.
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