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Abstract 
Paper presents a novel method for the construction of taxonomical classifications (concept hierarchies) 
for concepts using large language models. Traditional methods of taxonomy construction often focus 
heavily on hypernym-hyponym relationships, emphasizing hierarchical connections between concepts. 
However, these approaches tend to overlook the qualitative attributes of objects that form the foundation 
of classification. In contrast, the approach proposed in this paper is based on the premise that "the 
properties of objects are primary, while the types of objects are secondary." This foundational idea drives 
the development of TaxoRankConstruct, a novel rank-based iterative approach that leverages Large 
Language Models (LLMs) to construct more nuanced taxonomies. This method aims to enhance the clarity 
and precision of taxonomical hierarchies by systematically organizing concepts based on specific, 
identifiable characteristics. 
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1. Introduction 

Taxonomies are essential tools across various disciplines, facilitating the organization of 
knowledge by classifying concepts based on shared characteristics [1]. They are widely used in 
fields like biology, information science, astronomy, and chemistry, providing a structured 
framework for managing data and concepts [2]. However, constructing large-scale taxonomies 
from scratch remains a significant challenge, particularly when predefined hierarchies are 
unavailable, and dynamic criteria must be considered for iterative exploration and refinement. 

Despite advancements in natural language processing, there is still a gap in methodologies 
capable of building comprehensive taxonomies from scratch. Traditional approaches depend on 
expert-driven categorizations or clustering techniques to organize existing concepts into 
hierarchical structures. These methods often rely on predefined similarities and known concepts, 
limiting their capacity to iteratively explore and refine taxonomies using dynamic criteria [3, 4, 5]. 
The lack of automated or semi-automated tools that can adapt to new data and build taxonomies 
from the ground up underscores the need for more flexible and innovative solutions [6]. 

Our proposed method, TaxoRankConstruct, addresses this gap by introducing a rank-based 
iterative approach to building taxonomies from scratch. It identifies a set of "taxonomical ranks" for 
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the root concept, using these predefined ranks to determine the taxonomy's depth and the criteria 
by which concepts differ. This method enables the systematic and transparent exploration of 
concepts based on their taxonomical properties, supporting iterative population of taxonomies 
with selected criteria and offering a flexible solution for taxonomy construction [7, 8]. 

The primary goal of this research is to develop a new method for iterative taxonomy 
construction, emphasizing the multiple ways a single concept can be classified. This raises 
important questions about the best approach to algorithmic, iterative taxonomy creation: Should 
we focus on examining concepts and their properties sequentially, or should we first explore the 
root concept to identify the general properties that shape the entire taxonomy? 

By introducing taxonomical ranks and criteria, our method enhances the ability to generate and 
evaluate taxonomies more effectively. We also present human evaluation results and statistics on 
the generated taxonomical classifications. Additionally, we address some of the shortcomings of 
existing taxonomies, providing insights into how our approach complements and improves current 
practices. Our results are designed to be reproducible, and the proposed approach is highly 
adaptable, making it suitable for application across many domains. This flexibility allows for 
adjustment to meet specific needs and contexts. 

In the remainder of this paper, we explore the proposed methodology and its evaluation in 
detail. Section 1 reviews the related work. Section 2 establishes the conceptual framework that 
underpins our approach, defining the key concepts and challenges associated with effective 
taxonomy construction using large language models (LLMs). Section 3 outlines the detailed 
methodology employed in this study. Section 4 describes the experimental setup and scenarios 
designed to rigorously test our approach, while Section 5 discusses the evaluation and results, 
focusing on human assessment of the quality and relevance of the generated taxonomies. Finally, 
Section 6 explores potential applications of our work, suggests directions for future research, and 
concludes with a summary of the study's key contributions. 

2. Related Work 

The construction of taxonomical classifications has been extensively researched across various 
disciplines, as previously mentioned. This section reviews recent advancements and methodologies 
in taxonomy construction, highlighting their strengths and limitations. 

2.1. Supervised and Semi-Supervised Methods 

Traditional taxonomy construction methods often use supervised and semi-supervised learning 
techniques. These methods typically extract lexical features and train classifiers to identify 
hypernym-hyponym relationships from curated datasets. For example, the methods proposed by Fu 
et al. [9] use word embeddings to classify relations between terms, while order embedding 
techniques represent partial orders between words [10]. However, these approaches are limited by 
the availability of annotated data and their adaptability to domain-specific texts. 

2.2. Unsupervised Methods 

Unsupervised methods aim to build taxonomies without relying on labeled data. For instance, 
TaxoGen employs adaptive term embedding and clustering to create topic taxonomies in a top-
down manner. This approach uses term embeddings to recursively split topics into finer subtopics, 
addressing challenges related to semantic granularity and coherence at different taxonomy levels 
[3]. Another notable unsupervised method is CoRel, which uses seed-guided learning to expand a 
tree-structured seed taxonomy provided by users. CoRel's relation transferring module helps 
discover new topics and subtopics by capturing relationships between terms in the corpus [4]. A 
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recent study by Mishra et al. introduced the FLAME (Self-Supervised Low-Resource Taxonomy 
Expansion using Large Language Models) method, which focuses on expanding taxonomies in low-
resource environments. By leveraging a self-supervised approach, FLAME proves effective in 
scenarios where minimal labeled data is available for high-quality taxonomy generation. This 
method provides an important solution for taxonomy expansion tasks, particularly in cases where 
traditional methods require extensive resources [11]. TaxoClass offers a novel approach for 
hierarchical multi-label text classification using only class names. It simulates human experts by 
identifying core classes for each document and then generalizes the classifier through multi-label 
self-training, significantly improving performance over previous methods [12]. TaxoCom applies 
hierarchical discovery of novel topic clusters to complete a user-provided partial hierarchy by 
recursively expanding it with new topics and subtopics [5]. WERECE uses word embedding 
refinement for educational concept extraction, integrating manifold learning and semantic 
clustering to adapt pre-trained models for subject-specific concepts, achieving high precision and 
recall [13]. 

