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Abstract 
This article proposes The Strategy for processing of testing which may be applied for arbitrary tests suit 
in which tests are independent and based on limit distributions. Testing parameters, used in Strategy, may 
be chosen depending on different factors, such as sphere of application of generator, our confidence of its 
quality, terms between planned testings, existing of other quality checkings. We also may change the 
number of tests in suit, reducing their number for regular everyday testing and increase it for testing 
before generator adoption. The Strategy summarizes testing results in one decision about quality of 
(P)RNG and possibility of its usage in cryptographic applications. 
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1. Introduction 

Random/pseudorandom number generators (P)RNG are integral part of cryptology. The outputs of 
(P)RNG are used for creation of cryptosystem parameters, key materials, initialization vectors, 
auxiliary values for digital signatures. The necessary condition of cryptosystem security is high 
cryptographic properties of (P)RNG which outputs are used for this cryptosystem. In particular, the 
outputs of (P)RNG must be unpredictable, which involves the requirements on their statistical 
properties. To check these properties the suits of statistical tests are used, which consists of the 
different statistical tests, where each of them checks some specific property of sequence  
equiprobable distribution of symbols, independence of elements, etc. Note that statistical testing 

, this is just the initial phase in 
assessing if a (P)RNG is appropriate for a specific cryptographic use. 

There are two fundamental types of generators for producing random sequences: random 
number generators (RNGs) and pseudorandom number generators (PRNGs). In case when it is not 
necessary to distinguish these two types, we will use abbreviation (P)RNG. Both of these generator 
types produce streams of binary values, and such stream that may be divided into blocks or 
transformed into random numbers. 

As an example of true random bit sequence, we may consider the result of the flips of an 

probability of exactly ½ for each of outcomes. Each coin flip is independent of the others: the 
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outcome of any previous coin flip does not influence future coin flips. Therefore, the value of the 
next element in the sequence remains unpredictable, no matter how many elements have already 
been generated. 

 
In modern cryptography, generating sequences of 1,000,000 to 10,000,000 bits is often required, 

making the use of unbiased coins impractical for cryptographic purposes. Nonetheless, the 
hypothetical output of an ideal true random bit sequence generator serves as a benchmark for 
evaluating random and pseudorandom number generators. 

The RNG employs a non-deterministic source (entropy source) combined with a processing 
function to generate randomness. This processing function is necessary to address any weaknesses 
in the entropy source that may lead to non-random numbers, such as extended sequences of zeros 
or ones.  

The outputs of an RNG can be used directly or as input for a PRNG. If the output is used 
without further processing, it needs to satisfy strict randomness criteria, which is verified using 
corresponding statistical tests. Be aware that certain physical sources (e.g., date/time vectors) can 
be quite predictable. To address this issue, combining outputs from various types of sources can be 
used as inputs for an RNG. However, this process may be too time-consuming, making it 
impractical when a large amount of random bits is required. 

To produce large quantities of random bits, PRNGs are more preferable. A PRNG uses one or 
Inputs to PRNGs are known as 

seeds. When unpredictability is essential, the seed must be both random and unpredictable. 
Therefore, a PRNG should typically acquire its seeds from the outputs of an RNG, meaning a PRNG 
relies on an RNG. 

The outputs of a PRNG are usually deterministic functions of the seed, meaning all true 
randomness is limited to seed generation. The deterministic nature of this process is what gives 
rise to the term 'pseudorandom.'  

To verify the cryptographic quality of (P)RNG, the suit of statistical tests should be applied to 
outputs of generator, which purpose, informally speaking, is to compare the output sequence to a 
truly random sequence. The characteristics of a random sequence can be expressed through 
probability. The expected results of statistical tests, when applied to a genuinely random sequence, 
are known in advance and can serve as a basis for comparison. There exists a huge number of 
different statistical tests and several test suites [1-17], but at the same time no specific finite tests 

The results of statistical testing should be interpreted carefully and 
cautiously to prevent drawing incorrect conclusions about a particular generator. 

Typically, the testing procedure may be described as follows. We formulate some hypothesis, 
usually defined as 𝐻0, that the sequence under testing is truly random. The alternative hypothesis 
𝐻1 
some value, called statistics, which may be calculated from the sequence elements and which, 
under the 𝐻0 assumption, has some known probability distribution. After that we set some small 
value 𝛼 ∈ (0,1) st 
region of criterion  such subset of the set of all possible values taken by statistics, which has 
probability α. Therefore, the probability that for true random sequence the obtained statistics gets 
to the critical region is very small (usually we choose α = 0.01 or smaller). Then we calculate 
statistics for tested sequence and accept 𝐻0, if statistics is outside the critical region, and reject it in 
opposite case. So the 1st type error is the probability to reject 𝐻0 if it is true. The probability of the 
2nd type error, to accept 𝐻0 if it is not true, is impossible to calculate in case of composite 
hypothesis 𝐻1. 

