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Abstract
This paper presents a novel framework that integrates Linear Temporal Logic over Finite Traces (LTLf) with the

expressive capabilities of Answer Set Programming (ASP). Combining these two powerful formalisms enables

efficient reasoning in complex, temporally dynamic, and knowledge-rich environments, making it well-suited for

green-aware applications that demand sustainable resource management and reduced environmental impact. The

proposed framework supports the querying of evolving ASP knowledge bases, allowing both brave and cautious

inferences aligned with temporal constraints. We detail the foundational principles of the framework and explore

its potential applications in environmentally conscious scenarios.
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1. Introduction

In recent years, the growing emphasis on sustainability and environmental consciousness has stimulated 
interest in developing green-aware applications [1]. These systems require advanced reasoning capabil-

ities to manage resources efficiently while satisfying temporal and logical constraints. Linear Temporal 
Logic (LTL) [2] has been a cornerstone in Computer Science for reasoning about sequences of events 
and has found application in many domains [3, 4, 5]. The variant LTL over finite traces (LTL

f
) [6, 7, 8] 

has proven particularly effective in scenarios where operations are naturally representable by finite 
sequences of actions [9, 10]. However, due to its propositional nature, LTL

f is cumbersome when dealing 
with complex, knowledge-intensive domains. For instance, modeling dynamic systems such as networks 
of sensors or smart buildings often involves reasoning about properties like graph connectivity or 
node-to-node reachability, or even more complex properties such as guaranteeing a cover or domination 
of a subnetwork, which are challenging to express solely within LTL

f
.

Example 1. In an urban traffic network, roads (edges) may be closed for maintenance, environmental 
reasons, or congestion control. However, at each point in time, it must be ensured that traffic flow remains 
functional while reducing emissions by dynamically shutting down certain routes, that is ensuring that all 
locations (nodes) remain connected despite closing certain roads. This involve reasoning about relationships 
between nodes and edges over time. Encoding such relationships directly in LTLf requires extensive formulae 
that become unmanageable, inefficient, and unintuitive, especially as the network complexity increases.

To address these limitations, we propose a new framework, called LTL
f

ASP
, that extends LTL

f by 
integrating it with Answer Set Programming (ASP) [11, 12]. ASP is a declarative programming paradigm 
well-suited in combinatorial optimization and knowledge representation and reasoning. Our framework
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provides a way to meld ASP’s rich, expressive language with LTL
f

temporal reasoning features, easing

the development of sophisticated green-aware applications. Indeed, ASP enables reasoning about

individual states induced by the temporal specification in a high-level, declarative, expressive and

concise way.

Example 2. Using LTLASP
f , the traffic network problem can be encoded more naturally and efficiently.

While LTLf handles the temporal aspects of the problem (e.g., ensuring specific routes are open or closed at
different times), ASP can handle graph properties such as connectivity and connectedness between nodes as
the system evolves. This avoids the need for propositional encodings in LTLf alone, making the encoding
significantly more concise and manageable, even as the network complexity increases.

This paper defines the LTL
ASP

f
framework and instantiates it in several green-aware application

scenarios. The rest of the paper is organized as follows. Section 2 reviews related literature. Section 3

provides a detailed overview of Linear Temporal Logic over Finite Traces and Answer Set Programming.

In Section 4, we formally define the syntax and semantics of the LTL
ASP

f
framework, explaining how

it integrates the temporal reasoning capabilities of LTL
f

with the declarative power of ASP. Section 5

illustrates the application of LTL
ASP

f
in some green-aware domains. Finally, Section 6 concludes the

paper.

2. Related Work

Linear Temporal Logic (LTL) has been extensively used for reasoning about event sequences in various

domains, such as planning, verification, and process management [2, 3, 4]. Its finite variant, LTL
f
, is

particularly suitable for scenarios bounded by a finite time horizon, which is crucial in many practical

applications [6, 7]. While LTL
f

is a powerful formalism, its propositional nature limits the ability

to capture complex temporal properties in knowledge- and data-intensive domains. To overcome

these limitations, extensions such as LTL
MT

f
(LTL

f
Modulo Theories) [13] have been developed, which

integrate additional theories like linear integer arithmetic and uninterpreted functions to increase

expressiveness [14, 15, 16], as well as atomic constraints over concrete domains [17]. Similarly, first-order

extensions of LTL
f

enhance its knowledge representation capabilities by allowing richer interactions

with domain-specific data [18, 19].

