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Abstract 
High availability is a cornerstone of fault tolerance in production clusters. The following article delves into 
the novel methods and models to achieve rapid cluster leader failover based on the Replica State Discovery 
Protocol (RSDP). Firstly, RSDP is described and evaluated as a method of achieving consensus within 
homogenous multiagent distributed systems. This paper provides a novel mathematical model that 
describes the internal procedure of the said protocol. Additionally, diagrams and algorithm steps are 
provided to further simplify integration of the RSDP into modern Decentralized Coordination Networks 
(DCNs). Secondly, a new state reducer is developed that allows to perform a synchronized leader election 
process. Its mathematical model and code implementation written in JavaScript are provided and comply 
with an established extension interface described within the confines of 
Evaluation and implications of the newly created leader election protocol are provided to further expand 
the horizons of DCN coordination. Lastly, this article explores the practical implications of the mentioned 
state reducer in the context of the stateful cluster leader failover. Three different approaches and models 
based on the proposed consensus algorithm to mitigate spontaneous critical events are modeled and 
assessed. Based on failure probability, failover duration, and communication overhead mathematical 
models, the said approaches were compared, and recommendations for their application were provided. 
Overall, this article is aimed at further development of RSDP and describes novel approaches towards 
relevant coordination issues inside the clusters with high demands for availability and fault tolerance. 

Keywords  
distributed computing; Decentralized Coordination Networks (DCNs); Replica State Discovery Protocol 
(RSDP); cluster state management models; cluster failover management models; leader election protocol 
based on RSDP and deterministic operations.1 

1. Introduction 

Being tasked with a complex design of a modern distributed system leads inevitably to the myriads 
of convoluted architecture decisions towards achieving high availability and fault tolerance. 
Throughout the entire history of computer science and Internet Technology industry, the 
cornerstone problem is threefold: consistency, availability, and partition tolerance, renown also as 
CAP theorem [1-7]. 

The theorem in its basis promotes an assumption that service could only be two of three: either 
consistent and available, available and tolerant to partitioning, or consistent and tolerant to 
partitioning [1-7]. Though it has to be stated that business-centric approaches produced variants of 
the said theorem that put resource utilization, complexity, and service quality instead while going 
through the decision-making process. 
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Nevertheless, the crux is the same; it is assumed that no model, method, approach, or 
methodology exists that could completely satisfy every property of this group. That assumption is 
still holding strong, since mechanisms that comply with one subset directly obstruct efforts of 
achieving the other [1-7]. 

It has been known throughout the history of research efforts into building reliable systems, that 
trying to achieve fault tolerance while relying on a single instance is futile. This can be attributed to 
the following reasons: 

1. No matter how much the source code is being tested, extremely rare race conditions could 
still happen when dealing with external devices or even replicated systems. 

2. Physical destruction of the datacenter will nullify any logical sound and fault-tolerant 
mechanism that was preliminarily implemented. 

3. Even if we assume that software is logically consistent, a random radiation ray could flip 
some bits in the system and lead to a catastrophe. 

4. 

logically. That is especially problematic during wartime or a nation-wide crisis. 
5. At some point you will simply have to put the running instance under maintenance, and this 

will effectively stop its operation for a while. 

While building cloud systems that require high availability, an architect has to eventually 
consider replication and clusterization techniques [8-12]. Within the context of this article, we will 
differentiate between these terminologies in the following way: 

• Replication  is a distributed topology of a homogeneous multiagent system, where each 

participants of the said network. Each replica may have the same set of initial parameters, 
program code, logic, and ongoing state. Therefore, replicated environments provide rapid 
disaster recoveries since every other instance could effectively take the responsibilities of the 
one that failed [8-10]. 

• Clusterization  refers to the distributed system organization, where the overall state is still 
synchronized and coordinated but the purpose and the concurrent tasks on different nodes 
are different. The common purpose of building clustered systems is state splitting. Other 
examples may include hot and warm standby servers that replicate events from the main 
machine but still follow the orders from a leader and are usually restricted in their 
functionality [13-15]. 

Therefore, the purpose of this article is to model multiple approaches towards coordinating 
replicated and clustered decentralized networks. As a result of the conducted evaluation, a set of 
practical recommendations is proposed to simplify the decision-making process during the system 
design stage. 

Additionally, it is the intent of this paper to develop a mathematical model for the Replica State 
Discovery Protocol, which serves as a framework for performing cluster-wide state synchronization 
and coordination. RSDP provides a basis upon which a set of logical extensions could be built to 
achieve various consensus effects. 

Using the mentioned consensus basis, multiple leader election mechanisms were developed and 
modeled. Each of those mechanisms is characterized by a set of unique security, efficiency, and 
resilience properties, allowing for catering to the need of a specific environment. The said properties 
were compared based on probability and computational complexity assessments and as a result, 
recommendations for their application were provided. 
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2. Replica State Discovery Protocol 

The fundamental problem in managing resilience through redundancy is coordination. Since the 
managed objects are by definition separated, they usually do not have any common memory location 
that would allow them to successfully establish a synchronization algorithm based on classical 
concurrency control mechanisms such as locks, mutexes, or semaphores [16-18]. 

There are quite a few solutions that allow for both immediate and eventually consistent 
consensus-achieving. An example of the first would be total order broadcast, or, in other words, 
complete replication of events in the original order. Eventually-consistent algorithms tend to take 
the process in steps to reach consensus regarding a proposed value. Examples of such algorithms 
include Raft, Paxos, Ring, ZooKeeper, and many others [19-21]. 

In that regard, the Replica State Discovery Protocol could be called one of the eventually 
consistent algorithms. RSDP provides not only the basis for achieving consensus but also serves as a 
distributed coordination framework, allowing for various extensions and handling cluster events. 
The difference between classical leader election or consensus-reaching protocols and RSDP is the 
intention and flexibility they provide. The former usually concentrate on the process of voting for a 
single common value. In the meantime, RSDP provides a foundation not only for single-state 
consensus but also for synchronizing complex state setups and merges [22]. 

