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Abstract
In the context of Agriculture 4.0, advanced technologies such as the Internet of Things (IoT), artificial intelligence
(AI), and big data analytics play a critical role in enhancing the efficiency and sustainability of farming operations.
These innovations enable real-time monitoring and decision-making, improving the efficiency, sustainability,
and productivity of agricultural systems. Central to Agriculture 4.0 is the deployment of sensors embedded in
agricultural machinery, such as tractors, which continuously collect data on key operational metrics, including
engine performance, fuel consumption, soil conditions, and equipment health. The effective analysis of such data
is essential for predictive maintenance, as early detection of potential anomalies can prevent costly breakdowns
and reduce downtime. However, finding real-world datasets containing examples of anomalies in agricultural
machinery is highly challenging, making it difficult to develop and assess the effectiveness of anomaly detection
models. Additionally, classical methods for anomaly generation, such as stochastic and adversarial approaches,
may be difficult to apply given the intricate patterns and time dependency of these data. To address this gap, our
work leverages Large Language Models (LLMs) and agentic workflows to generate realistic anomaly scenarios
from agricultural data. Using a rule-based approach that combines prompt engineering techniques with a multi-
agent system, we create synthetic anomalies that can later be used to evaluate anomaly detection models. These
models would then enable the timely identification of potential machinery failures, reducing maintenance costs,
minimizing downtime, and significantly lowering the environmental impact by preventing inefficiencies such as
increased fuel consumption from faulty equipment, reducing the need for replacement parts, and conserving
energy and resources used in repairs.
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1. Introduction

IoT sensor networks are increasingly leveraged in Industry 4.0 and Smart Agriculture to enhance
productivity and sustainability through advanced sensing, data fusion, and machine learning. In this
context, anomaly detection techniques can be effectively applied for real-time monitoring of machinery
and systems, preventing failures and optimizing operational efficiency [1].

In Smart Agriculture, anomaly detection techniques primarily rely on multivariate streams of sensor
data, consisting of measurements taken from multiple sensors at regular intervals. Due to the unique
challenges inherent in IoT sensor data, such as temporal and spatial correlations, high dimensionality, and
inherent noise, recent techniques increasingly rely on deep learning methods. Specifically, autoencoders
and recurrent or convolutional neural networks have been employed for their ability to handle complex
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and noisy datasets [2, 3, 4]. Despite the demonstrated effectiveness of such methods, identifying
representative anomalous data for testing purposes remains a significant challenge, particularly in IoT
settings where data is spatiotemporal and real-world anomalies are often rare or difficult to observe.
Anomaly generation becomes therefore crucial in overcoming this challenge by enabling the creation of
synthetic anomalies that closely resemble real-world data distributions. Classical methods for anomaly
generation, such as rule-based or stochastic approaches, often fail to capture the complex dependencies
between spatial and temporal features, resulting in unrealistic anomalies. In addition, while more
sophisticated techniques like adversarial methods and latent models can generate realistic data, they
are computationally expensive and require extensive tuning, which may hinder their application in this
domain.
To address these limitations, we propose a novel rule-based anomaly generation approach that

leverages the context-aware capabilities of Large Language Models (LLMs). Our methodology extends
beyond a single LLM by employing LLM agents in a collaborativeworkflow, where each agent contributes
specialized knowledge to produce the final synthetic anomalies. By incorporating LLM agents into
the rule generation process, we enable a more informed, context-driven creation of anomalies that
better reflect the spatiotemporal complexities of IoT sensor data. This hybrid approach combines the
interpretability and simplicity of rule-based methods with the nuanced understanding and adaptability
of LLM agents, resulting in a more efficient and realistic anomaly generation process suitable for testing
detection algorithms in dynamic, real-world environments.
The main contributions of the paper can be summarized as follows:

• We advance the application of LLM agents in Smart Agriculture, showing how such systems can
cooperate within an agentic workflow to generate realistic synthetic anomalies.

• The proposed method integrates a rule-based approach with the capabilities of LLMs, addressing
the limitations of traditional methods in handling high-dimensional spatiotemporal IoT data.

• Our approach enhances the testing of anomaly detection systems, leading to more reliable real-
time monitoring and improved operational efficiency.

The remainder of the paper is organized as follows. In Section 2, we discuss related work in the field
of anomaly generation, highlighting the main applications of LLMs to Smart Agriculture. Section 3
provides an in-depth description of the proposed approach showing its application to a real-world case
study. Finally, Section 4 concludes the paper.