The integration of logic programming with temporal reasoning has been explored to address lim-

itations in modeling dynamic systems. Notably, Eiter et al. [20] proposed combining a declarative

planning language with Answer Set Programming (ASP), enhancing expressiveness and problem-solving

capabilities in dynamic domains. Although successful, these approaches do not fully leverage ASP as a
theory within temporal logic.

From the Answer Set Programming perspective, the strand of research on Temporal Answer Set

Programming (TASP) [21] extends standard ASP with LTL-like temporal constructs. Our approach is

not an extension of ASP with temporal constructs, but rather the embedding of ASP into LTL
f

reasoning,

facilitating complex queries over execution traces.

Another strand of related research is stream reasoning, which deals with continuous query answering

over data streams [22], which often relies on logic programming as its foundation. ASP-based stream

reasoning systems typically focus on window-based approaches, processing segments of data streams to

perform temporal reasoning. Our approach reasons over finite traces, making it ideal for green-aware

applications requiring full temporal context [23].

There have been in the literature also some proposals for ASP Modulo Theories [24] that extends

ASP by integrating external theories, akin to how SAT is extended by Satisfiability Modulo Theories

(SMT) [25, 26]. This extension allows ASP to interface with additional reasoning modules. Our departure

point is entirely different since we aim to use ASP as a theory within LTL
f
, enabling advanced reasoning

capabilities tailored specifically for knowledge-rich, temporal environments. Thus, our proposal relates

more to first-order extensions of LTL
f

and LTL
MT

f
than TASP.



Green-aware reasoning has gained significant attention recently as sustainability has become a

critical concern. Some proposals that leverage logic-based approaches have been used to model and

manage energy consumption, optimize resource allocation, and reduce environmental impacts in various

applications. A recent proposal [27] introduced a formal framework using temporal logic and simulation

tools to model and verify the energy management of buildings. In [28] the authors present a fuzzy

temporal logic-based approach to optimize energy-efficient routing in wireless sensor networks (WSNs)

integrating fuzzy logic with temporal reasoning to enhance sustainability in network operations. These

approaches demonstrate the potential of logic-based formalisms in promoting sustainability. However,

existing systems often focus on specific application domains and lack the generality and expressive

power needed to address broader green-aware scenarios, a gap that our proposed LTL
ASP

f
framework

aims to fill.

3. Preliminaries

This section recaps basic notions of Linear Temporal Logic over Finite Traces (LTL
f
) and Answer Set

Programming (ASP) that will be used in the rest of the paper.

3.1. Linear Temporal Logic over Finite Traces

Linear Temporal Logic (LTL) is a propositional modal logic, that allows one to reason about the temporal
properties of traces. A trace is an infinite sequence of sets of propositional symbols. LTL handles time in

an abstract manner, focusing on the relative order of events within a trace rather than on the duration of

those events. Despite its abstract treatment of time, LTL has been widely and successfully applied in

various computer science fields, including planning [29, 3, 30], robotics and control theory [31, 32], and

business process management [33, 9]. Linear Temporal Logic over Finite Traces (LTL
f
) [6] keeps the

same syntax as LTL but is interpreted over finite traces.

Let 𝒜 be a finite set of propositional symbols. An LTL
f

formula is defined according to the following

grammar:

𝜙 := 𝑎 ∈ 𝒜 | ⊤ | ¬𝜙 | 𝜙 ∧ 𝜙 | X 𝜙 | 𝜙 U 𝜙

Standard shorthand for propositional logic applies. Moreover, we define the eventually operator