2.1. Local Area Network Simulation based on AMQP 

RSDP in its core was initially designed on the basis of the local area network simulation based on 
the Advanced Message Queuing Protocol. The details of its implementation, efficiency, security, 
implications, and resilience are outlined in a separate article. But for the purpose of theoretical 
context, a few words have to be said to cover potential questions regarding the reliability of RSDP 
and its message passing process [22]. 

First and foremost, the said network simulation is built on top of the message queueing protocol. 
In that context, AMQP stands as one of the most popular solutions in coordinating and routing 
complex message network topologies and is continuously gaining momentum in the field of research 
and engineering [23-25]. 

Figure 1 shows the conceptual operation basis of AMQP and its components: 
 

 

Figure 1: Advanced Message Queuing Protocol . 
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The fundamental idea of AMQP is the separation of client and server, which are called producer 
and consumer. Instead of direct communication, the message goes through the broker and its queue, 
thus allowing for alleviating direct dependency between clients and servers. Additionally, AMQP 
describes the achievement of fundamental communication properties such as resilience, durability, 
congestion control, security, etc. [23-25]. 

Local Area Network Simulation (SLAN) leverages these capabilities to establish a secure, resilient, 
and isolated LAN-like environment. In its basis, SLAN describes the provisioning of the two basic 
communication media: direct communication links and a broadcast link. 

Figure 2 shows the interaction media of the SLAN: 
 

 

Figure 2: Local Area Network Simulation based on AMQP. 

SLAN operation basis relies on the two main capabilities described within the context of AMQP: 

binded queues (e.g., broadcast the message) or send the message to a single binded queue by the 
routing key (direct communication routing). 

AMQP defines the durability, mirroring, and quorum mechanisms for its queues and is considered 
to be a well-documented, tested, resilient, and flexible foundation for communication media. SLAN, 
and by implication, RSDP, rely on these properties to build its own abstraction layers [26, 27]. 

2.2. RSDP phases and consensus process 

RSDP has its own dedicated article that describes every operation, state change, and consensus-
oriented process in detail [22]. This section provides a succinct overview of RSDP phases with some 
amendments and clarifications for the operation sequences. 

To provide capabilities of cluster-wide state operations, RSDP describes its lifecycle in a few 

phases is respectively responsible for the introduction of the new node, state sharing, and final state 
derivation. The last phase is responsible for handling the shutdown lifecycle event. 

Since each distinct phase somehow interferes with the cluster state stored on each replica 
individually, every instance has a concurrency control mechanism based on the 
“𝑖𝑛𝑡𝑒𝑟𝑃ℎ𝑎𝑠𝑒𝑀𝑢𝑡𝑒𝑥”. That mutex prevents multiple simultaneous cluster events from interfering 
with each other by restricting stored state access to a single active phase [16-18]. 



124 
 

Figure 3 shows the phases and interaction during RSDP process: 
 

 

Figure 3: Replica State Discover Protocol phases. 

“𝑖𝑛𝑡𝑒𝑟𝑃ℎ𝑎𝑠𝑒𝑀𝑢𝑡𝑒𝑥” that prevents state mutation 

announcing its presence in the cluster. This message is sent through the broadcast channel and is 
meant to be received by all cluster members. 
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replica would then buffer answers from the cluster members and perform an aggregation of the state 
as dictated by the state reducers. 

exchange to all the members. The final operation of the initial phase is to release the mutex and wait 
for any other cluster-wide events. 

cluster. Share messages would then be buffered for a configured amount of time to avoid redundant 
replica reloads. After the timeout elapses, the protocol engine would acquire the mutex, and the 
share messages would be validated and aggregated, giving a holistic view of the cluster-wide state. 
Subsequently, the protocol engine would release the mutex and wait for any other occurring events 
in the system. 

 a replica goes down, 
it signals the others while others in the cluster would then first acquire the mutex, perform the 
necessary state updates, and release the mutex. No additional synchronization is necessary as the 
protocol assumes that every operation performed on the state is deterministic and made within the 
scope of a set of clean functions that do not rely on side effects. 

2.3. RSDP mathematical model 

Let ℛ = {𝑅1, 𝑅2, … , 𝑅𝑛} be the set of replicas in the distributed system. The replicas communicate 
over a network represented as a graph 𝐺 = (ℛ, 𝐸), where 𝐸 ⊆ ℛ × ℛ denotes the set of 
communication channels between replicas. 

Each replica 𝑅𝑖 maintains a local state 𝑆𝑖, which is an element of the global state space 𝒮. The 
global state of the system is a tuple 𝒮 = (𝑆1, 𝑆2, … , 𝑆𝑛). 

transitions. 

• 𝑚HELLO
(𝑖)  from 

replica 𝑅𝑖. 
• 

is denoted as 𝑚STATUS
(𝑗→𝑖)

(𝑆𝑗) from 𝑅𝑗 to 𝑅𝑖. 

During the initiation, each replica 𝑅𝑖 𝑚HELLO
(𝑖)  to all other replicas. 

Upon receiving 𝑚HELLO
(𝑖) , a replica 𝑅𝑗 𝑚STATUS

(𝑗→𝑖)
(𝑆𝑗) containing its 

current state 𝑆𝑗. 
 