2.3. Use of Large Language Models (LLMs) 

The rise of large language models (LLMs) has significantly impacted taxonomy construction 
methodologies. LLMs like GPT-3 and BERT have been used in both prompting and fine-tuning 
paradigms to generate taxonomies. A comparative study by researchers highlighted the 
effectiveness of few-shot prompting, where a few examples guide the LLM in generating the 
desired taxonomy structure. This approach is useful for generating taxonomies from limited data 
but may struggle with less powerful models [7]. Another method, Chain-of-Layer (CoL), proposes 
an iterative prompting technique where LLMs build taxonomies layer by layer. This method 
ensures that the taxonomy follows hierarchical constraints and reduces issues like hallucination 
and incorrect parent-child relations by using an ensemble-based ranking filter [8]. The Hierarchical 
Prompting Taxonomy (HPT) uses five different prompting strategies: Role Prompting, Zero-Shot 
Chain-of-Thought Prompting (Zero-CoT), Three-Shot Chain-of-Thought Prompting (3-CoT), Least-
to-Most Prompting, and Generated Knowledge Prompting (GKP). This method allows LLMs to 

problem-solving capabilities [14]. Another innovative method involves iterative prompting with 
frequency analysis to refine taxonomy construction. This technique uses frequent token analysis to 
improve the accuracy and completeness of the generated taxonomies, addressing issues like 
domain shifts and attribute inflation [15]. The Human-AI Collaborative Taxonomy Construction 
method combines human expertise with AI-generated concepts. Here, LLMs produce initial 
taxonomy structures that are then reviewed and refined by human experts. This collaborative 
approach improves the quality and accuracy of the final taxonomies [16]. Additionally, the 
Modular Ontology Modeling (MOMo) approach facilitates ontology construction by creating 
compact, independent modules. These modules encapsulate key concepts and their main features, 
streamlining maintenance and enhancing flexibility and adaptability [17]. Ontology-Enhanced 
Representation Learning integrates ontological knowledge into embedding models through 
contrastive learning. This method generates synthetic concept definitions and creates semantically 
related text pairs by synonym substitution, improving the model's understanding of ontological 
relations [18]. The LLMs4OL (Large Language Models for Ontology Learning) paradigm provides a 
comprehensive framework for automated ontology construction. This approach involves tasks such 
as term typing, type taxonomy discovery, and non-taxonomic relationship extraction. Each task 
leverages LLMs to accelerate ontology learning, using datasets like GeoNames and Schema.Org 
[19]. Finally, Ontology Engineering with LLMs uses prompt engineering to transform natural 
language statements into formal logical expressions suitable for ontology description languages 
like OWL. This involves advanced prompting techniques and fine-tuning strategies to enhance the 
model's performance in formalizing ontological statements [6]. 
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2.4. Challenges and Limitations 

Despite advancements in taxonomy construction using LLMs, several significant challenges 
remain. One major issue is the tendency of LLMs to hallucinate, generating incorrect or irrelevant 
relations that compromise taxonomy quality. Tools like CoL attempt to mitigate this problem by 
filtering out invalid relations, but further improvements are needed to enhance system reliability 
[8]. Additionally, while supervised and semi-supervised methods offer precise control over 
taxonomy construction, they heavily depend on extensive labeled data, which is not always 
feasible, especially in domain-specific applications [4]. Furthermore, existing tools like CoRel and 
TaxoGen have limitations in generating taxonomies from scratch. For example, CoRel uses seed-
guided learning to expand pre-existing taxonomies but lacks a framework for building entirely new 
taxonomies based on newly identified concepts and their properties [4]. Similarly, TaxoGen relies 
on clustering techniques but does not provide the flexibility to define taxonomical ranks that can 
adapt to evolving datasets and domains [3]. Moreover, these methods do not support the iterative 
enrichment of taxonomies by dynamically adjusting to different classification criteria, highlighting 
the need for more advanced approaches that can construct and refine taxonomies to accommodate 
the dynamic nature of data and emerging concepts. 

3. Conceptual Framework 

In this section, we will establish the foundational concepts and terminology essential for 
understanding the taxonomy construction method proposed in this research. This foundational 
framework is crucial for understanding the subsequent "Methodology" section, where we will 
detail the practical steps involved in constructing taxonomy. 

3.1. Taxonomy as a Tree of Concepts 

For the purposes of this study, we consider taxonomy T as a tree composed of a set of concepts, 
denoted as C. 

Although taxonomies can have more complex structures, such as graphs with multiple 
interconnections, we simplify our analysis by assuming a strictly hierarchical tree structure. This 
simplification allows for a more straightforward approach to organizing and analyzing concepts 
within the taxonomy. 