F 𝜙 ≡ ⊤ U 𝜙, the always operator G 𝜙 ≡ ¬F ¬𝜙, and the release operator 𝜙1 R 𝜙2 ≡ ¬(¬𝜙1 U ¬𝜙2).
A trace 𝜋 is a sequence 𝜋 = 𝜋0, . . . , 𝜋𝑛 − 1, where 𝜋𝑖 ⊆ 𝒜 for each 0 < 𝑖 < 𝑛; we say that 𝑛 is the

length of the trace, denoted by |𝜋|. A trace 𝜋 satisfies an LTL
f

formula 𝜙 at time 𝑖, denoted by 𝜋, 𝑖 |= 𝜙,

according to the following inductive rules:

• 𝜋, 𝑖 |= ⊤ for all 𝑖 ∈ {0, . . . , |𝜋|}
• 𝜋, 𝐼 |= 𝛼 for 𝛼 ∈ 𝒜 if 𝛼 ∈ 𝜋𝑖
• 𝜋, 𝑖 |= ¬𝜙 if 𝜋, 𝑖 ̸|= 𝜙

• 𝜋, 𝑖 |= 𝜙1 ∧ 𝜙2 if 𝜋, 𝑖 |= 𝜙1 and 𝜋, 𝑖 |= 𝜙2;

• 𝜋, 𝑖 |= X 𝜙1 if 𝑖 < |𝜋| − 1 and 𝜋, 𝑖+ 1 |= 𝜙1;

• 𝜋, 𝑖 |= 𝜙1 U 𝜙2 if ∃𝑗 with 𝑖 ≤ 𝑗 ≤ |𝜋| s.t. 𝜋, 𝑗 |= 𝜙2 and ∀𝑘 with 𝑖 ≤ 𝑘 < 𝑗.

In practical applications, states often represent the system’s status at discrete moments, with traces

capturing the system’s evolution over time. Furthermore, we say that 𝜋 is a model of 𝜙 if 𝜋, 0 |= 𝜙.

Example 3. Consider a green-aware energy management system for smart buildings, where 𝒜 =
{lightOff, lowPowerMode}. The formula 𝜙 = G (lightOff U ¬(lowPowerMode)) specifies that
the lights must remain off whenever the system is in low power mode, and this condition
must hold at all times. This constraint ensures continuous energy saving by keeping lights
off during periods of reduced power consumption. An example trace that satisfies 𝜙 is 𝜋 =
{lightOff, lowPowerMode}, {lightOff, lowPowerMode}, {lightOff}, {}, maintaining the lights off consis-
tently until low power mode is exited.



3.2. Answer Set Programming

Answer Set Programming (ASP) [11, 12] is a declarative knowledge representation formalism rooted

in the answer set semantics of logic programs that can solve problems up to Σ𝑃
2 in the polynomial

hierarchy. This section briefly summarizes basic notions about its syntax, semantics, and reasoning

tasks. The examples in the rest of the paper will use the clingo input language. Interested readers can

refer to [34] for a reference on the modeling capabilities of the language.

3.2.1. Syntax.

A normal logic program 𝑃 is a set of (normal) rules, expressions ℎ← 𝑎1, . . . , 𝑎𝑘,¬𝑏1, . . . ,¬𝑏𝑘., where

ℎ, 𝑎𝑖, 𝑏𝑗 are atoms. An atom is an expression 𝑝(𝑡1, . . . , 𝑡𝑘) where 𝑝 is a predicate name, 𝑡𝑖 are terms built

over a set of constants 𝒞 that appear in 𝑃 . The symbol ¬ denotes negation-as-failure, typeset as not in

code examples. A literal is either an atom 𝑎 or a negated atom ¬𝑎, where we say that ¬𝑎 is the opposite
literal of 𝑎. Given the rule 𝜌 = ℎ← 𝑎1, . . . , 𝑎𝑘,¬𝑏1, . . .¬𝑏𝑘 we denote by𝐻(𝜌) = {ℎ} its head,𝐵(𝜌) =
{𝑎1, . . . , 𝑎𝑘,¬𝑏1, . . . ,¬𝑏𝑘} its body, which can be partitioned into 𝐵+(𝜌) = {𝑎1, . . . , 𝑎𝑘} (“positive
body” ) and 𝐵−(𝜌) = {𝑏1, . . . , 𝑏𝑘} (“negative body” ). Modern ASP systems’ input language accepts

many syntactic shortcuts, which ease modeling tasks without increasing the language expressiveness

from a complexity point of view, as for example weight rules, cardinality constraints, and choice rules -

that can all be rewritten into sets of normal rules. In particular, the disjunctive extension of the language,

which allows more atoms in the head of the rule, increases its expressivity up to Σ𝑃
2 , while normal logic

programs can model up to NP problems.