There are huge number of articles, which develop new tests, or test suits, of investigate and 
analyse the results of testing. This paper also analyses some aspects of testing (P)RNGs, more 
precisely  the Strategy of processing of testing results (below  Strategy). Here we are not 
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considering the questions about the structure of test suit or about creating new statistical tests. 
Instead, we are concentrating on the question about how to process the results of testing and to 
obtaining the justified conclusion about the quality of (P)RNG. 

We take the Strategy, proposed in NIST SP 800-22, Revision 1a [1], as the base for our 
investigation. The proposed Strategy has no explanation and justification, which cause the 
impossibility of analysis of its consistence. Because of this, the main purposes of our work are: 

1. to analyse the Strategy and consider what rationale may be behind it; 
2. to create corresponding justifications for each step of the Strategy; 
3. to analyse possible incorrections and fix them; 
4. to modify the Strategy, according to the obtained results, and extend it, if necessary, 

with additional steps. 

The article is organized as follows. In the Section 1 we give relative work survey. In Section 2 
we give brief overview of testing procedure and Strategy for the Statistical Analysis, proposed in 
NIST. Then we explain main issues of the Strategy. In Section 3 we proof several Propositions, 
needed for formulation and justification of new modified and extended Strategy. Then, in Section 4, 
we formulate this Strategy step-by-step, omitting such trivial steps as sequences creation and 
generation. Finally, we give the results of its application to certified (P)RNG DSTU 7624:2014. We 
conclude with summery of our results. 

2. Analysing issues in NIST Strategy of processing of testing results 

The revised version of NIST Test Suite (2010) [1] consists of the following 15 tests: the Frequency 
(Monobit) Test; frequency Test within a Block; the Runs Test; Tests for the Longest-Run-of-Ones in 
a Block; the Binary Matrix Rank Test; the Discrete Fourier Transform (Spectral) Test; the Non-
overlapping Template Matching Test; the Overlapping Template Matching Test; Maurer's 
"Universal Statistical" Test; the Linear Complexity Test; the Serial Test; the Approximate Entropy 
Test; the Cumulative Sums (Cusums) Test; the Random Excursions Test; the Random Excursions 
Variant Test. These tests were developed to test the randomness of binary sequences produced by 
(P)RNG. They try to check different types of non-randomness that could exist in a sequence. 

Note that the initial version of NIST tests, developed in 2000, contains one more test  Ziv-
Lempel complexity test. 

For interpretation of testing results, NIST uses Strategies for the Statistical Analysis (section 
4.1), which consists of 5 steps. The 1st step is (P)RNG Selection, the 2nd is generating sufficient 
number of sequences of required length (not less than 300 sequences, but 1000 is more preferable), 
and the 3rd step is testing all generated sequences with all tests from the suit. The Analysis itself 
consists of the 4th step, where the uniform distribution of P-values is checked, The proposed 
Strategy have some issues, the most important are: 

• absence of justification; 
• absence of explanations how credential intervals were chosen; 
• inconsistency of significance levels for required intervals; 
• 

significance level may not coincide with the probability for statistics of truly random 
sequence to get into critical region; 

• the Strategy analyses only the results of separate tests, without their mutual results. 

In the next sections, we are going to give more details about these issues and to fix them, giving 
modified and extended Strategy with comprehensive justification. 
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3. Materials and Methods 

In this section we give and prove several statements, which are basic for formulation and 
justification of improved version of testing Strategy for processing of testing results (below  NIST 
Strategy), proposed in NIST STS. 

significance level α e binary sequence with the test T. 
The outcome of the experiment is 0, if the hypothesis 𝐻0 for this sequence is rejected with the test, 

(P)RNG which is indistinguishable from Truly RNG. 
Φ(𝑥) for its 

cumulative distribution function. 

approximately has some definite distribution, like SND of 𝜒2, and the probability to pass the test 
may be expressed using this distribution. Note that the majority of NIST tests are based on limit 
distributions, but not all of them. For example, the well-known and widely used 

18], formally speaking, is not based on limit distribution, because its 
justification is partially empirical: the authors use Normal Distribution for approximation of sum of 
dependent RVs (more details may be found in test description). For such tests correspondence 
between significance level and critical region may be not precise. 