2. Related Work

Large Language Models (LLMs) have recently gained significant traction due to their remarkable
natural language understanding and generation capabilities [5, 6, 7]. These systems are increasingly
being integrated into Smart Agriculture, providing powerful tools for data-driven decision-making and
precision farming. Conversational assistants powered by LLM agents provide farmers and agricultural
professionals with insights drawn from vast datasets to support resource management, enhance crop
health, and optimize environmental conditions, thereby improving productivity and sustainability [8, 9].
In this work, we explore how LLM-based agents can be synergistically leveraged in the field of

smart agriculture to generate synthetic real-world anomalies. This task is critical for improving
and evaluating the performance of anomaly detection systems. Several methodologies have been
developed to generate synthetic anomalies that closely resemble real-world scenarios, enabling a
robust assessment of detection algorithms. Major approaches in the literature leverage conditional
generation approaches and Generative Adversarial Networks (GANs), in which two neural networks—a
generator and a discriminator—compete with each other during the training process. Specifically, the
discriminator tries to create realistic synthetic data, i.e., anomalous instances, while the discriminator
tries to differentiate between normal and anomalous data. This process leads to the generation of highly
realistic anomalies that closely resemble actual outliers, making GANs particularly useful in testing the
robustness of anomaly detection systems. As an example, Uzolas et al. leverage conditional GANs for



the generation of realistic single-chromosome images following user-defined banding patterns [10],
while Salem et al. [11] uses a Cycle-GAN to generate synthetic anomalous data from normal data for
improving anomaly detection in imbalanced datasets. Zhang et al. [12] introduce DefectGAN, which
generates anomaly samples by superimposing learned defect foregrounds onto a normal background,
while Niu et al. propose SDGAN [13], which modifies defect-free images to introduce surface defects
using a generator trained with cycle consistency loss on both normal and anomalous images. Duan et
al. [14] introduce a few-shot defect image generation technique, producing structural anomalies from a
limited set of defect samples. It enhances a pre-trained StyleGAN2 backbone by adding defect-aware
residual blocks to manipulate features within learned defect masks.

Besides GANs, Diffusion Models (DMs) have been also leveraged for generating synthetic anomalies
by perturbing normal patterns. DMs are a family of probabilistic generative models that progressively
add noise to data and then learn to reverse this process to generate new samples. In the field of anomaly
generation, Dai et al. present GRAD [15], an unsupervised anomaly detection framework using a
diffusion model called PatchDiff to generate contrastive patterns by disrupting global structures while
preserving local ones. GRAD also includes a self-supervised reweighting mechanism and a lightweight
detector to efficiently identify anomalies. Hu et al. [16] propose a diffusion-based few-shot anomaly
generation model, leveraging the strong prior knowledge of a latent diffusion model trained on large
datasets to improve the realism of generated anomalies. Zhang et al. introduce RealNet [17], another
diffusion-based approach that relies on Strength-controllable Diffusion Anomaly Synthesis (SDAS)
to generate synthetic anomalies of varying strengths, mimicking real-world anomalies. RealNet also
incorporates feature selection and residual detection methods to improve anomaly detection while
managing computational cost, showing significant improvements on several benchmark datasets.

While these anomaly synthesis methods are effective, they depend on real defect images and cannot
generate unseen types of anomalies. Furthermore, these methods are usually computationally intensive
and often require extensive tuning to produce meaningful results.

3. Proposed Approach: Leveraging LLM Agents for Anomaly
Generation in Agricultural Machinery

In this section, we provide a detailed description of the proposed approach aimed at generating real-
world anomalies in multivariate sensor data from agricultural machinery, specifically tractors. We
leverage an agentic workflow in which different LLM agents interact with each other to produce
high-quality anomalous test data. The proposed methodology is articulated in two main phases:

1. Best LLM selection via zero-shot operational range generation — First, the best LLMmust be selected
from all those available, including GPT-4o and LLama3.1. For this purpose, CAN bus sensor data
from tractors are analyzed to extract the operational ranges of the different variables considered.
By comparing these real ranges with those generated by various Large Language Models (LLMs)
through zero-shot prompting, we identify the LLM that exhibits the highest level of expertise in
the domain of agriculture and tractor operations.