3.2. Subconcept Formation Based on Object Properties 

Within the given taxonomy T, a concept 𝐶𝑖 has a set of subconcepts 𝑀𝑖 if and only if all objects 
classified under concept 𝐶𝑖 share a specific set of properties F, where |F| > 1. Among these 
properties, |F| - 1 are consistent across all subconcepts in 𝑀𝑖, while a single property 𝐹𝑗 can vary, 
leading to V = |𝑀𝑖| different values, and there is a bijection 𝑓: 𝐹𝑗⃡𝑀𝑖 

This approach ensures that the classification is grounded in the inherent attributes of the 
objects rather than arbitrary hierarchical relationships. 

3.3. Uniform Property Distribution across Concepts  

All concepts within a given taxonomy T possess a consistent set of properties F. This means that 
the parent concept inherently includes all potential properties of its subconcepts, although some of 
these properties may remain undefined or unknown. For example, the concept 'spoon' shares the 
property 'material' with the concept 'iron spoon'; however, while 'material' is defined as 'iron' for the 
'iron spoon,' it may be undefined or 'unknown' for the broader concept 'spoon.' Additionally, some 
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properties might have the value 'absent,' such as the property 'presence of a notochord' in concepts 
like 'prokaryotes' or 'fungi.' 
  

3.4. Taxonomy Depth and Property Count  

The depth of the taxonomy T is determined by the number of properties F that its concepts possess: 
𝑑(𝑇) = |𝐹|, 

This approach to defining depth allows for a more meaningful metric in understanding the 
complexity of the taxonomy, as it directly correlates with the diversity of attributes represented 
within the hierarchical structure. 
  

3.5. Multitaxonomy Approach 

While the initial assumption was to consider the taxonomy as a single tree structure, further 
analysis led to a more sophisticated approach: the use of a set of trees, where each tree corresponds 
to a different set of properties. This resulted in the concept of "multitaxonomies," where each 
taxonomy consists of multiple trees of varying depths. For instance, in the context of "Device," one 
tree might represent the hierarchy "Operating System > Device Type > Form Factor," while another 
might represent "Manufacturer > Model > Series." 

This multitree approach allows for a more nuanced representation of concepts, accommodating 
different perspectives and categorizations within the same domain. Although a fully developed 
taxonomy should ideally integrate all concepts into a single complex graph, this study focuses on 
this intermediate step of multitaxonomies. This approach serves as a bridge between traditional 
single-tree taxonomies and more advanced graph-based structures, which will be explored in 
future work. By leveraging multiple trees, we can capture the diversity of object classifications 
without forcing all properties into a single hierarchical structure. 

3.6. Finalizing Key Concepts 

In our discussion so far, we have introduced the concepts of taxonomy T, the set of concepts C, 
individual concepts 𝐶𝑗, the set of subconcepts 𝑀𝑖, and the set of properties F. 

Now, we introduce a specific concept R, known as the Root Concept. With the introduction of 
the notion of multitaxonomy, we redefine T to represent a collection of taxonomies, denoted as  𝑇𝑖. 
This means that T is no longer a single taxonomy, but rather a set of taxonomies with elements 𝑇𝑖, 
each associated with its own set of properties 𝐹𝑖. Consequently, F now represents a set of property 
sets, encompassing all the individuals 𝐹𝑖 associated with each taxonomy 𝑇𝑖. 

For each taxonomy 𝑇𝑖, the corresponding set of concepts is denoted as 𝐶𝑖, and within each 𝐶𝑖, an 
individual concept is represented as 𝐶𝑖𝑗 (where 0 <  i ≤  |T| and 0 <  j ≤ |𝐶𝑖|). Similarly, the set 
of subconcepts within 𝐶𝑖𝑗 is represented as 𝑀𝑖𝑗. 

Figure 1 provides a clear example of a root concept, taxonomical ranks, and sub-concepts. It 
visually demonstrates how these elements are structured in a multitaxonomy framework.  

Having established the key concepts and the framework for our approach, we are now prepared 
to explain the specifics of how the proposed method operates. In the next section, "Methodology," 
we will explore the practical application of this framework, detailing the step-by-step process for 
constructing a multitaxonomy and identifying the full set of subconcepts and their relationships. 
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Figure 1: Multi- . 

4. Methodology 

The methodology outlined in this section forms the core of the TaxoRankConstruct approach. This 
section details the steps required to implement this method, emphasizing the integration of LLM-
driven processes. Given the challenges of constructing taxonomies from scratch, especially in 
domains where predefined hierarchies may not exist, the proposed methodology leverages the 
strengths of LLMs to address these challenges. The following subsections will guide you through 
each phase of the process, providing a detailed explanation of the techniques and strategies 
employed. 

4.1. Initial Task Definition 

The main practical task of this research is to construct the multitaxonomy T for a given root 
concept R and identify the set N, which encompasses all existing subconcepts and their descendant 
subconcepts across all levels and trees within the multitaxonomy, with N defined as the 
comprehensive union of all 𝐶𝑖 within the set C. 

4.2. Identifying Key Properties 

To solve the problem of finding the set N of all existing subconcepts and their descendants for a 
root concept R in a multitaxonomy T, the first step is to determine the number of trees 𝑇𝑖 and the 
depth of each tree. This is achieved by identifying the initial key properties 𝐹𝑖𝑛𝑖𝑡𝑖𝑎𝑙 associated with 
concept R. These properties are then used to form the set F, which consists of ordered, non-
overlapping subsets of 𝐹𝑖𝑛𝑖𝑡𝑖𝑎𝑙. A bijection 𝑓: 𝐹⃡𝑇 is then established, where each subset 𝐹𝑖 from F 
corresponds to a tree 𝑇𝑖 with a depth of |𝐹𝑖|. 