∀𝑅𝑖 ∈ ℛ, 𝑅𝑖 →
𝑏𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡

𝑚HELLO
(𝑖)

 

 
∀𝑅𝑗 ∈ ℛ ∖ {𝑅𝑖}, upon receiving 𝑚HELLO

(𝑖)
: 𝑅𝑗→ 𝑚STATUS

(𝑗→𝑖)
(𝑆𝑗) 

state 𝑆agg. The aggregation function 𝑓𝑎𝑔𝑔 combines individual states: 

𝑆agg = 𝑓𝑎𝑔𝑔 ( {𝑆𝑗 ∣∣ 𝑚STATUS
(𝑗→𝑖)

(𝑆𝑗) received} ) 
𝑆agg: 

𝑅𝑖 →
𝑏𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡

 𝑚SHARE
(𝑖)

(𝑆agg) 
𝑅𝑖. 
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𝑆𝑖 ← 𝑓𝑢𝑝𝑑𝑎𝑡𝑒 ( 𝑆𝑖, {𝑆agg

(𝑘)
∣
∣ 𝑚SHARE

(𝑘)
(𝑆agg

(𝑘)
)  received} ) 

𝑅𝑖  

𝑅𝑖  →
𝑏𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡

 𝑚CLOSE
(𝑖)  

Remaining replicas adjust their states to reflect the departure: 
∀𝑅𝑗 ∈ ℛ ∖ {𝑅𝑖},  𝑆𝑗 ← 𝑓𝑐𝑙𝑜𝑠𝑒(𝑆𝑗, 𝑅𝑖) 

Where 𝑓𝑐𝑙𝑜𝑠𝑒 is a function that removes references to 𝑅𝑖 from 𝑆𝑗. 

2.4. RSDP formal definition and properties 

Define 𝒮 as a set of possible states for a replica. Each state 𝑆𝑖 may include: 

• Membership list 𝑀𝑖 ⊆ ℛ; 
• Resource utilization 𝑈𝑖 ∈ ℝ+; 
• Other reducer and application-specific data. 

Define ℳ as the set of all possible messages: 
𝑚 ∈ ℳ = {𝑚HELLO, 𝑚STATUS, 𝑚SHARE, 𝑚CLOSE} × Payload 

The aggregation function (𝑓𝑎𝑔𝑔) combines multiple states: 

𝑓𝑎𝑔𝑔({𝑆1, 𝑆2, . . . , 𝑆𝑗}) = ⋃ Reducerk({𝑆1, 𝑆2, . . . , 𝑆𝑗})

𝑘

 

This could be defined as: 

• For membership lists: 𝑀agg = ⋃ 𝑀𝑗𝑗 ; 

• For resource utilization 𝑈agg =
1

|{𝑆1,𝑆2,...,𝑆𝑗}|
∑ 𝑈𝑗𝑗 . 

The state update function 𝑓𝑢𝑝𝑑𝑎𝑡𝑒 updates the local state based on received aggregated states: 

𝑆𝑖 ← 𝑓𝑢𝑝𝑑𝑎𝑡𝑒 (𝑆𝑖, {𝑆agg
1 , 𝑆agg

2 , . . . , 𝑆agg
(𝑘)

}) 
This may involve: 

• Updating membership lists: 𝑀𝑖 ← ⋃ 𝑀agg
(𝑘)

𝑘 ; 
• Adjusting resource utilization estimates; 
• Updating any other application-specific data. 

To prevent race conditions, the “𝑖𝑛𝑡𝑒𝑟𝑃ℎ𝑎𝑠𝑒𝑀𝑢𝑡𝑒𝑥” is used during critical sections of the 
protocol, particularly during state updates. 

Let μ𝑖 be a mutex for replica 𝑅𝑖. Then, state updates are performed under the lock μ𝑖: 

𝑆𝑖 ←
μ𝑖

𝑓𝑢𝑝𝑑𝑎𝑡𝑒({𝑆1, 𝑆2, . . . , 𝑆𝑗}) 
As was previously stated, RSDP is based on eventual consistency, where all replicas converge to 

the same state after a finite number of message exchanges. 
For any two replicas 𝑅𝑖 and 𝑅𝑗, their states 𝑆𝑖 and 𝑆𝑗 satisfy: 

lim
𝑡→∞

Pr (𝑆𝑖(𝑡) = 𝑆𝑗(𝑡)) = 1 
The protocol ensures that messages are eventually delivered, and state updates occur. If a message 

𝑚 is sent from 𝑅𝑖 to 𝑅𝑗, then 𝑚 will be delivered to 𝑅𝑗 after some finite delay δ. In case some messages 
will be lost, RSDP defines repeatable synchronization sessions as a contingency. 
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3. Leader Election Reducer for the RSDP 

storing, retrieving, validation, aggregating, and updating a state is defined in a set of preconfigured 
reducers. The original article of RSDP describes the benefits of such a modular approach. 
Additionally, it provides a thorough explanation of the interface that every reducer must follow to 
successfully integrate with the protocol. The list of defined methods includes [22]: 

• 𝑔𝑒𝑡𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑡𝑎𝑡𝑒: returns the current state of the state slice; 
• 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝑆𝑡𝑎𝑡𝑒  
• 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑆𝑡𝑎𝑡𝑒: transforms the internal state into desired by a client format; 
• 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝑆ℎ𝑎𝑟𝑒𝑆𝑡𝑎𝑡𝑒

them; 
• 𝑠𝑎𝑛𝑖𝑡𝑖𝑧𝑒𝑆ℎ𝑎𝑟𝑒𝑆𝑡𝑎𝑡𝑒: verifies the validity of an aggregated state; 
• 𝑠ℎ𝑜𝑢𝑙𝑑𝑅𝑒𝑙𝑜𝑎𝑑: receives a newly aggregated state and returns a Boolean indicating whether 

a client should be notified about state change; 
• 𝑢𝑝𝑑𝑎𝑡𝑒𝑆𝑡𝑎𝑡𝑒: updates the internal state of a reducer; 
• 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝐶𝑙𝑜𝑠𝑒𝑆𝑡𝑎𝑡𝑒  

Out of the mentioned methods, 𝑔𝑒𝑡𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑡𝑎𝑡𝑒 is the only method that is not required. This 

states. For example, discovery of replica members does not require 𝑔𝑒𝑡𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑡𝑎𝑡𝑒 
implementation since this could be derived from the sender addresses. 

3.1. Mathematical model of the leader election process 

Leader election reducer is an extension that performs a replicated deterministic holistic decision on 
the trusted entity based on incoming cluster events. Having discussed the RSDP foundation and the 
basis for leader election reducer, let us define an abstract description of the consensus process. 