The next Propositions are strongly proved only for tests which are based on limit distributions, 
because we will assume that the significance level is equal to the probability of sequence to get to 
the critical region. But it need be noted that NIST Strategy is implicitly based on the similar 
propositions and is applied for all tests without restrictions. It makes the Strategy partially 
empirical, and also may cause the situation when P(P)RNG may be rejected. In such cases, when 

recommended to define the significance levels for different statistics values using some 
2  

Proposition 1. Let us do n independent experiments with test T for sequences obtained from 
P(P)RNG for some preset significance level α. Define k 
Then, for sufficiently large n and chosen 𝐴 ∈ (0,1), the next equality holds: 

( ) ( )1 1
1 ; 1 1n

A A
SP C C A
n n n

   
 

  −  − 
  − −  − +  = − 
     , 

where 𝐶𝐴 is defined from the equality Φ(𝐶𝐴) = 1 −
𝐴

2
. 

Proof. Let 𝜉 = {𝜉𝑖}𝑖=1
𝑛  be the sequence of independent equally distributed random variables 

(RVs), where 𝜉𝑖 ∈ {0,1}, 𝑖 = 1, 𝑛̅̅ ̅̅̅ are defined as 

𝜉𝑖 = {
1, 𝑖𝑓 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 𝑒 𝑜𝑓 𝑖 − 𝑡ℎ 𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡 𝑖𝑠 1;

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 (1) 

 
Then, as experiments used the sequences from P(P)RNG, for all 𝑖 = 1, 𝑛̅̅ ̅̅̅ we get: 

( )ξ ξ 1 1 αi iE P= = = − ,         ( ) ( ) ( )
2

σ ξ α 1 αiVar= =  − , 
(2) 

for some 𝛼 ∈ (0,1). Note that the second equality in (2) follows from the first one and from 
assumption that 𝜉𝑖 ∈ {0,1}. 

Define the new RV as 
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1
ξ

n

n i
i

S
=

=
. 

(3) 

Then, as 𝜉𝑖, 𝑖 = 1, 𝑛̅̅ ̅̅̅, are independent and equally distributed, 
𝐸𝑆𝑛 = ∑ 𝐸𝜉𝑖

𝑛
𝑖=1 = 𝑛 ∙ (1 − 𝛼) and 𝑉𝑎𝑟(𝑆𝑛) = ∑ 𝑉𝑎𝑟(𝜉𝑖)𝑛

𝑖=1 = 𝑛 ∙ 𝛼 ∙ (1 − 𝛼). (4) 

In these designations, the RV is the number of experiments with outcome 1 among all n 
experiments, and the value 𝑆𝑛

𝑛
 is the proportion of experiments with such outcome. 

According to Central Limit Theorem [19], for sufficiently large n, the probability distribution of 
RV 

( )

( )

( )

( )

11
1 1

n
n

n

S
S n n
n

n




   

− −−  −
= =

 −  − 

 
may be approximated with SND as 

( ) ( )( ) ( ) ( )1 2 2nP x x x x  = − + − = −  . 
For some quantile A define such 𝐶𝐴 that 2 − 2 ∙ Φ(𝐶𝐴) = 𝐴, or Φ(𝐶𝐴) = 1 −

𝐴

2
. 

Then 𝑃(|𝜂𝑛| ≥ 𝐶𝐴) = 𝐴, which may be rewritten as 

( ) ( )1 1
1 ; 1 1n

A A
SP C C A
n n n

   
 

  −  − 
  − −  − +  = − 
     , 

and the Theorem is proved. 
Note that in [1] (section 4.2.1, Proportion of Sequences Passing a Test) the value 𝐶𝐴 is chosen 

𝐶𝐴 = 3, which corresponds to 1 −
𝐴

2
= 0.99865, or 𝐴 = 0.0027. It means that the probability that 

the proportion of sequences is outside the interval is about 0.0027. 
Proposition 2. Let us have n outcomes of independent experiments with test T for sequences 

obtained from P(P)RNG for some preset significance level α. Consider RV 𝑃𝑇 = 𝑃(𝑇, 𝛼) which 
takes values which are equal to corresponding P-values, obtained in experiments. Then RV 𝑃𝑇 is 
uniformly distributed on [0,1]. 