2. Anomaly generation through an agentic workflow —Themethodology employs an agentic workflow
to generate anomalies, which involves collaboration between two LLM-based agents: (𝑖) the first
agent generates anomaly rules based on insights from the selected LLM; (𝑖𝑖) the second agent
transforms the generated rules into executable Python code. This code applies the anomalies to
the original non-anomalous data, effectively simulating real-world deviations and faults.

Finally, as the test anomalies are generated, they are used to assess the performance of deep learning-
based anomaly detection models. Specifically, an LSTM-based autoencoder is trained on a dataset
representing a work session of the tractor and then tested against the synthetic anomalies generated
as described above. This approach mimics real-world processes of anomaly detection in agricultural
machinery, allowing for an assessment of the effectiveness of the generated anomalies.



3.1. Best LLM selection via zero-shot operational range generation

Figure 1 depicts the flowchart used in the first phase of the methodology, dedicated to selecting the LLM
that exhibits the highest expertise in the agricultural domain, specifically regarding tractors and their
sensor data. The selection process involves several LLMs, specifically GPT-4o, Llama 3.1 70B, Gemini Pro,
and Mistral Large 2. Their effectiveness is measured by their ability to generate operational ranges for
key tractor variables, which are then compared to the actual ranges extracted from tractor sensor data.

Operational range generation via Zero-shot PromptingReal operational range
extraction

Sensor data

Range evaluation LLM selection

Jaccard Score

Figure 1: Best LLM selection via zero-shot operational range generation.

In the following yellow box, we report the prompt used for querying the different LLMs to generate
operational ranges of variables. Each model is provided with a prompt containing the variable name, its
unit of measurement, and a description. Generation is performed through zero-shot prompting, which
means that the prompt used to interact with the model does not include any example or demonstration.

As a seasoned expert in New Holland T7 165 S tractors, we seek your expertise in diagnosing various
operational variables retrieved from the CAN bus of the tractor. You are provided with a list of variables,
each with its name, unit of measurement, and description. These variables are listed according to the
following format: - <var_name> (<unit>): <description>. Your task is to generate the operational
range of each variable, which jointly takes into account the different activities performed by the tractor,
i.e. idling, moving, plowing, and turning.
Format your output as follows:

- <var_name>: <operational_range> (<unit>)

- …

Input variables:

- CAN1.LFE1.EngineFuelRate (l/h): Amount of fuel consumed by the engine per unit of time.
- CAN1.EFLP1.EngineOilPressure1 (kPa): Gage pressure of oil in the engine lubrication system as
provided by the oil pump.

- …

Table 1 presents the operational ranges generated by each LLM for the various key variables associated
with tractor sensor data. Each row of the table details the ranges produced by the evaluated models for
a given variable, while the final column provides the actual ranges extracted from the sensor data. This
comparative analysis highlights the discrepancies and alignments between the internal knowledge of
LLMs and real-world data, which are crucial for determining the most effective LLM for the subsequent
phases of the methodology.
To quantitatively assess the accuracy of LLM-generated ranges, we compared them with ground

truth values derived from tractor sensor data by introducing a continuous version of the Jaccard index
that quantifies the similarity between two ranges. Given two intervals [𝑙1, 𝑢1] and [𝑙2, 𝑢2], where 𝑙1 and
𝑢1 represent the lower and upper bounds of the first interval, and 𝑙2 and 𝑢2 represent the bounds of the