4.3. Iterative Concept Discovery 

For each tree 𝑇𝑖, a set of concepts 𝐶𝑖 is created, starting with the root concept R, which is marked as 
"unexplored". The process involves |𝐹𝑖| iterations of a procedure where, for each unexplored 
concept 𝐶𝑖𝑗 ∈ 𝐶𝑖 (0 < 𝑗 ≤ |𝐶𝑖|), the set of its subconcepts 𝑀𝑖𝑗 is identified. These subconcepts are 

added to 𝐶𝑖 as "unexplored", and 𝐶𝑖𝑗 is marked as "explored". Through ∑ |𝐹𝑘|
|𝐹|
𝑘=1  iterations, all 

subconcepts N are identified. 
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4.4. Finalizing Tasks 

The following main tasks have been identified: 

1. Determine the properties 𝐹𝑖𝑛𝑖𝑡𝑖𝑎𝑙  for the root concept R in the multitaxonomy T. 
2. Identify the set of property sets F for multitaxonomy T based on the properties 𝐹𝑖𝑛𝑖𝑡𝑖𝑎𝑙. 
3. "Determine the subconcepts 𝑀𝑖𝑗 for the concept 𝐶𝑖𝑗 in the taxonomy 𝑇𝑖." 

 Assuming tasks (1) and (2) are resolved, a refined task is formulated: 

4. Determine the subconcepts 𝑀𝑖𝑗 for the concept 𝐶𝑖𝑗, the property 𝐹𝑖𝑘  (0 < 𝑘 ≤ |𝐹𝑖|), and 
the set of properties 𝐹𝑖 in the taxonomy 𝑇𝑖. 

4.5. LLM-Driven Taxonomy Construction 

LLMs were utilized in this study to solve tasks related to taxonomy construction. These models 
have access to vast amounts of data and demonstrate impressive results in natural language 
understanding and generation, enabling them to tackle complex tasks even in a zero-shot setting. 
However, the quality of LLM-generated text largely depends on the context, which can 
significantly influence the final result. Additionally, there is an inherent element of randomness, 
which can cause different outputs across multiple runs. 

Two primary approaches were used to interpret concepts: "as a linguist" and "as an expert." 
These approaches are based on two key sources of knowledge dictionary and encyclopedic 
formats. Dictionary definitions provide a clear and formal structure of concepts, while 
encyclopedic descriptions offer broader context and cultural information. Both approaches are 
crucial for forming a comprehensive understanding of the properties of concept R and its related 
types [20]. 

• Example of definition generated for the Root Concept "Music": "a cultural construct 
varying widely among different societies based on tonal systems, scales, and patterns 
catering to emotional engagement;" 

• Example of description generated for the Root Concept "Music": "A social phenomenon 
reflecting diverse traditional practices wherein communities communicate values and 
narratives through coordinated sonic patterns often involving singing or playing musical 
instruments collectively;" 

4.6. Multistep LLM Processing 

For tasks (1) and (2), multiple generations of descriptions and definitions of concept R were carried 
out using LLMs. Initially, two types of prompts were created (see Fig. 2): one to obtain definitions 
from the perspective of a linguist ("Role: You are an outstanding linguist.") and the other to obtain 
descriptions from an ontology expert's perspective ("Role: You are an outstanding ontologist 
expert."). Multiple generations allow for the collection of a wide range of potential definitions and 
descriptions, significantly improving the quality of the final result [21]. 

After generating descriptions and definitions, the LLM was used to extract all possible 
properties of R based on each text received. This resulted in a multitude of taxonomic criteria, 
which were then filtered. This process allows the model to filter out irrelevant properties based on 
the overall mass of relevant information, significantly increasing accuracy and reducing noise in 
the final list of properties [21]. 
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4.7. Optimization and Finalization 

Once the taxonomic criteria were extracted, the next step involved creating "initial lists of 
taxonomic ranks." This process was performed in several stages: 

In the first stage, the LLM generated an ordered set of key properties (ranks) from each set of 
taxonomic criteria. These ranks represent the main characteristics that differentiate species within 
the taxonomy. 

After creating k lists of ranks (corresponding to the number of sets of taxonomic criteria), the 
optimization stage begins. At this stage, the model is tasked with "optimizing the sets," which 
includes changing the order of ranks, moving them between sets, removing, modifying, and adding 
new ranks. This process accounts for the relationships between different properties and improves 
the structure and completeness of the final lists. 

The output is a set of "taxonomic rank lists," which constitutes the final set F. These lists serve 
as the foundation for further taxonomic work, providing a more accurate and consistent 
representation of the relationships between concepts in the multitaxonomy. 

4.8. Validation and Iteration 

Task (4) for taxonomy 𝑇𝑖 is addressed by including information about the root concept R, the set of 
taxonomic ranks 𝐹𝑖 of concept R, and the taxonomic rank 𝐹𝑖𝑘 of concept 𝐶𝑖𝑗 in the prompt for 
generating subconcepts. Additionally, LLM is used to generate definitions for 𝐶𝑖𝑗 using R,  𝐹𝑖 , and 
𝐹𝑖𝑘 as context. For example: 

Context: "We are currently at the 'Grain pattern' level in the hierarchy (Grain pattern > 
Dimensional stability). The root concept of the taxonomy is Lumber wood." 