3.2.2. Semantics.

Let ℬ(𝑃 ) denote the Herbrand base of a logic program 𝑃 , which is the set of all possible atoms that

can be formed using the predicates and constants present in 𝑃 . A logic program with variables is

considered syntactic sugar for its ground version, which consists of all the rules that can be generated by

substituting variables with atoms from ℬ(𝑃 ). An interpretation ℐ is a subset of ℬ(𝑃 ), and it satisfies a

rule 𝜌 if 𝐵+(𝜌) ⊆ ℐ and 𝐵−(𝜌) ∩ ℐ = ∅, where 𝐵+(𝜌) and 𝐵−(𝜌) represent the positive and negative

body of the rule, respectively. If ℐ satisfies all rules of 𝑃 , then ℐ is a model of 𝑃 . The reduct of 𝑃 with

respect to ℐ , denoted 𝑃 ℐ
, is obtained by removing from 𝑃 all rules 𝜌 where either (i) 𝐵+(𝜌) ̸⊆ ℐ or (ii)

𝐵−(𝜌)∩ ℐ ̸= ∅. A subset-minimal model of the reduct 𝑃 ℐ
is called an answer set (or stable model) of 𝑃 .

A logic program can have zero, one, or multiple answer sets; it is termed coherent if it has at least one

answer set, and incoherent if it has none. The collection of all answer sets of 𝑃 is denoted by 𝐴𝑆(𝑃 ).

3.2.3. Solving Problems via ASP

The standard approach to solve problems using ASP is to write a (typically non-ground) logic program

𝑃 such that, given a problem instance encoded by a set of facts 𝐹 , the answer sets of the logic program

𝑃 ∪ 𝐹 result in solutions to the problem instance at hand. The logic program 𝑃 is usually written

according to the guess & check programming technique, and consists of two subprograms: a guess
program that generates potential answer sets (which typically includes choice rules or disjunctive rules);

and a check component that asserts solution’s properties (e.g., discarding unfit candidate solutions) by

means of constraints. An illustrative example of this approach is the subgraph isomorphism problem.

Example 4 (Green-Aware Subgraph Isomorphism). Subgraph isomorphism is a classic NP-complete
problem [35]. Given two graphs, 𝐺(𝑉,𝐸) and 𝐻(𝑉 ′, 𝐸′), the aim is to determine whether there exists a
subgraph of 𝐺 that is isomorphic to 𝐻 . This involves finding a bijection 𝜎 : 𝑉 ′ → 𝑉0, where 𝑉0 ⊆ 𝑉 ,
such that an edge (𝑥, 𝑦) ∈ 𝐸′ corresponds precisely to an edge (𝜎(𝑥), 𝜎(𝑦)) ∈ 𝐸. Subgraph isomorphism
can be applied to check the efficient energy distribution in smart grids. Consider two graphs: 𝐺(𝑉,𝐸)
representing the full power grid and 𝐻(𝑉 ′, 𝐸′) representing an energy-efficient subnetwork configuration.
The task is to determine whether a subgraph of 𝐺 exists that is isomorphic to 𝐻 , reflecting an optimal



way to manage energy flow. In this context, finding a subgraph isomorphism corresponds to identifying an
energy-efficient setup within the larger grid. The bijection 𝜎 : 𝑉 ′ → 𝑉0, where 𝑉0 ⊆ 𝑉 , maps nodes (e.g.,
energy sources, transformers, and consumers) of the desired configuration 𝐻 onto nodes in the larger grid
𝐺, such that every connection (𝑥, 𝑦) ∈ 𝐸′ matches a corresponding connection (𝜎(𝑥), 𝜎(𝑦)) ∈ 𝐸.