Proof. Let 𝐹𝑇(𝑥) be cumulative distribution function of test statistics 𝑈𝑇 : 
( )( ) ( ) ( ),T T TP U a b F b F a = − . 

Then for arbitrary (𝑥, 𝑥 + 𝛿) ⊂ [0,1]: 

( )( ) ( ) ( )( )( )1 1, ,T T T TP P x x P U F x F x − − + =  + =
 

( )( ) ( )( )1 1
T T T TF F x F F x x x  − −= + − = + − =

, 
which means that 𝑃𝑇 has uniform distribution. 
To verify uniform distribution of P-values for each test, NIST Strategy proposes to use 𝜒2-

criterion (more precisely  its modification with gamma-function) with significance level 𝐴 =

10−4. Because of this, it is unclear why the Strategy proposes much more higher significance level, 
A = 0.0027, for its previous step. To remove such unfairness, it`s better to use the same significance 
level, 𝐴 = 10−4, for both steps. In this case we get 𝐶𝐴 = 4 instead of 𝐶𝐴 = 3, and the corresponding 
interval for proportion of sequences passed the test will be 

( ) ( )1 1
1 4 ; 1 4

n n
   

 
 −  − 
− −  − +  

   . 
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As we mentioned before, these two statements may be used to justify the NIST Strategy, 
described in section 4.2.1 [1], but only for such separate tests which are based on some limit 
distributions. Below we give one more statement, which allows to extend NIST Strategy in a such 
way, that take into account not only separate tests behaviour, but also the mutual behaviour of 
them. In what follows we will use the notation of tests independence, introduced in [11] and then 
developed in [13]. The strict definition of tests independence is rather complicated and is detailly 
described and may be found in [11]. Informally speaking, the tests from some sets are considered to 
be independent, if their decisions about acceptance/rejection of hypothesis are independent. It is 
the same as RVs, which reflect tests decisions, are mutually independent. Note that [1] also 

approach to verifying tests independence. 
In what follows, we will use Chernoff inequality in the form given in Corollary 5 of [20]. 
Chernoff inequality. Let 𝑋1, . . . , 𝑋𝑛 are independent RVs taking values in {0,1}. Define 

𝑋 = ∑ 𝑋𝑖
𝑛
𝑖=1  and set 𝐸𝑋 = 𝜇. 

Then for arbitrary 𝛿 ∈ (0,1) the next inequality holds: 

( )
2

32P X e
 

  


−

−     . 
Proposition 3. Let independent statistical tests 𝑇1, . . . , 𝑇𝑚 were applied for testing of n 

sequences obtained from P(P)RNG for some preset significance level α (the same for each test). 
Define k the number of sequences which pass all the tests. Then, for sufficiently large n and chosen 
𝐴 ∈ (0,1), the next equality holds: 

 ( ); 1A AP k A      −  +   − , 

where 𝛿𝐴 = √
3

𝜇
∙ 𝑙𝑛

2

𝐴
 and 𝜇 = 𝑛 ∙ (1 − 𝛼)𝑚. 

 
Proof. Introduce RVs 

𝜉𝑖
(𝑗)

= {
1, 𝑖𝑓 𝑡ℎ𝑒 𝑗 − 𝑡ℎ 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑝𝑎𝑠𝑠𝑒𝑠 𝑇𝑖;

0, 𝑒𝑙𝑠𝑒.
 

 
Next, define RV 

𝜉𝑖
(𝑗)

= {
1, 𝑖𝑓 𝑡ℎ𝑒 𝑗 − 𝑡ℎ 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑝𝑎𝑠𝑠𝑒𝑠 𝑎𝑙𝑙 𝑡𝑒𝑠𝑡𝑠;

0, 𝑒𝑙𝑠𝑒.
 

Note that 𝜉(𝑗) ∈ {0,1}. Using this fact and independence of RVs 𝜉𝑖
(𝑗), we get 

( ) ( ) ( )
1

1
m

mj j
i

i
E E  

=

= = −
, 

( ) ( ) ( )( )1 1 1m mjVar  = −  − −
. 

Finally, define the RV 

( )

1

n
j

j
 

=

=
, 

equal to the number of sequences passed all tests. 
Note that 𝜇 = 𝐸𝜉 = 𝑛 ∙ (1 − 𝛼)𝑚 and 𝑉𝑎𝑟𝜉 = 𝑛 ∙ (1 − 𝛼)𝑚 ∙ (1 − 𝑛 ∙ (1 − 𝛼)𝑚). 
Then apply Chernoff inequality to RV 𝜉 and define 𝛿 in a such way that the right part of the 

equality be equal to A; obtain the inequality 
 ( );A AP k A      −  −   , 
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for 𝛿𝐴 = √
3

𝜇
∙ 𝑙𝑛

2

𝐴
 and 𝜇 = 𝑛 ∙ (1 − 𝛼)𝑚. 