Instruction: "Give a 50-word definition for the Grain pattern of the ontological concept 'Cross-
grain' for our taxonomy." 

Model's Response: "Cross-grain refers to a grain pattern where the wood fibers run at an angle or 
perpendicular to the main length, resulting in challenges for working with and reducing dimensional 
stability. It often leads to uneven surfaces and difficulty in machining or finishing." 

These definitions are also used as additional context when generating subconcepts. 

  
Figure 2: Prompts used for the Taxonomy Construction and Sub-Concepts Generation. 
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The generated subconcepts are then subjected to post-processing through LLM in a Few-Shot 
learning format. The primary goal of this step is to prevent "Domain Shift"[15]. For post-processing, 
the model is provided with examples like: "root concept: 'Wound', taxonomical rank: 'Location', sub-
concept candidates: 'Hands', 'Knees', 'Elbows'. Provide the true sub-concepts: Wounded Hand, Wounded 
Knee, Wounded Elbow." This helps maintain additional taxonomic context in the names of the 
subconcepts and prevents the model from deviating from the topic. 

If the post-processing result successfully passes the "validation"  confirming that the current 
list of candidates is indeed an acceptable set of subconcepts for 𝐶𝑖𝑗  the process moves to the next 
stage. At this stage, the model selects "redundant subconcepts" from the candidate set. These 
subconcepts are excluded, and the remaining ones form the set 𝑀𝑖𝑗. 

If the "validation" fails or "redundant subconcepts" make up more than 80% of the candidates, the 
attempt is considered unsuccessful, and the procedure is repeated. The maximum number of 
attempts is typically 5 (but can be adjusted as needed). If all attempts are exhausted, the generation 
is considered unsuccessful, and the concept is skipped. 

This iterative process ensures that the generated subconcepts are both contextually relevant and 
accurately reflect the taxonomic structure, minimizing the risk of introducing irrelevant or 
redundant concepts into the taxonomy. 

5. Experiments 

In this section, we detail the experimental setup, datasets, and procedures employed to evaluate the 
effectiveness of the TaxoRankConstruct methodology. The primary goal of these experiments is to 
assess the method's ability to construct taxonomies from scratch and refine them iteratively, 
thereby creating coherent and meaningful hierarchical structures. 

5.1. Introduction to Experimental Setup 

Our experiments are designed to explore various aspects of taxonomy construction using large 
language models (LLMs). As previously mentioned, the concept of multitaxonomies is central to our 
approach  each taxonomy consists of multiple trees of varying depths. We structured our 
experiments into several scenarios, including basic multitaxonomy creation and a comparative 
analysis with WordNet taxonomies [22] via human evaluation. Human evaluators played a critical 
role in assessing the quality of the generated taxonomies, focusing particularly on the accuracy of 
taxonomical rank assignments and the coherence of the resulting hierarchies. 

5.2. Datasets and Preprocessing 

To thoroughly evaluate the TaxoRankConstruct methodology, we employed a diverse range of root 
concepts (R) from various domains. Examples of these concepts include: 
'Art', 'Music', 'Transport', 'Food' 
'Disease', 'Wound', 'Natural Language Processing (NLP)', 'Software' 
'Artificial Intelligence', 'Organism', 'Lumber Wood', 'Electronic Component' 
'Processor', 'Transistor', 'Resistor', 'Semiconductor', 'Sport' 

Experiments were conducted with these root concepts and their variations, such as 'Natural 
Language Processing'/'NLP', 'Disease'/'Diseases', 'Organism'/'Organisms', and 'Resistor'/'Resistors'. 

For each root concept selected in the experiments, we extracted all hyponyms from WordNet, 
treating them as the set of subconcepts associated with that root concept. This set of WordNet 
hyponyms served as a benchmark for evaluating the taxonomies generated by the 
TaxoRankConstruct methodology. The preprocessing steps included lemmatization and 
deduplication to ensure consistency and uniqueness in the evaluation set. Once preprocessing was 



20 
 

complete, the WordNet hyponyms were combined with the subconcepts generated by 
TaxoRankConstruct. This combined set was then used in the human evaluation process, allowing 
direct comparison between our generated taxonomies and those from WordNet. 

5.3. Experimental Scenarios 

5.3.1. Scenario 1: Basic Taxonomy Construction 

Objective:  
This scenario establishes a baseline by constructing a simple taxonomy using the default 

settings of the TaxoRankConstruct methodology. The aim is to observe how effectively the system 
generates a taxonomy from a root concept and assigns taxonomical ranks to subconcepts. We 
generate multiple taxonomies for a single root concept and investigate the various taxonomical 
ranks that emerge from these taxonomies. 
Procedure: 

• Taxonomy Generation: The process begins by generating a diverse set of taxonomies 
for a given root concept using our iterative construction method. This involves 
verifying the root concept, generating descriptions, and assigning taxonomical criteria 
and ranks. 

• Probabilistic Rank Generation: To address the inherent variability in model outputs, 
taxonomical ranks are generated multiple times. After generating multiple taxonomies 
for the same root concept, we compile all the taxonomical ranks that were identified 
across these taxonomies. The collection of taxonomical ranks can include various 
classification criteria, such as 'Duration', 'Type of material used', 'User interface type', 
and others, depending on the context of the root concept. This approach ensures a more 
robust set of ranks by aggregating them across iterations. 