The problem can be modeled using the following logic program. An atom 𝑚𝑎𝑡𝑐ℎ(𝑥, 𝑦) encodes that
node 𝑥 ∈ 𝑉 ′

is matched to node 𝑦 ∈ 𝑉 . The background knowledge is the set of facts 𝑛𝑜𝑑𝑒/1, 𝑒𝑑𝑔𝑒/2
that encode 𝑉 and 𝐸, plus ℎ𝑛𝑜𝑑𝑒/1, ℎ𝑒𝑑𝑔𝑒/2 that encode 𝑉 ′ and 𝐸′.

{ match(HX,X): node(X) } = 1 :- hnode(HX).
:- match(HX,X), match(HY,Y), hedge(HX,HY), not edge(X,Y).

The choice rule generates graph matching between the energy-efficient subnetwork and the full power
grid, where the 𝑚𝑎𝑡𝑐ℎ(𝐻𝑋,𝑋) atom models that the node 𝐻𝑋 in 𝐻 is matched onto the active node 𝑋
in 𝐺. Finally, a constraint discards candidate solutions that violate the definition of graph isomorphism.
The answer sets of the above program encode possible 𝜎 that yield a valid matching between 𝐻 and 𝐺.

Let 𝑃 be a logic program. The cautious consequences of 𝑃 , denoted by Cautious(𝑃 ), are the atoms

that are true in all answer sets of 𝑃 , while the brave consequences, denoted by Brave(𝑃 ), are the atoms

that are true in at least one answer set. If 𝑃 has a unique answer set, as is often the case when 𝑃 is a

Datalog program, then Cautious(𝑃 ) = Brave(𝑃 ). For an atom 𝛼 and a set of positive literals 𝑀 , we

say ¬𝛼 ∈𝑀 if 𝛼 ̸∈𝑀 . An atom 𝛼 bravely holds in 𝑃 , denoted 𝑃 |=𝑏 𝛼, if there exists an answer set

𝑀 ∈ 𝐴𝑆(𝑃 ) such that 𝛼 ∈𝑀 . Conversely, 𝛼 cautiously holds in 𝑃 , denoted 𝑃 |=𝑐 𝛼, if 𝛼 is present in

all answer sets of 𝑃 . By definition, 𝑃 |=𝑏 𝛼 if and only if 𝑃 ̸|=𝑐 ¬𝛼.

In a green-aware context, consider a scenario where we use these reasoning modes to optimize

energy distribution in a smart grid by finding energy-efficient subgraph configurations. Let Π𝑆𝐺𝐼 be

the program reported in Example 4, 𝐹 (𝐺) and 𝐹 (𝐻) be the set of facts encoding the graphs 𝐺 and 𝐻 ,

respectively.

Example 5 (Brave Reasoning in Energy Optimization). Suppose we want to determine if there is
an energy-efficient subgraph configuration between two power grid structures, 𝐺 and 𝐻 , that does not use
a specific node 𝑥 ∈ 𝑉 (e.g., a transformer station). This question can be addressed using a brave query on
the atom 𝑛𝑜𝑡_𝑢𝑠𝑒𝑑(𝑥), which indicates whether node 𝑥 is part of any feasible configuration:

used(X) :- match(_,X).
not_used(X) :- not used(X), node(X).

This query checks if there exists at least one subgraph isomorphism where the node 𝑥 is not used, aligning
with a potential energy-saving configuration.

Example 6 (Cautious Reasoning in Grid Stability). To ensure grid stability, we might need to verify
if a specific mapping 𝜎(𝑥) = 𝑦 holds in all valid energy-efficient subgraph configurations. This can be
formulated as a cautious query, Π𝑆𝐺𝐼 ∪ 𝐹 (𝐺) ∪ 𝐹 (𝐻) |=𝑐 𝑚𝑎𝑡𝑐ℎ(𝑦, 𝑥), ensuring that 𝑥 consistently
maps to 𝑦 across all subgraph isomorphisms, thus confirming its necessity for stable and sustainable grid
operations.