Id Features GPT-4o Llama3.1 70B Gemini-Pro Mistral Large 2 Real ranges
F1 CAN1.LFE1.EngineInstantaneousFuelEconomy (km/l): 1.5 - 12 km/l 2 - 10 km/l 0.2 - 0.8 km/l 0.5 - 3.0 km/l 0 - 125.5 km/l
F2 CAN1.EEC3.Aftrtrtmnt1ExhstGsMssFlwRt (kg/h): 30 - 800 kg/h 10 - 100 kg/h 10 - 200 kg/h 0 - 500 kg/h 0 - 693.97 kg/h
F3 CAN1.EEC2.AtlMxmmAvllEngnPrntTrq (%): 50 - 100 % 20 - 80 % 10 - 100 % 0 - 100 % 0 - 99.15 %
F4 CAN1.FD1.FanSpeed (rpm): 500 - 2500 rpm 500 - 1500 rpm 500 - 1800 rpm 0 - 5000 rpm 0 - 2109.0 rpm
F5 CAN1.EEC3.EnginesDesiredOperatingSpeed (rpm): 600 - 2200 rpm 1500 - 2500 rpm 700 - 2200 rpm 500 - 2500 rpm 1000 - 1067.5 rpm
F6 CAN1.LFE1.EngineFuelRate (l/h): 3 - 40 l/h 10 - 50 l/h 5 - 70 l/h 0 - 200 l/h 0 - 29.35 l/h
F7 CAN1.IC1.EngineIntakeAirPressure (kPa): 90 - 200 kPa 80 - 120 kPa 100 - 150 kPa 80 - 120 kPa 98 - 202 kPa
F8 CAN1.CCVS1.WheelBasedVehicleSpeed (km/h): 0 - 40 km/h 0 - 40 km/h 0 - 50 km/h 0 - 60 km/h 0 - 18.53 km/h
F9 CAN2.TSC1.EngnRqstdTrqTrqLmt_0 (%): 0 - 100 % 20 - 50% 10 - 100 % 0 - 100 % 0 - 100 %
F10 CAN1.EEC1.EngineSpeed (rpm): 600 - 2200 rpm 1500 - 2500 rpm 700 - 2200 rpm 500 - 2500 rpm 0 - 2217 rpm
F11 CAN2.gnss_speed.Speed (m/s): 0 - 15 m/s 0 - 10 m/s 0 - 14 m/s 0 - 60 m/s 0 - 4.94 m/s
F12 CAN1.VEP1.BatteryPotentialPowerInput1 (V): 11 - 14.5 V 12 - 14 V 12 - 15 V 12 - 24 V 11.37 - 14.19 V
F13 CAN1.A1SCRDSI1.Atttt1DsExstFdAtDsQtt (g/h): 0 - 20 g/h 10 - 50 g/h 0 - 60 g/h 0 - 20 g/h 0 - 7051.2 g/h
F14 CAN1.EEC1.EngineDemandPercentTorque (%): 0 - 100 % 20 - 80 % 0 - 100 % 0 - 100 % 0 - 99 %
F15 CAN1.EEC1.ActualEnginePercentTorque (%): 0 - 100 % 20 - 80 % 10 - 100 % 0 - 100 % 0 - 98 %
F16 CAN1.EEC3.NominalFrictionPercentTorque (%): 5 - 15 % 10 - 30 % 5 - 40 % 5 - 40 % 6 - 11 %
F17 CAN1.FD1.EngineFan1EstimatedPercentSpeed (%): 0 - 100 % 20 - 80 % 0 - 100 % 0 - 100 % 0 - 73.06 %
F18 CAN1.IC1.EngnIntkMnfld1Tmprtr (degC): -10 - 80 degC 40 - 80 degC 20 - 90 degC -20 - 120 degC 14 - 67 degC
F19 CAN1.EEC1.AtlEngnPrntTrqFrtnl (%): 0 - 0.875 % 0 - 1 % 0 - 0.875 % 0 - 0.875 % 0 - 0.875 %
F20 CAN2.gnss_attitude.Heading (deg): 0 - 360 deg 0 - 360 deg 0 - 359 deg 0 - 360 deg 0.23 - 359.8 deg
F21 CAN2.TSC1.EngnRqstdTrqTrqLmt_3 (%): 0 - 100 % 50 - 80 % 10 - 100 % 0 - 100 % 0 - 100 %
F22 CAN1.IC1.EngineIntakeManifold1Pressure (kPa): 90 - 200 kPa 80 - 120 kPa 50 - 150 kPa 80 - 120 kPa 98 - 202 kPa
F23 CAN1.EEC2.EnginePercentLoadAtCurrentSpeed (%): 0 - 100 % 20 - 80 % 0 - 100 % 0 - 100 % 0 - 100 %
F24 CAN1.TSC1.EngnRqstdTrqTrqLmt (%): 0 - 100 % 20 - 80 % 0 - 100 % 0 - 100 % 0 - 99 %
F25 CAN1.EFLP1.EngineOilPressure1 (kPa): 100 - 500 kPa 300 - 500 kPa 200 - 800 kPa 0 - 1000 kPa 96 - 536 kPa
F26 CAN1.VEP1.KeySwitchBatteryPotential (V): 11 - 14.5 V 12 - 14 V 12 - 15 V 12 - 24 V 11.37 - 14.19 V

Table 1
Zero-shot generation of the operational range for the selected features using different LLMs. Real ranges,
extracted from sensor data, are shown for reference.

second interval, the Jaccard similarity (𝐽 ) for intervals is defined as follows. Let:

• 𝑈 = max(𝑢1, 𝑢2) −min(𝑙1, 𝑙2) be the union of the two intervals (i.e., total covered range length).
• 𝐼 = max(0,min(𝑢1, 𝑢2) −max(𝑙1, 𝑙2)) be the intersection of the intervals, which is calculated based
on the overlap between the intervals. 𝐼 = 0 if the intervals do not overlap. Otherwise, 𝐼 represents
the length of the overlapping interval.