• Analysis: The next step involves an analysis of the collected taxonomical ranks. We 
examine the frequency and distribution of each rank, identifying which ranks are most 
commonly used and which are unique to specific taxonomies. 

• Human Evaluation: The aggregated ranks are used to generate evaluation questions, 
which are then assessed by human evaluators. The question format for evaluating ranks 
was chosen to focus on the accuracy of highlighting important features of the root 
concept. The question was: "Does the 'taxonomical_rank' accurately highlight important 
features of 'root_concept'?" with response options "Accurately" and "Inaccurately." 

Expected Outcome:  
This baseline scenario provides a reference for evaluating the effectiveness of the 
TaxoRankConstruct method and sets the stage for more complex experiments. 

5.3.2. Scenario 2: Comparative Evaluation with WordNet 

Objective:  
Compare the taxonomies generated by TaxoRankConstruct with established hierarchies from 

WordNet. 
Procedure:  

Taxonomies for various root concepts are generated and evaluated against their WordNet 
counterparts. In this scenario, the questions involving WordNet were framed as: "Is 
'{hyponym_of_root_concept/sub-class generated}' an accepted sub-class of '{root_concept}'?" with 
response options "Yes" and "No." Human evaluators assess the accuracy and relevance of these 
taxonomies. 
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Expected Outcome:  
This comparison highlights the strengths and potential limitations of our approach relative to an 
established linguistic resource. 

5.4. Evaluating Taxonomical Ranks 

One of the key aspects of our methodology is the identification and evaluation of taxonomical 
ranks. In our experiments, we generated multiple multitaxonomies for each root concept and 
evaluated how the number of unique taxonomical ranks evolved across iterations. For example, we 
observed how the quantity and distribution of unique ranks changed with each iteration of 
multitaxonomy generation. From this analysis, we found that by the 10th iteration, the average 
percentage of unique ranks per iteration had stabilized at around 6%. 

This analysis allowed us to identify the point at which additional iterations contributed minimal 
new information, guiding the selection of 10 iterations as the standard for further tests. 

5.5. Optimizing Human Evaluation 

Human evaluation was a critical component of our experimental process. Evaluators were divided 
into groups based on their domain expertise. For instance, concepts like 'Art', 'Music', 'Food', and 
'Sport' can be evaluated by individuals from general backgrounds, while more specialized concepts 
like 'Software', 'Electronic Component', 'Processor', 'Transistor', 'Resistor', 'Semiconductor', and 'Lumber 
Wood' need domain experts. 

The root concepts selected for the primary experiments under the defined scenarios were 
'Software', 'Resistor', 'Transistor', and 'Music'. These concepts were chosen due to their varying levels 
of complexity and representation in WordNet, providing a testbed for evaluating the 
TaxoRankConstruct methodology. By focusing on these diverse concepts, we were able to assess 
the methodology's effectiveness across different domains, ensuring that the results were both 
comprehensive and reflective of real-world applications. 

Prior to formal Human Evaluation tests, we conducted numerous preliminary experiments 
based on subjective observations and assessments of rank quality. These experiments helped refine 
the methodology, tune hyperparameters, craft prompts, and select numerical parameters such as 
the number and maximum length of definitions, the number of subconcept generation attempts, 
and so on. After achieving subjectively promising results and fine-tuning the method, we finalized 
the parameters (which are documented in the appendix "Models") and generated the 
multitaxonomies for Human Evaluation tests. 

Testing the quality of the generated subconcepts for a root concept like 'Software' (which has 
182 hyponyms in WordNet) requires substantial time, given that each of the 182 hyponyms would 
need to be evaluated against 364 questions in our chosen approach. Evaluating ranks is somewhat 
simpler due to the fewer questions involved. 

6. Evaluation and Results 

In this section, we present a comprehensive evaluation of our proposed rank-based taxonomical 
classification methodology using iterative construction with large language models (LLMs). The 
primary objective of our evaluation is to assess the accuracy, relevance, and comprehensiveness of 
the taxonomical classifications generated by our approach. 
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Figure 3: New Rank appearance per iteration. 

6.1.  Limitations of Using WordNet as a Benchmark 

In evaluating the quality of the taxonomies generated by the TaxoRankConstruct methodology, we 
initially considered using WordNet as a benchmark due to its extensive collection of hyponyms for 
various concepts. However, several significant limitations prevent WordNet from serving as a 
reliable standard for this purpose. While numerical methods such as those discussed in [23, 24]
which involve reducing concepts to a common vocabulary can be effective when working with 
predefined candidate subconcepts, they are less applicable when dealing with taxonomies 
generated "from scratch." 

 
 Limitations of Using WordNet: 

• Inconsistent Concept Representation: WordNet presents a highly uneven distribution of 
hyponyms across different concepts. For example, it lists 271 hyponyms for the concept 
"wood," 38 for "lumber," 254 for "art," 812 for "music," 182 for "software," but only 10 for 
"resistor," and 5 for "artificial intelligence." This inconsistency makes it difficult to use 
WordNet as a reliable standard for evaluating the breadth and depth of generated 
taxonomies. 