4. The LTLASP
f Framework

In this section, we introduce the syntax and semantics of LTL
ASP

f
, an extension of LTL

f
within the LTL

MT

f

framework that incorporates queries over logic programs with answer set semantics as an external

theory. The core idea, detailed further in the following, is to specify how system properties, represented

as cautious and brave queries over a logic program, should evolve over time. In this framework, traces

capture the temporal evolution of the system’s state in a relational form. Logic programs enrich this

relational representation by defining additional domain-specific concepts through rules. Queries over



these programs allow us to verify whether certain properties hold at given points in time. Standard

linear temporal logic operators are then used to impose constraints on how these properties evolve,

providing a powerful mechanism for temporal reasoning within knowledge-intensive environments.

Let ℬ be an ASP program, referred to as the background knowledge. In typical ASP modeling, ℬ has

a fixed fact schema, meaning that all atoms conforming to a specific signature are considered input
facts representing the problem instance and do not appear in the head of any rule within ℬ. We denote

the set of all possible input facts for ℬ as ℱ . Let 𝒜 be a finite set of propositional symbols, such that

𝒜 ∩ ℱ = ∅.
Given a trace 𝜋 over the alphabet 𝒜 and a fact projection 𝑝𝑟𝑗, the trace projection 𝜋*𝑝𝑟𝑗 , or simply 𝜋*,

is defined as a trace over ℱ (interpreted as propositional symbols), specified as:

𝜋*(𝑖) =
⋃︁

𝑎∈𝜋(𝑖)

𝑝𝑟𝑗(𝑎)

Example 7. Consider the trace 𝜋 = {𝑎, 𝑏}, {𝑏, 𝑐}, {𝑎, 𝑐} over 𝒜 = {𝑎, 𝑏, 𝑐}, and 𝑝𝑟𝑗 to be de-
fined as 𝑝𝑟𝑗(𝑎) = {𝑓(𝑥)}, 𝑝𝑟𝑗(𝑏) = {𝑓(𝑦)} and 𝑝𝑟𝑗(𝑐) = {𝑔(𝑧), ℎ(𝑦, 𝑥)}. Then 𝜋* =
{𝑓(𝑥), 𝑓(𝑦)}, {𝑓(𝑦), 𝑔(𝑧), ℎ(𝑦, 𝑥)}, {𝑓(𝑥), 𝑔(𝑧), ℎ(𝑦, 𝑥)}.

Whenever this does not cause ambiguities, with a slight abuse of notation we will describe traces 𝜋
directly as a sequence of sets of facts, rather than explicitly stating the projection function 𝑝𝑟𝑗.

4.1. Syntax & Semantics

An LTL
ASP

f
formula over a program ℬ and a propositional alphabet 𝒜 is defined by extending the LTL

f

grammar with additional atomic formulae, as follows:

𝜓 := 𝑎 | 𝑏?ℎ | 𝑐?ℎ

𝜙 := 𝜓 | ¬𝜙 | 𝜙 ∧ 𝜙 | X 𝜙 | 𝜙 U 𝜙

where 𝑎 ∈ 𝒜, ℎ ∈ ℬ(𝑃 ), and 𝑏? and 𝑐? denote brave entailment and cautious entailment, respectively.

Standard shorthands for propositional and temporal logic apply. The satisfaction relation for a formula 𝜙
is defined inductively, with propositional and temporal operators following the standard LTL

f
semantics.

The specific semantics for atomic formulae 𝑎, 𝑏?ℎ, and 𝑐?ℎ are as follows:

• 𝜋, 𝑖 |= 𝑎 if 𝑎 ∈ 𝜋(𝑖);
• 𝜋, 𝑖 |= 𝑐?ℎ if ℬ ∪ 𝜋*𝑝𝑟𝑗(𝑖) cautiously entails ℎ, meaning ℎ is present in all answer sets of the

program ℬ ∪ 𝜋*𝑝𝑟𝑗(𝑖);
• 𝜋, 𝑖 |= 𝑏?ℎ if ℬ ∪ 𝜋*𝑝𝑟𝑗(𝑖) bravely entails ℎ, meaning ℎ appears in at least one answer set of

ℬ ∪ 𝜋*𝑝𝑟𝑗(𝑖).