Then, the Jaccard similarity for intervals can be expressed as 𝐽 ([𝑙1, 𝑢1], [𝑙2, 𝑢2]) =
𝐼
𝑈 , with 𝐽 ∈ [0, 1]

where 0 means no overlap, and 1 means the intervals are identical.
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Figure 2: LLM win rates graph with average Jaccard interval score achieved by the tested LLMs. Each edge
ℳ𝑖 → ℳ𝑗 represents the percentage of features whereℳ𝑖 achieved a higher Jaccard score compared to ℳ𝑗.



For each variable, the average Jaccard similarity score was calculated across all comparisons between
the real and generated ranges. The LLM with the highest average Jaccard score was selected as the most
appropriate model for generating anomaly rules in the subsequent steps of the proposed methodology.
Figure 2 illustrates the win rates of the evaluated LLMs alongside the average Jaccard interval scores
achieved by each model. The plot shows that GPT-4o consistently outperforms all other models and
demonstrates good accuracy in generating intervals that closely resemble the actual operational ranges
extracted from tractor sensor data, confirming its suitability as the chosen model.

3.2. Anomaly generation through an agentic workflow

Once the most appropriate LLM is selected, the anomaly generation process is performed through an
agentic workflow, as illustrated in Figure 3.

LLM selection

Agent 1 - Expert Farmer

Agent 2 - Expert Developer

Prompt chaining

Generation of real-
world anomaly

instances

Generation of a set
of rules for each

anomaly instance

Zero-shot prompting

Python script
generation

Application of rules
to test data

Figure 3: Agentic workflow for anomalies generation

This workflow involves two LLM-based agents:

• Expert farmer : Its role is to generate realistic cases of anomalies in the form of rules that can be
applied to test data, resulting in anomalous test instances.

• Expert developer : Its role is to convert the set of rules generated by the expert farmer into a
runnable Python script, which can be executed, via tool use, on the test dataset to produce a
structured set of anomalous test instances for benchmarking anomaly detection methods.

In the following sections, the prompts used to query the LLM-based agents are shown, along with
the generated output.

3.2.1. Expert farmer Agent — Anomaly generation via prompt chaining

In this step, the prompt chaining technique is employed to generate meaningful anomaly instances, as
indicated by the green-colored boxes. Using prompt chaining, a sequence of prompts generates complex
outputs by linking multiple tasks together. Initially, the first agent (i.e., the expert farmer ) generates
a set of significant anomaly cases across various activities, such as plowing, moving, turning, and idle
operations. These anomalies are then used to create rules that modify the operational ranges of the
variables, thereby generating anomalies. For each anomaly, a corresponding rule is created that specifies
its duration and how the operational ranges are altered to simulate the anomaly within the data. These
rules are then passed to the second agent (i.e., the expert developer ) for further processing.



As a seasoned expert in New Holland T7 165 S tractors, we seek your expertise in diagnosing various
operational variables retrieved from the CAN bus of the tractor. You are provided with a list of variables,
each with its name, operational range, unit of measurement and description. These variables are listed
according to the following format: - <var_name> (<operational_range> <unit>): <description>.
Your task is to generate instances of significant anomalies based on the activity performed by the tractor,
i.e., “plowing,” “moving,” “turning,” “starting,” and “idling”. Each anomaly instance must include:

- a description of the anomaly instance
- the list of variables involved in the anomaly instance
- the activity performed by the tractor when the anomaly shows up.

Format your output as follows:

- <instance_name>: <description>

- variables involved:
- <var_name>

- …
- <activity_performed>

- …

Input variables:

- CAN1.LFE1.EngineFuelRate (0 - 29.35 l/h): Amount of fuel consumed by the engine per unit of
time.

- CAN1.EFLP1.EngineOilPressure1 (96 - 536 kPa): Gage pressure of oil in the engine lubrication
system as provided by the oil pump.