Assume 𝑐  

• 𝐴 = {𝑎1, 𝑎2, … , 𝑎𝑛}: the set of all replica addresses; 
• 𝑎self ∈ 𝐴: the address of the current replica instance, 𝑎self = 𝑎𝑐; 
• 𝐺𝑐 ⊆ 𝐴: the current set of replica members known to the replica; 
• 𝐿 ∈ 𝐺𝑐: the address of the current leader. 

Initially: 

• 𝐺𝑐 = ∅; 
• 𝐿 = ⊥ (temporarily undefined). 

Method 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝑆𝑡𝑎𝑡𝑒(𝑠𝑡𝑎𝑡𝑢𝑠𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝐵𝑢𝑓𝑓𝑒𝑟), as an input, accepts a list of status messages 
𝑀status = [𝑚STATUS

1 , 𝑚STATUS
2 , … , 𝑚STATUS

𝑙 ], where each 𝑚STATUS
𝑖  contains a sender address 

𝑚STATUS
𝑖 .address ∈ 𝐴. During its execution it performs the following operations: 

• Extract addresses: 𝐺′ = {𝑚STATUS
𝑖 .address ∣ 𝑖 = 1,2, … , 𝑙}; 

• Sort addresses: arrange 𝐺′ in ascending order according to a total order ( ≤) on addresses 𝐴, 
𝐺sorted = Sort(𝐺′); This operation could also include additional sorting criteria. 

• Determine leader: 𝐿′ = max(𝐺sorted); 
• Initialize state (if 𝐺𝑐 is ∅ or 𝐿 is ⊥): 𝐺𝑐 ← 𝐺sorted, 𝐿 ← 𝐿′. 
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As a result of its execution, the new state components are returned as the following tuple: 
replicaMembers = 𝐺sorted, currentLeader = 𝐿′. 

Method 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑆𝑡𝑎𝑡𝑒(𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐿𝑒𝑎𝑑𝑒𝑟) expects an 𝐿′ ∈ 𝐴 as an input and performs the 
following transformation: 

isLeader {
true  if L′ = 𝑎𝑠𝑒𝑙𝑓

false  if L′ ≠ 𝑎𝑠𝑒𝑙𝑓
 

Method aggregateShareState(shareMessageBuffer) expects a list of share messages 𝑀𝑠ℎ𝑎𝑟𝑒 =

[𝑚SHARE
1 , 𝑚SHARE

2 , … , 𝑚SHARE
𝑙 ], where each 𝑚STATUS

𝑖  replicaMembers  

currentLeader  Below are multiple approaches to aggregate the state components 
replicaMembers  currentLeader  

 

• Select last message: 𝑚last = 𝑚SHARE
𝑙 ; 

• Extract state components: 
a. 𝐺′ = 𝑚last.replicaMembers, 
b. 𝐿′ = 𝑚last.currentLeader. 

As result returns replicaMembers = 𝐺′, currentLeader = 𝐿′. 

rather than relying on the latest and could be described as follows: 

• Let ℋ =  ∅ be a multiset of hashed state components. 
• For each message 𝑚𝑖 ∈  𝑀𝑠ℎ𝑎𝑟𝑒 : 

• Extract state components: 
o 𝐺𝑖 = 𝑚𝑖.replicaMembers; 
o 𝐿𝑖 = 𝑚𝑖.currentLeader. 

• Form state tuple: 
o 𝑆𝑖 = (𝐺𝑖 , 𝐿𝑖). 

• Compute hash of the state tuple: 
o ℎ𝑖 = ℎ(𝑆𝑖), where ℎ is a hash function. 

• Add ℎ𝑖 to ℋ: 
o ℋ ← ℋ ∪ {ℎ𝑖}. 

• Identify the hash ℎ∗ with the highest frequency in ℋ: 
o ℎ∗ = arg max(frequency(ℎ𝑖, ℋ)). 

• Find 𝑆∗ = (𝐺′, 𝐿′) such that ℎ(𝑆∗) = ℎ∗. 

As result returns replicaMembers = 𝐺′, currentLeader = 𝐿′. 

assigning points from each of the participants. Consider a set of share messages defined as the 
𝑀𝑠ℎ𝑎𝑟𝑒 = [𝑚SHARE

1 , 𝑚SHARE
2 , … , 𝑚SHARE

𝑙 ], where ∀𝑚𝑖 ∈ 𝑀𝑠ℎ𝑎𝑟𝑒 contains a ranked list of replica 
members 𝐺𝑖 = [𝑎𝑖,1, 𝑎𝑖,2, … , 𝑎𝑖,𝑛𝑖

], where 𝑛𝑖 = |𝐺𝑖| be the number of candidates in 𝑚𝑖, with 𝑎𝑖,1 being 
the most desired leader and 𝑎𝑖,𝑛𝑖

 being the least desired leader. 

• For each message 𝑚𝑖 ∈ 𝑀𝑠ℎ𝑎𝑟𝑒. 
o For each candidate 𝑎𝑖,𝑘 at position 𝑘 in 𝐺𝑖 compute the weight 𝑤𝑖,𝑘 = 2𝑛𝑖−𝑘. 

• Initialize a score set 𝐶𝑖 = {𝑐𝑖,1, 𝑐𝑖,2, … , 𝑐𝑖,𝑛𝑖
}, where 𝑐𝑖,𝑘= 0 for 𝑘 = 1,2, … , 𝑛𝑖. 