It is important to note that LTL
ASP

f
extends LTL

f
only at the level of atomic formulae, leaving the

temporal semantics of LTL
f

unchanged. Thus, any LTL
f

formula is also a valid LTL
ASP

f
formula (using a

projection function which assigns each 𝑎 ∈ 𝒜 the singleton {𝑎′}). Subformulae of the types 𝑏?ℎ and

𝑐?ℎ express additional constraints in terms of brave or cautious entailment over ℬ ∪ 𝜋*(𝑖), enriching

the expressive power of the logic.

4.2. Trace Verification

We focus on the trace verification problem for LTL
ASP

f
, defined as follows:

Definition 1 (Trace Verification). Let 𝜙 be an LTLASP
f formula and 𝜋 a trace. The trace verification

problem consists of determining whether 𝜋 |= 𝜙.



To address the trace verification problem, we can apply any standard technique used for evaluating

LTL
f

formulas over a trace, handling standard temporal operators and atomic formulae directly, while

using an external oracle to evaluate the brave and cautious entailment of specific atomic formulae.

Specifically, given a formula 𝜙, we define its boolean abstraction 𝜙*
as the LTL

f
formula obtained by

replacing each brave and cautious entailment atomic formula with a propositional variable, effectively

treating 𝑐?ℎ and 𝑏?ℎ as propositional symbols.

We then use standard techniques to check whether 𝜋 |= 𝜙*
. However, when an entailment needs

evaluation, we delegate the task to an external ASP oracle. In the worst case, this approach may require

up to |𝜋| × |𝑄| calls to the external oracle, where |𝑄| represents the number of entailment queries.

From an implementation perspective, another viable approach could be a two-phase process: first,

evaluate all entailment queries over the trace to generate a projection, and then verify the resulting

LTL
f

formula against this projection.

5. Green-Aware Application Scenarios of LTLASP
f

The introduction of LTL
ASP

f
offers powerful tools for reasoning about dynamic, knowledge-intensive

systems in green-aware applications. By combining the temporal reasoning capabilities of LTL
f

with

the expressive power of Answer Set Programming (ASP), LTL
ASP

f
enables advanced modeling and

verification of complex temporal behaviors that are crucial for sustainable resource management. In

this section, we explore several application scenarios where LTL
ASP

f
can be effectively employed to

enhance energy efficiency, optimize resource utilization, and support decision-making processes in

environmentally conscious contexts.

Green-Aware Energy Flow Control. Consider an energy distribution network modeled as a directed

graph 𝐺(𝑉,𝐸), where nodes represent substations and consumers, and edges represent power lines

connecting them. The goal is to verify that critical nodes, represented by the set 𝐶 ⊂ 𝑉 (e.g., hospitals,

data centers), remain powered while the network configuration is dynamically adjusted to minimize

energy losses. Figure 1 depicts an example. Red nodes represent critical nodes, the yellow one is the

power source node and the green ones the functioning nodes at each time instant.

We can model this scenario as follows. The background knowledge ℬ captures the “static” properties

of the network, its underlying graph as facts, as well as the notions of node isolation and being powered
(e.g., connected to the source node).

% Network Topology
node(1). node(2). node(3). node(4). node(5). node(6). node(7). node(s).
edge(1,2). edge(1,6). edge(2,3). edge(2,6). edge (2,7). edge(3,4).
edge(3,7). edge(4,7). edge(4,5). edge(5,7). edge(6,7).
edge(source,1). edge(source,6).
criticalConsumer(2). criticalConsumer(4).
% Domain definition: Connectedness & Isolation
reachable(X, Y) :- edge(X, Y), on(X), on(Y).
reachable(X, Z) :- edge(X, Y), on(X), reachable(Y, Z).
isolated(X) :- node(X), not reachable(source, X).
% A critical consumer is not connected to power
fail :- criticalConsumer(X), isolated(X).

The rule fail :- criticalConsumer(X), isolated(X). derives the atom fail whenever

there’s a critical, isolated node. Notice that since ℬ is a Datalog program with a unique answer set,

brave reasoning and cautious reasoning coincide. Input facts for this program will match the signature

𝑜𝑛/1, where an atom 𝑜𝑛(𝑥) denotes that node 𝑥 is powered on.