The Proposition is proved. 

4. New Strategy for processing of testing results and its justification 

Above we gave three statements which allow to justify partially NIST Strategy, define its weakness 
and incorrectness, and proposed to add some new step in the Strategy. Now we are going to 
formulate Algorithm which realizes the New Extended Strategy. 

Input: 

• the number n of the tested sequences (𝑛 ≥ 300); 
• the set of sequences 𝑋(𝑗) = {𝑥1

(𝑗)
, . . . , 𝑥𝑙

(𝑗)
} , 𝑗 = 1, 𝑛̅̅ ̅̅̅, of sufficient length l, obtained from 

investigated (P)RNG; 
• the significance level α (for testing); 
• the number m of tests in the suit; 
• the significance level A (for analysing testing results). 

Step 1 (Testing). Test all sequences; for each test 𝑇𝑖 , 𝑖 = 1, 𝑚̅̅ ̅̅ ̅̅ , and each sequence 𝑋(𝑗), 𝑗 = 1, 𝑛̅̅ ̅̅̅, 
obtain corresponding P-value 𝑃𝑖

(𝑗). 
Step 2 (Calculated quantiles and auxiliary values). Calculate the next values: 

• the quantile 𝐶𝐴 such that Φ(𝐶𝐴) = 1 −
𝐴

2
; 

• the quantile 𝜒𝐴
2 such that 𝐹(𝜒𝐴

2) = 1 − 𝐴, where F(x) is cumulative distribution function 
of 𝜒2-distribution with 9 degrees of freedom; 

• the edges of credential interval (for analyzing results of separate tests), corresponding to 
the significance level A: 

( )
1

1
1 AI C

n
 


− 

= − − 
 and 

( )
2

1
min 1, 1 AI C

n
 


 −  

= − +  
   ; 

• the values 𝜇 = 𝑛 ∙ (1 − 𝛼)𝑚 and 𝛿𝐴 = √
3

𝜇
∙ 𝑙𝑛

2

𝐴
; 

• the edges of credential interval (for analyzing results of testing with tests suit), 
corresponding to the significance level A: 𝑉1 = 𝜇 − 𝛿𝐴 ∙ 𝜇 and 𝑉2 = 𝜇 + 𝛿𝐴 ∙ 𝜇. 

Step 3 (Checking uniform distribution of P-values for each separate test). 
For each test 𝑇𝑖, 𝑖 = 1, 𝑚̅̅ ̅̅ ̅̅ , do the next sub-steps: 
3.1. find the values 𝐹𝑘, 𝑘 = 0,9̅̅ ̅̅ , equal to the number of P-values 𝑃𝑖

(𝑗), 𝑗 = 1, 𝑛̅̅ ̅̅̅, which belong to 

the interval [ 𝑘

10
,

𝑘+1

10
); 

3.2. calculate 𝜒2-statistics as  
2

9
2

0

10

10

k

i
k

nF

n
=

 
− 

 =

 
3.3. if 𝜒𝑖

2 ≤ 𝜒𝐴
2 -values obtained using test 𝑇𝑖 

-values obtained using test 𝑇𝑖  
Step 4 (Checking proportion of sequence passing the test for each separate test). 
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For each test 𝑇𝑖, 𝑖 = 1, 𝑚̅̅ ̅̅ ̅̅ , do the next sub-steps: 
4.1. calculate the value 𝑘𝑖 equal to the number of sequences passing the test; 
4.2. if 𝐼1 <

𝑘𝑖

𝑛
< 𝐼2 𝑇𝑖 lies inside the correct 

𝑇𝑖  
Step 5 (Checking proportion of sequence passing all tests).+ 
5.1. calculate the value k equal to the number of sequences passed all the tests; 
5.2. if 𝑉1 < 𝑘 < 𝑉2 

 
If on each step the algorithm gave positive answers, then we may consider the corresponding 

(P)RNG as perfect. 
Results of Strategy application. 
We applied the Strategy to the set of sequences generated from the certified generator, 

described in Appendix A in DSTU 9041:2020 [21]. The input data were the next: 

• the number of the tested sequences n = 300; 
• the significance level (for testing) α = 0.01; 
• the number of tests in the suit m = 41 (with all subtests); 
• the significance level (for analysing testing results) A = 0.0001. 