• Misclassification of Instances as Subconcepts: WordNet often includes instances rather 
than true subconcepts in its hyponym sets. For example, under "music," entries like 
'colossians,' 'epistle of paul the apostle to the colossians,' and 'book of amos' appear terms 
that are clearly instances or related to other domains rather than hierarchical subclasses of 
"music." This issue complicates the use of traditional precision, recall, f-measure, semantic 
overlap, and semantic cotopy metrics for evaluating taxonomy quality. 

• Redundant and Non-Intuitive Hyponyms: WordNet also contains redundant hyponyms and 
terms that may not intuitively belong to the expected category, further distorting 
evaluation metrics. For instance, multiple terms that refer to the same concept (e.g., 'water-
color,' 'water-colour,' 'watercolor,' 'watercolour') can artificially inflate the perceived 
coverage of a taxonomy. Moreover, non-intuitive hyponyms like 'apocalypse' under 
"music" challenge the logical coherence of the taxonomy. 
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6.2. The Role of WordNet in Comparative Evaluation 

Despite these limitations, WordNet remains a useful reference point for evaluating the 
effectiveness of our taxonomy generation approach. By comparing the taxonomies generated by 
TaxoRankConstruct with established hierarchies derived from WordNet, we can assess the 
accuracy, relevance, and comprehensiveness of our taxonomies in relation to widely recognized 
standards. This comparative evaluation allows us to highlight the unique contributions of our 
methodology and identify potential areas for improvement. However, given the aforementioned 
issues with WordNet, this comparison is complemented by human evaluation to ensure a more 
nuanced and context-sensitive assessment. 

6.3. Rationale for Using Human Evaluation 

Given these limitations, we chose to rely on human evaluation for assessing the quality of the 
taxonomies generated by TaxoRankConstruct. Human evaluators are better equipped to discern the 
nuances of conceptual hierarchies, accurately distinguishing between true subconcepts and 
instances, as well as identifying and consolidating redundant terms. This approach also allows 
evaluators to assess whether certain hyponyms or instances, which may seem illogical out of 
context (e.g., 'apocalypse' under "music"), genuinely fit within the conceptual framework of the 
taxonomy. 
Human evaluation was employed to answer key questions such as: 

• Accuracy of Classification: How well do the generated taxonomical ranks represent the 
relationships within the taxonomy? 

• Relevance and Coherence: Are the subconcepts logically organized under the root concept, 
and do they reflect meaningful distinctions? Are non-obvious or context-dependent terms 
appropriately placed? 

• Identification of Redundancies and Non-Intuitive Concepts: Can human evaluators identify 
and reduce redundant terms in the taxonomy and flag non-intuitive or context-dependent 
hyponyms?  

6.4. Human Evaluation 

To validate our findings, we conducted a human evaluation involving domain experts and 
crowdworkers. We included taxonomies based on hyponym relations from WordNet in our 
evaluation tests, allowing us to directly compare our method against established hierarchies. The 
evaluation involved two types of tests: evaluating the relevance of taxonomical ranks and assessing 
the classification accuracy of subconcepts. Human evaluators were provided with structured 
questionnaires designed to test the coherence and accuracy of the generated taxonomies. 

To facilitate the evaluation process, we developed an automated system for creating Google 
Forms via the Google Forms API, which dynamically generated evaluation forms based on the 
taxonomies being tested. This automation minimized manual effort and ensured consistency across 
evaluation tasks. 

6.5. Results for Selected Concepts 

For the selected root concepts 'Software,' 'Resistor,' 'Transistor,' and 'Music,' the evaluation results 
demonstrate the effectiveness of the TaxoRankConstruct methodology across different domains. 
The evaluation involved calculating the Average Agreement among nine domain experts, which 
provides insight into the consensus reached on the quality of the generated taxonomies. 
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• Average Agreement: The calculated Average Agreement was 0.759 for Scenario 1 (Basic 
Taxonomy Construction) and 0.704 for Scenario 2 (Comparative Evaluation with 
WordNet). These values indicate a strong level of agreement among the experts [25]. 

• Unique Ranks in Scenario 1: The analysis of unique taxonomical ranks for Scenario 1 
revealed that the average percentage of unique ranks, which were selected by the majority 
of experts as "Accurately" representing important features of the root concepts, was 87% 
after the 10th iteration. The mean amount of taxonomical ranks generated per iteration is 
8.9. The mean amount of ranks chosen as "Accurately" by the most experts is 7.3 per 
iteration, and the mean amount of ranks chosen as "Inaccurately" by the most experts is 1.6 
per iteration. 

 
Figure 4: the Mean Amount of Ranks chosen as "Accurately/Inaccurately." by the Most Experts. 

• Accepted Sub-classes in Scenario 2: In Scenario 2, the comparison of generated subconcepts 
with those from WordNet showed that the average percentage of accepted sub-classes was 
79.2% for the subconcepts generated by TaxoRankConstruct, compared to 68.9% for the 
hyponyms derived from WordNet. This result highlights the potential of our methodology 
to produce accurate and contextually relevant taxonomies. 

Overall, these results suggest that the TaxoRankConstruct method performs well across 
different domains and scenarios, offering a robust approach to taxonomy construction that is both 
accurate and adaptable. The higher agreement rates and improved unique rank percentages over 
iterations indicate that the methodology can refine taxonomies effectively, making it a promising 
tool for generating hierarchical structures in a variety of fields. 