- …

Based on: (𝑖) the generated anomaly instances, (𝑖𝑖) the descriptions, (𝑖𝑖𝑖) the activities performed, and (𝑖𝑣)
the operational range of the involved variables, generate a set of rules for each anomaly instance describing
how each variable involved varies numerically. Also, specify the overall duration of the anomaly for each
instance. Consider that the session in which the anomalies will be applied lasts approximately 2 hours,
with observations recorded at a frequency of 1 Hz.

Format your output as follows:

- <instance_name> (<activity_performed>):

- <duration>

- rules:
- <var_name>: <rule_description>

- …

- …

Table 2 presents the output generated by the first agent. Specifically, the following information is
reported:

• The anomaly name, which concisely describes the issue.
• The performed activity during which the anomaly occurs.
• An issue description that provides useful details on how the anomaly affects the normal operation
of the tractor.

• The duration of the anomaly.
• The variables affected.
• The associated rules specifying how each variable deviates from its expected range over time.



ID Anom. Name Activity Issue description Dur. Involved features Rule descriptions

1
Fuel
Consumption
Spike

Plowing
The tractor shows unusually high fuel
consumption during operation, despite
consistent speed and load. Instantaneous fuel
economy drops sharply, and the fuel rate is
well above normal.

10 min
CAN1.LFE1.EngineInstantaneousFuelEconomy

Drops below 20 km/l from
a normal range of 50-70 km/l.

CAN1.LFE1.EngineFuelRate
Increases to above 20 l/h
from a normal range of 5-10 l/h.

CAN1.EEC2.EnginePercentLoadAtCurrentSpeed
Increases to above 80%
from a normal range of 30-50%.

2
Overheating
Engine

Moving

The tractor’s engine temperature suddenly
rises above normal limits, increasing fan speed
to compensate. Since intake air temperature
and pressure remain normal, this indicates a
potential issue with the cooling system.

20 min

CAN1.IC1.EngnIntkMnfld1Tmprtr
Rises to above 67∘C from
a normal range of 20-40∘C.

CAN1.FD1.FanSpeed
Increases to above 2000 rpm from
a normal range of 1200-1600 rpm.

CAN1.EFLP1.EngineOilPressure1
Drops below 100 kPa from a
normal range of 200-400 kPa.

CAN1.EEC1.EngineSpeed
Fluctuates between 1800-2200 rpm from
a normal steady range of 1500-1700 rpm.

3
Torque
Instability

Turning
The tractor’s engine torque output fluctuates,
causing jerky movements and inefficient
performance. A misalignment between
requested and actual torque values suggests
an issue with the engine control system.

15 min
CAN2.TSC1.EngnRqstdTrqTrqLmt_0

Varies erratically between -50% and 100%
from a normal steady range of 20-40%.

CAN1.EEC1.EngineDemandPercentTorque
Fluctuates between 0% and 99%
from a normal steady range of 30-60%.

CAN1.EEC1.ActualEnginePercentTorque
Deviates between 0% and 98%
from a normal steady range of 30-60%.

4
Battery
Voltage
Drop

Idle
The tractor’s battery voltage drops below
the normal range, potentially causing electrical
issues like erratic behavior of control units.

30 min
CAN1.VEP1.BatteryPotentialPowerInput1

Drops below 11.37 V from a
normal range of 12.5-14 V.

CAN1.VEP1.KeySwitchBatteryPotential
Drops below 11.37 V from a
normal range of 12.5-14 V.

Table 2
Anomaly instances generated by GPT-4o. Each instance includes a description and a set of associated features.

3.2.2. Expert developer Agent — Python script generation and application of rules to test data

The second agent, acting as a Python programming expert, is prompted to transform the anomaly rules,
generated by the expert farmer LLM agent, into an executable Python script.

As an expert Python developer, we seek your assistance in code scripting. You are provided with a set of
rules for different anomaly instances that describe how each variable involved varies numerically, along
with the overall duration of the anomaly. Anomaly instances are listed according to the following format:

- <instance_name> (<activity_performed>):

- <duration>

- rules:
- <var_name>: <rule_description>

- …

Based on this information, generate a Python function that applies a given anomaly instance to a time
series of sensor data. The code must adhere to the following requirements:

- all anomaly instances are handled;
- random values are used instead of fixed anomalous values;
- the input dataframe is read from a csv given as input; the start time and the anomaly to be applied
are given as input;

- output the required function without any example usage.