Now we give the step-by-step results of New Strategy application, according to Algorithm, 
given in Section 4. 

Step 1 (Testing). After testing each of these 300 sequences using 41 tests from [1], with 
significance level α = 0.01 for each test, we obtain the matrix of 300x41 size. 

Step 2 (Calculated quantiles and auxiliary values). For chosen significance level (for 
analysing testing results) A = 0.0001 we find, using Standard Normal distribution table, the 
corresponding quantile 𝐶𝐴 such that Φ(𝐶𝐴) = 1 −

𝐴

2
= 1 − 0.00005 = 0.99995, and obtain 𝐶𝐴 =

4. 
For chosen significance level (for analysing testing results) A = 0.0001 we find, using 𝜒2- 

distribution table, the corresponding quantile 𝜒𝐴
2 such that 𝐹(𝜒𝐴

2) = 1 − 𝐴 = 1 − 0.0001 =

0.9999, where F(x) is cumulative distribution function of 𝜒2-distribution with 9 degrees of freedom 
(because the number of intervals, for which we calculate the number of P-values, was chosen as 
10): 𝜒𝐴

2 = 33,7199484. 
Next, for chosen α = 0.01, A = 0.0001, given number of sequences n = 300 and obtained value 

𝐶𝐴 = 4 we calculate the critical region (outside the interval (𝐼1, 𝐼2)) for the proportion of sequences 
which pass each test as 

( )
1

1
1 0.96AI C

n
 


− 

= − −  =
 and 

( )
2

1
min 1, 1 1AI C

n
 


 −  

= − +  = 
   . 

Then we calculate auxiliary values 𝜇 = 𝑛 ∙ (1 − 𝛼)𝑚 and 𝛿𝐴 = √
3

𝜇
∙ 𝑙𝑛

2

𝐴
 and use them to 

calculate the critical region (outside the interval (𝑉1, 𝑉2)) for the number of sequences which pass 
all the tests as 𝑉1 = 𝜇 − 𝛿𝐴 ∙ 𝜇 = 121.9 and 𝑉2 = 𝜇 + 𝛿𝐴 ∙ 𝜇 = 275.5. 

 
Step 3 (Checking uniform distribution of P-values for each separate test). 
For each test 𝑇𝑖, 𝑖 = 1, 𝑚̅̅ ̅̅ ̅̅ , we calculate the number of P-values, which lie in each of 10 intervals, 

and applied Pearson criterion for obtained values, to check uniformity of their distribution. For all 
tests, the corresponding statistics were not larger than 22.4, which is smaller than limit statistic 
𝜒𝐴

2 = 33,7199484. Then the distribution of P-values may be considered uniform (for each test), 
and the first requirement of Strategy is met. 
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Step 4 (Checking proportion of sequence passing the test for each separate test). 
For each test 𝑇𝑖, 𝑖 = 1, 𝑚̅̅ ̅̅ ̅̅ , we calculate the value 𝑘𝑖 equal to the number of sequences passing 

the test. The maximal value of 𝑘𝑖, obtained on this step, is equal to 5, which corresponds to the 
proportion 0.983, which lies inside the interval (𝐼1, 𝐼2) = (0.96, 1). So, the second requirement of 
Strategy is met. 

Step 5 (Checking proportion of sequence passing all tests). 
We calculate the value k which is equal to the number of sequences passed all the tests: k = 239. 

This value lies inside the interval (𝑉1, 𝑉2) = (121.9, 275.5), so the third requirement of Strategy is 
met. We can conclude that the tested PRNG is perfect. 

Conclusions 

The Strategy for processing of testing results, proposed in the article, is extended and fully justified 
modification of the Strategy proposed in [1]. It may be applied for arbitrary tests suit in which tests 

about properties of generator, based on results of testing, is correct. 
We may choose testing parameters, used in Strategy, depending on different factors, such as 

sphere of application of generator, our confidence of its quality, terms between planned testings, 
existing of other quality checkings. We also may change the number of tests in suit, reducing their 
number for regular everyday testing and increase it for testing before generator adoption. The 
Strategy summarizes testing results in one decision about quality of (P)RNG and possibility of its 
usage in cryptographic applications. But the perfectness of generator does not guarantee that all its 

even in case when we use perfect generator in cryptographic applications, we still should test each 
separate sequences before using it for key data creation. 
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