• For each candidate 𝑎𝑖,𝑘: 
o Update the candidate's score 𝑐𝑖,𝑘 ← 𝑐𝑖,𝑘 + 𝑤𝑖,𝑘; 
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o Let 𝑐𝑗 ∈ 𝐶 be the total score, where 𝐶 is a set of total scores for each candidate, then 
for 𝑎𝑖,𝑗 ∈ 𝐺𝑖 , 𝑐𝑗 = ∑ ∑ δ𝑎𝑖,𝑗,𝑎𝑖,𝑘

𝑛𝑖
𝑘=1

𝑙
𝑖=1 ⋅ 𝑤𝑖,𝑘; 

o where δ𝑎𝑖,𝑗,𝑎𝑖,𝑘
 is the Kronecker delta function: 

▪ 𝛿𝑎𝑖,𝑗,𝑎𝑖,𝑘
{

1  if 𝑎𝑖,𝑗 = 𝑎𝑖,𝑘

0  if 𝑎𝑖,𝑗 ≠ 𝑎𝑖,𝑘
 

• Determine the leader: 
o Identify the candidate 𝐿′ with the highest total score arg max

𝑐𝑗∈𝐶
(𝑐𝑗) 

o In case of a tie, apply a deterministic tie-breaker, such as selecting the candidate with 
the highest address according to the total order ≤ on 𝐴. 

As result returns replicaMembers = 𝐺′,  currentLeader = 𝐿′. 
Method 𝑠𝑎𝑛𝑖𝑡𝑖𝑧𝑒𝑆ℎ𝑎𝑟𝑒𝑆𝑡𝑎𝑡𝑒(𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑀𝑒𝑚𝑏𝑒𝑟𝑠, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐿𝑒𝑎𝑑𝑒𝑟) expects a set 𝐺′ ⊆ 𝐴 and a 

leader 𝐿′ ∈ 𝐴. 

• Validate Members: areValidMembers = (𝐺′ ≠ ∅) ∧ (𝑎self ∈ 𝐺′); 
• Validate Leader: isLeaderValid = 𝐿′ ∈ 𝐺′. 

Output could be described then as: 

• (areValidMembers ∧ isLeaderValid)  ⟹ {replicaMembers: 𝐺′,currentLeader: 𝐿′}; 
• ¬(areValidMembers ∧ isLeaderValid)  ⟹  ∅. 

Method 𝑠ℎ𝑜𝑢𝑙𝑑𝑅𝑒𝑙𝑜𝑎𝑑(𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑀𝑒𝑚𝑏𝑒𝑟𝑠, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐿𝑒𝑎𝑑𝑒𝑟) expects 𝐺′ ⊆ 𝐴 and 𝐿′ ∈ 𝐴. 
During its execution it performs the following operations: 

• Compare Members: membersChanged = (𝐺′ ≠ 𝐺𝑐); 
• Compare Leader: leaderChanged = (𝐿′ ≠ 𝐿); 
• Determine Reload Necessity: shouldReload = membersChanged ∨ leaderChanged. 

Returns a Boolean that indicates whether a client should be notified about the state change. 
Method updateState(replicaMembers, currentLeader) expects a 𝐺′ ⊆ 𝐴 and 𝐿′ ∈ 𝐴. During its 

execution it performs: if (𝐺′ ≠ ∅ ∧ 𝐿′ ∈ 𝐺′) then (𝐺𝑐 ← 𝐺′, 𝐿 ← 𝐿′). 
Method 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝐶𝑙𝑜𝑠𝑒𝑆𝑡𝑎𝑡𝑒(𝑐𝑙𝑜𝑠𝑒𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝐵𝑢𝑓𝑓𝑒𝑟) depends on the implementation of a 

leader election function and whether it is completely deterministic. If the sorting is done with an 
inclusion of a locally asserted context, this method is supposed to trigger the initial phase of the 
RSDP to achieve consistency. 

Otherwise it expects a list of close messages 𝑀𝑐𝑙𝑜𝑠𝑒 = [𝑚CLOSE
1 , 𝑚CLOSE

2 , … , 𝑚CLOSE
𝑝

], where each 
𝑚CLOSE

𝑖  has sender address 𝑚CLOSE
𝑖 .address ∈ 𝐴. 

During its execution it performs the following operations: 

• Extract Closing Addresses: Acl = {𝑚CLOSE
𝑖 .address ∣ 𝑖 = 1,2, … , 𝑝}; 

• Update Replica Members: 𝐺𝑐 ← 𝐺𝑐 ∖ Acl; 
• Recalculate Leader: 𝐿 ← max(𝐺𝑐)  if 𝐺𝑐 ≠ ∅ else ⊥. 

Different approaches towards implementation of aggregateShareState(shareMessageBuffer) 
outlined in this section contribute to different properties of the election process. Method based on 
the latest source of truth is characterized by low computational intensity, but while reasonable in 
trusted and stable environments, is susceptible to network congestion or failures. This approach is 
not suitable for networks that have strict requirements for Byzantine fault tolerance. 
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Method based on a popular vote provides higher resilience for both intentional and unintentional 
discrepancies during the consensus process. It is a suitable approach for systems that are beset with 
an unstable or restricted environment. It is additionally characterized by increased computational 
complexity, though it could be reduced by taking into account only scalar values to avoid hashing 
overhead. This approach is the most resilient among the others against intentionally hostile behavior 
since, to perform an action, you have to gather the majority of votes. 

Finally, the last method provides a solution based on the electoral points approach. It is the most 
stable and resilient option among the previous three in the context of unstable connections due to 
its ability to downgrade votes that have lost some portion of a state and hence have a limited view 
of the global state set. Though it is not resilient towards intentionally hostile actions since the state 
set cardinality could be superficially inflated. 

3.2. Implementation of the leader election reducer 

The following section describes practical implementation of the leader election reducer using 
JavaScript and the 𝐵𝑎𝑠𝑒𝑅𝑒𝑝𝑙𝑖𝑐𝑎𝑆𝑡𝑎𝑡𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟𝑅𝑒𝑑𝑢𝑐𝑒𝑟 interface defined by the RSDP. The 
following algorithm assumes that every cluster member can trust the environment and implements 
the first approach from the previous section. Such an assumption is a common case when building 
coordinated replication between internal services to achieve high availability. From this point on we 
will refer  

Figure 4 shows the initial aggregation implementation logic: 
 

 

Figure 4: Initial aggregation logic of the leader election reducer. 

The initial state of the LER, as defined by the model, is comprised of an empty set of replica 
members and an undefined leader. This serves as an example of an abstract derived reducer subset 
since it does not have an initial 𝑔𝑒𝑡𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑡𝑎𝑡𝑒 to share with the cluster. 