Input anomaly instances:

- Fuel Consumption Spike (Plowing):

- 10 minutes
- rules:

- CAN1.LFE1.EngineInstantaneousFuelEconomy: Drops below 20 km/l from a normal
range of 50-70 km/l.

- CAN1.LFE1.EngineFuelRate: Increases to above 20 l/h from a normal range of 5-10 l/h.
- CAN1.EEC2.EnginePercentLoadAtCurrentSpeed: Increases to above 80% from a normal
range of 30-50%.

- …



In this case, as shown in the blue-colored box, zero-shot prompting is employed, wherein the agent
generates a Python script based on the provided anomaly rules without any prior examples or specific
training data. The script is designed to take the clean, non-anomalous test dataset as input and apply
the anomalies according to the rules generated by the first agent. The generated script is executed to
create four distinct datasets by applying the anomalies to the test dataset for each possible activity.
Through this agentic workflow, the entire process of anomaly rule generation and application can

be automated, providing a robust method for simulating consistent anomalous behaviors. This, in
turn, supports the evaluation of anomaly detection models, by providing realistic and domain-specific
anomalies that accurately reflects potential issues that could arise in real-world operations.

3.3. Auto-encoder evaluation on synthetic test anomalies

Here we show how the previously generated anomalous test datasets can be effectively leveraged to
assess the effectiveness of a deep learning-based anomaly detection model. In particular, for each
possible activity, including plowing, moving, turning, or idle, an LSTM autoencoder is trained on a
normal working session, encompassing non-anomalous data from CAN bus sensors (see Figure 4).

Application of rules
to test data

Anomalous test data

LSTM auto-encoder

AUC score

Anomalous

Not
Anomalous

Figure 4: LSTM auto-encoder testing on anomalous generated data for a given activity.

The LSTM autoencoder works by reconstructing the input time series. A large reconstruction
error suggests that the input data may deviate from normal patterns, indicating an anomaly. The
detection performance of each autoencoder is measured using the Area Under the Receiver Operating
Characteristic Curve (AUC) score. It ranges from 0 to 1, where a score of 1 indicates perfect separation
between anomalies and normal data, while 0.5 suggests that the model is equivalent to random guessing.
Figure 5 presents the ROC curves for the four anomalous instances considered during the anomaly

generation process. Each curve illustrates the model’s ability to distinguish between anomalous and
non-anomalous data across a diverse set of potential scenarios. Specifically, two cases (figure 5b and
5d) achieve perfect classification (AUC = 1.00), while the other two cases (figure 5a and 5c) show
strong (AUC = 0.90) and moderate (AUC = 0.76) performance, respectively. These results suggest that
the model is highly effective in detecting anomalies, with some variability depending on the specific
type of anomaly and the amount of training data from sensors. Furthermore, the ability to generate
activity-specific test data facilitates a more granular analysis of model performance, providing insights
into how different types of anomalies might be detected in real-world deployments.
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(a) Fuel Consumption Spike
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(b) Overheating Engine
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(c) Torque Instability
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(d) Battery Voltage Drop

Figure 5: LSTM auto-encoder evaluation for each anomaly instance.



4. Conclusion

In this work, we advance the application of LLM agents in Smart Agriculture by proposing a rule-
based approach for the automatic generation of synthetic anomalies in agricultural machinery. By
generating realistic, domain-specific anomalies, the system creates a rich dataset that accurately reflects
potential issues that could arise in real-world operations. This enables effective evaluation of anomaly
detection models and allows researchers and developers to test their algorithms against a variety of
plausible scenarios. The generated datasets support thorough benchmarking, helping to identify the
strengths and weaknesses of different anomaly detection methods. Moreover, the ability to generate
diverse datasets tailored to specific activities—such as plowing, moving, turning, and idling—facilitates
more granular analysis of model performance. This can lead to insights into how different types of
anomalies might affect operational efficiency, safety, and tractor maintenance. Ultimately, the proposed
methodology fosters an iterative feedback loop, where the performance of anomaly detection models can
be continuously improved based on simulated data. This enhances their robustness and reliability in real-
world applications, ensuring efficient utilization of agricultural resources and paving the way for more
sustainable agricultural practices. Future work will focus on integrating domain-specific knowledge
through agentic RAG (Retrieval-Augmented Generation), further improving context awareness of the
system and enabling LLMs to better comprehend complex scenarios.
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