7. Potential Applications and Future Work 

The TaxoRankConstruct method offers a novel approach to taxonomy construction using large 
language models (LLMs). While there are existing methods for creating taxonomies, 
TaxoRankConstruct allows for an iterative, rank-based process where users can select specific 
criteria and gradually populate the taxonomy. This approach is particularly useful for building 
initial taxonomic structures that can be further refined and expanded. 

In this study, the primary focus has been on achieving "precision" rather than "completeness" in 
the results. The system performs each iteration only once and does not revisit previously processed 
properties, which sometimes leads to the omission of potential subconcepts. The emphasis was 
placed on minimizing hallucinations and irrelevant outcomes, both in terms of subconcepts and the 
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properties themselves. Additionally, the current version of the system does not account for the fact 
that a taxonomy is inherently a graph rather than a simple tree or a set of trees. These limitations, 
including issues related to completeness, restructuring, and optimization of the placement of 
identified subconcepts, are planned to be addressed in future research. 

At its current stage, the method supports depth-first expansion of taxonomies. Taxonomies can 
be exported into formats like OWL (Web Ontology Language). This basic export functionality 
enables users to edit the taxonomy in other tools or apply it in various applications, such as quality 
assessment of different NLP methods. 

Looking ahead, we plan to enhance the TaxoRankConstruct tool with advanced features. These 
include a sophisticated export process that considers taxonomic ranks and the ability to expand 
taxonomies breadth-wise. These improvements will give users greater flexibility. They will also 
enable the creation of more comprehensive taxonomic structures. The experiments have provided 
valuable insights. These will guide the ongoing refinement of the methodology. We will address 
current limitations like taxonomy completeness and restructuring. These developments will ensure 
that TaxoRankConstruct remains versatile and adaptable. It will be capable of meeting the evolving 
needs of taxonomy construction across various domains. 

8. Conclusion 

In this study, we introduced a novel approach to taxonomy construction, leveraging large language 
models to create rank-based taxonomical classifications. Our methodology addresses the 
limitations of traditional taxonomy construction methods, providing a flexible and iterative 
framework that can adapt to various domains. 

Key Contributions: 

• Taxonomical Ranks, Rank-Based Classification: We developed a rank-based classification 
system that enhances the precision and clarity of taxonomical hierarchies. This approach 
ensures that classifications are based on specific, identifiable characteristics, leading to 
more accurate and meaningful taxonomies. 

• Multi-Taxonomies: We proposed the concept of multitaxonomies, which allows for the 
representation of concepts through multiple hierarchical trees. This approach 
accommodates different perspectives and categorizations within the same domain, offering 
a more nuanced and comprehensive representation of concepts. 

• Linguist/Expert Definitions: By incorporating definitions generated from both linguistic 
and expert perspectives, our method provides a rich, context-aware understanding of 
concepts. This dual approach ensures that taxonomical classifications are grounded in both 
formal and contextual knowledge. 

• Few-Shot Post-Processing to Prevent Domain Shift: To enhance the relevance and 
coherence of generated subconcepts, we implemented a few-shot post-processing step. This 
technique mitigates the risk of domain shift, ensuring that the taxonomy remains 
consistent and contextually appropriate. 

Our results demonstrate the effectiveness of the TaxoRankConstruct methodology across 
diverse domains. The iterative nature of our approach allows for the continuous refinement and 
enhancement of taxonomies, making it a valuable tool for a wide range of applications.  

Declaration on Generative AI 
The authors have not employed any Generative AI tools. 
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A. Online Resources 

To facilitate replication and further exploration of our research, all code, prompts, parameters, and 
examples used in the TaxoRankConstruct methodology are available in a dedicated GitHub 
repository at https://github.com/supersokol/TaxoRankConstruct/ 

B. Models 

In the TaxoRankConstruct methodology, the initialization and configuration of the large language 
models (LLMs) are crucial for the effective construction and iterative refinement of taxonomies. 
We employ three distinct models, each initialized with carefully selected hyperparameters to 
optimize their performance for specific tasks within the taxonomy construction process. 

Verification Model - This model, based on the gpt-4o-mini architecture, is configured with a 
temperature of 0.90 and a top_p of 0.90, ensuring a balance between creativity and reliability. The 
presence penalty is set to 1.00 to encourage the generation of new content, while the frequency 
penalty is set to 0.00, allowing the model to freely repeat common words when necessary. This 
model is primarily responsible for verifying the validity and accuracy of the generated taxonomical 
concepts. 

Re-Generation Model - Also using the gpt-4o-mini architecture, this model is configured with a 
higher temperature of 1.40 and a slightly lower top_p of 0.85. It features a lower presence penalty 
of 0.50 and a frequency penalty of 1.00, which is designed to generate diverse outputs while 
maintaining a moderate level of repetition control. This model is utilized for regenerating or 
refining concepts that need further elaboration or adjustment. 

New Concept Generation Model - This model is based on the gpt-4o architecture and is 
configured with a temperature of 1.40, a top_p of 0.98, a presence penalty of 1.30, and a frequency 
penalty of 1.40. These settings are optimized to generate highly creative and varied new 
taxonomical concepts, which are crucial for expanding the taxonomy in novel directions. 

Note that these models and their specific configurations were employed in the final stages of 
our experiments to optimize the balance between creativity, diversity, and accuracy in the 
taxonomy construction process. However, it is highly encouraged to experiment with different 
hyperparameters.  
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