Method 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝑆𝑡𝑎𝑡𝑒 hence relies not on the data provided by the cluster members but on 
the messages themselves and their metadata. Its operation is simple; the new leader is defined as the 
replica that has the highest address. The sorting operation here is not redundant, since to achieve 
determinism, every node must have the same dataset and ordering. Subsequently, 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑆𝑡𝑎𝑡𝑒 
abstracts out the internal store and provides a simple answer to the client, whether he is a leader. 



131 
 

Figure 5 shows the share aggregation implementation logic: 
 

 

Figure 5: State share aggregation logic of the leader election reducer. 

The 𝑠𝑎𝑛𝑖𝑡𝑖𝑧𝑒𝑆ℎ𝑎𝑟𝑒𝑆𝑡𝑎𝑡𝑒 method is responsible for verifying the consistency of the data received 
from the aggregated state. A leader is valid if it is in a set of known members, and the members are 
valid if it is not an empty set. Then, the 𝑠ℎ𝑜𝑢𝑙𝑑𝑅𝑒𝑙𝑜𝑎𝑑 method decides whether the state has changed 
and whether the client should be notified. At last, 𝑢𝑝𝑑𝑎𝑡𝑒𝑆𝑡𝑎𝑡𝑒 simply sets a new state if it was 
provided. 

Figure 6 shows the close aggregation implementation logic: 
 

 

Figure 6: Replica close aggregation logic of the leader election reducer. 
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The 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝐶𝑙𝑜𝑠𝑒𝑆𝑡𝑎𝑡𝑒 
Its primary goal is to deterministically determine a new set of cluster members and a leader. The 
leader election logic here is the same as during the initial aggregation. RSDP continuously 
resynchronizes the state of the cluster, so any discrepancies caused by the lost messages will 
eventually be resolved due to the principle of eventual consistency. 

To conclude, RSDP provides a well-defined model for an arbitrary logical extension. The 

Farther research could lead to the different invariants of this protocol that could potentially be 
applicable in decentralized environments. 

3.3. Leader election reducer duration and failure probability 

Failure probability and consensus duration are two of the most important metrics for the consensus-
achieving algorithm. The following section provides mathematical models that describe these 
properties. We will start with a model of time required to reach a consensus. The following 
assumptions are made: 

• Let 𝑛 be the total number of replicas in the system. 
• Let 𝑑 be the maximum one-way network delay between any two replicas. 
• Let 𝑡𝑝 be the maximum time a replica takes to process a message. 
• Phases to achieve initial consensus include “DEBATES” and “SHARE”. 
• All message delays and processing times are bounded and known. 
• The SLAN layer provides guarantees of message delivery. 
• The probability of the communication media coordinator failure is negligent. 

DEBATES” phase each replica sends a “HELLO” message to all other replicas 

where time for a “HELLO” message to reach other replicas: 𝑑. After receiving a “HELLO” message, 

each replica processes it in time (n − 1)tp and sends back a “STATUS” message where time for a 

“STATUS” message to reach the original sender is 𝑑. 
For a replica to receive “STATUS” messages from all others, the time is d + (n − 1)tp + d =

2d + (n − 1)tp and since there are 𝑛 −  1 replicas sending “STATUS” messages, processing them 

takes (𝑛 − 1)𝑡𝑝. 

Subsequently, the total “DEBATES” phase time (𝑇DEBATES) is: 

TDEBATES = 2d + (n − 1)tp + (n − 1)tp = 2d + 2tp(n − 1) (1) 
During the “SHARE” phase, after aggregating the received “STATUS” messages, each replica 

broadcasts a “SHARE” message to all others. Time for “SHARE” message to reach other replicas 

is 𝑑. After that each replica processes incoming “SHARE” messages from 𝑛 −  1 replicas in time 
(𝑛 − 1)𝑡𝑝. 

Then the total “SHARE” phase time (𝑇SHARE) is:  

TSHARE = d + (n − 1)tp (2) 
Hence, the total time to reach consensus (𝑇consensus) is: 

Tconsensus = TDEBATES + TSHARE = (2d + 2tp(n − 1)) + (d + (n − 1)tp)

= 3d + 3tp(n − 1) = 3 (𝑑 + tp(n − 1)) 
(3) 

It is obvious then that the consensus achieving time is linearly dependent on the amount of cluster 
members. Additionally, network delay 𝑑 and processing time 𝑡𝑝 are critical factors, but since the 

protocol is built on top of deterministic principles and clean functions, 𝑡𝑝 should be negligent. 
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As for the failure probability, the following assumptions are made: 

• Let 𝑝𝑙  be the probability that a message is lost. 
• Let 𝑝𝑓 be the probability that a replica fails during the consensus process. 
• Message losses and replica failures are independent. 
• Each replica must receive “HELLO”, “STATUS”, and “SHARE” messages from all the 

replicas. 
• A replica successfully participates if it can send and receive all required messages. 

The probability that a single message is successfully transmitted is: 

Pmsg = 1 − pl (4) 
During the consensus achieving stages, each replica must send 𝑛 − 1 “HELLO” and 𝑛 − 1 

“SHARE” messages. Consequently, every replica expects to receive 𝑛 − 1 “HELLO”, 𝑛 − 1 

“STATUS”, 𝑛 − 1 “SHARE” messages. Then the total messages received per replica could be 

represented as: 

Mtotal = 3(n − 1) = 3n − 3 (5) 
Having the total amount of required messages to successfully achieve consensus, the probability 

that a replica successfully sends and receives all messages: 

Preplica = (1 − pf) × (Pmsg)
Mtotal (6) 

Consequently, the probability that all replicas will successfully participate is: 

Pall replicas = (Preplica)
n

= [(1 − pf) × (1 − pl)
3n−3]n (7) 

Then the probability of consensus failure for the first election method: 

Plast state failure = 1 − [(1 − pf) × (1 − pl)
3n−3]n (8) 

The probability of failure is dependent on key characteristics of the network and the underlying 
infrastructure. It is obvious that such an approach is suitable only in cases of stable network 
connections. SLAN layer provides delivery recovery mechanisms but does not solve every issue 
related to the message loss. Since the 

 do not require successful participation of every node, the probability could be reevaluated 
and considered in the following way: 

Let 𝑞 be the minimum number of replicas required for consensus (the quorum). For a simple 
majority: 

q  =   ⌈
𝑛

2
⌉ (9) 

Consequently, the probability that at least 𝑞 replicas successfully participate is: 

Pquorum consensus = ∑ (
n

k
)

n

k=q

(Preplica)
k

(1 − Preplica)
n−k

   
(10) 

Then the probability of consensus failure: 

Pvote failure = 1 − Pquorum consensus (11) 
Evidently, vote-based approaches are significantly more resilient than the method based on the 

last state decision. In such systems, it is possible to withstand partial failure of participating nodes 
during the consensus process. 
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4. Stateful Cluster Failover Models 

A stateful cluster in the context of this article is a distributed system where each node has its own 
subset of the system state. The subset might be either a unique unknown portion for every other 
cluster member or, as a more common case, a subset of anot
establish a leader-follower model to achieve high consistency [13-15]. 

While the entire cluster follows a single leader, it becomes a single point of failure. The principles 
of fault tolerance in that context require establishing a failover mechanism as a contingency. During 

luster nodes should be probed and tested to detect 
any issues promptly. As soon as the critical event on the leader node is detected, the mechanism 
switches to the active phase of achieving consensus. The entire network has to agree upon a new 
leader of a cluster to continue its operation [28-30]. 

The following list includes common definitions used to model every subsequent failover method 
and their properties: 

• 𝑁: Number of instances in the cluster. 
• 𝑀: Number of external observers (Method 2 & 3). 
• ℎ: Health-check interval between instances (Method 1). 
• ℎ𝑜: Health-check interval by observers (Methods 2 and 3). 
• 𝑇𝑑: Failure detection time. 
• 𝑇𝑝: Time to perform the failover procedure. 
• 𝑇𝑐: Consensus achieving time (an independent parameter). 
• 𝑝𝑖: Probability of an instance failing during the observation window. 
• 𝑝𝑜: Probability of an observer failing during the observation window. 
• 𝑃consensus: Probability of failure in achieving consensus. 
• 𝑇𝑜𝑏𝑠: Total observation time. 
• 𝐶𝑚: Average size of a message (in bytes) 

Each node/observer sends (𝑁 − 1) 𝑜𝑟 (𝑀 − 1) messages three times during consensus. In the 
following subsection, each failover topology will be described in terms of failover delay, total failure 
probability, and communication overhead. 
as an optimization phase to avoid going through the entire consensus cycle every time a node leaves 
the cluster. 

4.1. Self-regulated mutual health evaluation 

We will first evaluate a model based on a single logical plane. Each node in such a cluster is 
responsible for operational execution, monitoring, and governance. In such topology, every node 
must have a communication link with every other in the system to successfully achieve consensus 
and monitor other instances [31, 32]. 

The cluster could be preconfigured to initiate health probes in a specified interval but with 
different initial timestamp shifts based on a node position in the network. This allows to efficiently 
utilize the repetitive status probes and decrease failure detection time. Additionally, since every node 
conducts the monitoring, the network can tolerate to up to 𝑁 –  1 failed nodes, where 𝑁 is a node set 
cardinality. 

In that regard, LER provides all the necessary data needed to establish successful monitoring and 
election in an automated way. The capabilities of LER already provided data for the dynamic node 
discovery. Hence, every node has a list of the cluster members that they must probe. LER 
automatically adjusts the states of nodes in a cluster as soon as some subset leaves, but the new 
leader election cycle could also be triggered in case the nodes suffered critical events. 
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Figure 7 shows the topology of a self-regulated cluster of nodes: 
 

 

Figure 7: Self-regulated mutual health evaluation. 

Each instance performs health checks on every other instance at intervals of ℎ. The expected time 
for the first instance to detect a failure is the minimum time any instance takes to detect it. Assuming 
health checks and uniformly distributed, the expected detection time is: 

E[Td1] =
h

2N
 

(12) 

After detecting failure, instances need to reach consensus. The consensus achieving time (𝑇𝑐) is 
considered an independent parameter to simplify the model and concentrate directly on the factors 
directly tied to the topology. The total time from failure occurrence 𝑇𝑓1 to failover completion is the 
sum of detection time, consensus time, and failover procedure time: 

Tf1 = E[Td1] + Tc + Tp =
h

2N
+ Tc + Tp 

(13) 

The probability that all instances fail simultaneously (𝑃all instances) could be represented simply as 
an exponent of a single instance failure: 

Pall instances = 𝑝𝑖
𝑁 (14) 

Then the total failure probability 𝑃𝑓1 would be described in terms of consensus (Pconsensus) and 
all instances (Pall instances) failure probabilities: 

Pf1 = Pconsensus + Pall instances − (Pconsensus × Pall instances) (15) 
Then each instance sends health checks to 𝑁 −  1  other instances. During consensus, each 

instance sends 𝑁 −  1  messages three times. The overall amount of the messages sent during 
consensus is: 

Mconsensus = N × (N − 1) × 3 (16) 
The total number of messages exchanged during the observation period (𝑇𝑜𝑏𝑠) is: 

Mtotal1 = (
Tobs

h
× Mhealth) + Mconsensus 

(17) 

Total communication overhead in bytes: 

Overhead1 = Mtotal1 × Cm (18) 

the models that are tied directly to the system failover properties. But to achieve a holistic view, 
consensus time and maintenance time models must be included. 
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4.2. Centralized observer health monitoring 

The topology with a centralized observer includes a set of stateful worker nodes in a cluster and a 
single coordinating machine that manages the entire network. This topology introduces the division 
between operational and control planes and thus fosters the single responsibility principle in the 
system [33, 34]. 

Figure 8 shows the topology of a cluster monitored and coordinated by a single observer: 
 

 

Figure 8: Centralized observer health monitoring. 

Let us consider failure detection time 𝑇𝑑2. Assume that the observer performs health checks on 
all instances at intervals of ℎ𝑜. Then the expected time to detect a failure is half the health-check 
interval: 

E[Td2] =
ho

2
 

(19) 

Since there is no consensus process among instances, the total failover time is: 

Tf2 = E[Td2] + Tp =
ho

2
+ Tp 

(20) 

The system relies on a single observer; its failure directly impacts the system's ability to perform 
failover. Probability of all Instances failing (𝑃all_instances) is the same as in the first method. 

The total failure probability includes the observer failure and all instances failing: 

Pf2 = po + Pall instances − (po × Pall instances) (21) 
Moving on to the communication overhead model, the observer sends health checks to all 𝑁 

instances. Messages per health-check interval ℎ𝑜: 

Mhealth = N (22) 
Then the total messages over observation time 𝑇𝑜𝑏𝑠: 

Mtotal2 =
Tobs

ho
× Mhealth 

(23) 

Consequently, the total communication overhead in bytes: 

Overhead2 = Mtotal2 × Cm (24) 
This model imposes smaller communication overhead and reduces coordination complexity but 

suffers from a single point of failure. 
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4.3. Distributed observer health assessment 

The following discussed topology is also comprised of two distinct execution plains. In such 
networks, a consensus algorithm is used between observers themselves and decides on the 
responsible node that must coordinate the workers plane [35-37]. 

Figure 9 shows the topology of a cluster monitored and coordinated by a group of observers: 
 

 

Figure 9: Distributed observer health assessment. 

𝑇𝑑3. With 𝑀 observers, the expected time to detect a 
failure is: 

E[Td3] =
ho

2M
 

(25) 

Observers need to reach consensus after detecting a failure that takes 𝑇𝑐 . Then the total time from 
failure occurrence to failover completion: 

Tf3 = E[Td3] + Tc + Tp =
ho

2M
+ Tc + Tp 

(26) 

The probability that all observers fail simultaneously is 𝑃all_observers = 𝑝𝑜
𝑀 . Given that the of all 

instances failing (𝑃all_observers) is the same as in the previous methods, the total failure probability 
(𝑃𝑓3) is: 

Pf3 = Pconsensus + Pall observers + Pall instances − (Pconsensus × Pall observers × Pall instances) (27) 
Each of 𝑀 observers sends health checks to all 𝑁 instances. Then the Mhealth is: 

Mhealth = M × N (28) 
Additionally, each observer sends 𝑀 −  1 messages three times during consensus: 

Mconsensus = M × (M − 1) × 3 (29) 
Then the total messages during 𝑇𝑜𝑏𝑠 is: 

Mtotal3 = (
Tobs

ho
× Mhealth) + Mconsensus 

(30) 

Consequently, the communication overhead (Overhead3): 

Overhead3 = Mtotal3 × Cm (31) 
This model provides a balance between communication overhead, complexity, separation of 

concerns and fault tolerance. 



138 
 

5. Conclusions 

Achieving consensus within the confines of a Decentralized Coordination Network based on 
homogenous multiagent system is a critical process that is gaining momentum in the research field 
due to the ever-growing sizes of distributed systems and requirements towards high availability. 
Within the context of this article, a novel leader election protocol was created and modeled based on 
the Replica State Discovery Protocol. 

One of the primary goals of this article is to introduce a leader election state reducer as a logical 
extension of RSDP to address the rapid failover problem. As a result, multiple viable approaches were 
proposed towards building such a reducer that are based on different properties of common state 
aggregation. The first proposed method of leader election is based upon the supposition that the 
network is controlled, and fault tolerance against malicious action during consensus is not expected. 
That is a reasonable expectation since RSDP is built on top of LAN simulation, which in turn is based 
on AMQP provider. Such providers often come with a set of authentication and authorization 
mechanisms of their own. This method is characterized by its low computational overhead and 
finality characteristics in case of an extremely dynamic network. 

The following two methods are based on quorum approach towards handling the leader election 
process. The method based on a popular vote is the most suitable approach to ensure resilience 
against both intentional and accidental failures during consensus interactions. Popular vote is a 
common solution in networks that require Byzantine fault tolerance. 

The third proposed leader election method based on RSDP, in its foundation relies on the 
weighted election algorithm. The approach is characterized by a greater degree of resilience in highly 
congested and unreliable networks where random packet losses occur frequently due to its ability of 
partial inclusion. 

Given the mathematical models and graphs for the three different cluster failover models and 
approaches, it is fair to assume that none of those could be called objectively superior in every plain 
of comparison. Method involving self-regulated mutual health evaluation is most suitable when high 
additional infrastructure incurrence and the critical event detection time are the most influential 
metrics of the successful system operation. Though it is worth noting that the communication 
overhead grows exponentially with the number of cluster members. 

The second method, based on centralized observer health monitoring, is an appropriate solution 
only in cases where higher infrastructure and communication overhead costs are a primary decision 
factor. Since the entire stability of the system depends on a single centralized external observer, the 
very same observer becomes a single point of failure, which could lead to a disaster when high 
availability is a hard requirement. 

Lastly, a method based on distributed observer health assessment serves as a trade-off between 
high availability, infrastructure cost incurrence, communication overhead, and failover delay by 
offloading the decision-making process to the parallel distributed layer of coordination. Such an 
approach is mostly suitable for current cloud infrastructure demands due to its flexibility and clearly 
established separation of concerns. 

Overall, this article aims to inspire a surge of further research in the complex, exciting, and 
extremely relevant field of distributed computing and management. The implications and results of 
this research allow to bolster the security of modern critical infrastructure by effectively describing 
novel ways of achieving resilience through redundancy and the distribution of responsibility. 
Provided mathematical and graphical models are provided to help in the complex decision-making 
process and reduce possible risks when choosing an appropriate model and approach for rapid 
cluster failover. 
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