The LTL
ASP

f
formula below specifies that certain critical consumers (represented by

criticalConsumer(𝑥)) should not be isolated, i.e., they must remain connected to an energy



Figure 1: Temporal evolution of a green-aware energy management system showing critical consumers (in red),
source node (in yellow), and active components (in green) at each time step.

source. This requirement is enforced over time using a cautious entailment query. Moreover, to avoid

node overload it also specifies that each (not critical) node must be switched off at a certain point.

𝜙 = G (¬𝑐?fail) ∧
⋀︁

𝑛∈𝑉 ∖𝐶

(F (¬on(𝑛)))

Traces capture the “dynamic” part of the system, that is which nodes are powered over time. The

following trace encodes the network evolution in Figure 1:

𝜋 = {on(𝑠𝑜𝑢𝑟𝑐𝑒), on(6), on(7), on(2), on(4)}, {on(𝑠𝑜𝑢𝑟𝑐𝑒), on(6), on(3), on(2), on(4)},

{on(𝑠𝑜𝑢𝑟𝑐𝑒), on(1), on(3), on(2), on(4)}, {on(𝑠𝑜𝑢𝑟𝑐𝑒), on(6), on(7), on(2), on(4)}

The trace 𝜋 satisfies the formula 𝜙. In fact, for every non-critical consumer node there is at least one

time instant in which the node is switched off and, in all time instants, critical nodes are reachable from

the source node by only passing through functioning nodes.

Efficient Energy Distribution in Smart Grids. Consider two graphs: 𝐺(𝑉,𝐸), representing a full

power grid, and 𝐻(𝑉 ′, 𝐸′), representing an energy-efficient subnetwork configuration. Nodes in the

smart grid may be damaged, overloaded, or under maintenance, making them temporarily unavailable.

The task is to determine whether, during the grid’s operation, there always exists a subgraph of the

evolving grid 𝐺 that is isomorphic to 𝐻 , reflecting an optimal energy flow configuration. Similarly to

the previous apprication scenario, the background knowledge ℬ is used to capture the structure of the

two networks, as well as the notion of isomorphism.

To model this scenario, we assume the input trace contains facts matching the signature 𝑜𝑛/1, to

model that a certain node is active. The background knowledge ℬ models the full power grid by means

of facts 𝑛𝑜𝑑𝑒/1, 𝑒𝑑𝑔𝑒/2 that encode 𝑉 and 𝐸, while the energy-efficient subnetwork is modeled by the

predicates ℎ𝑛𝑜𝑑𝑒/1, ℎ𝑒𝑑𝑔𝑒/2.

success.
active(X,Y) :- on(X), on(Y), edge(X,Y).
{ match(HX,X): on(X) } = 1 :- hnode(HX).
:- match(HX,X), match(HY,Y), hedge(HX,HY), not active(X,Y).

The 𝑎𝑐𝑡𝑖𝑣𝑒/2 predicate filters grid links between active nodes, discarding ones where at least one of

the endpoints is not active. The choice rule generates graph matching between the energy-efficient

subnetwork and the active power grid, where the 𝑚𝑎𝑡𝑐ℎ(𝐻𝑋,𝑋) atom models that the node 𝐻𝑋 in

the energy-efficient subnetwork is matched onto the active node 𝑥 of the full power grid. Finally, a

constraint discards candidate solutions that violate the definition of graph isomorphism.



As in the previous application case, input facts for this program have signature 𝑜𝑛/1, where an atom

𝑜𝑛(𝑥) denotes that node 𝑥 is functioning.

The LTL
ASP

f
formula below specifies that always, during its working, the subnetwork of 𝐺 induced

by only functioning nodes, contains the given optimal energy flow configuration, i.e., a subgraph

isomorphic to the energy-efficient subnetwork. This requirement is enforced over time using a brave

uentailment query.

𝜙 = G (𝑏?success)

6. Conclusion

In this paper, we introduced LTL
ASP

f
, a novel framework that extends Linear Temporal Logic over Finite

Traces (LTL
f
) by integrating it with Answer Set Programming (ASP), offering a powerful approach for

reasoning about dynamic systems in green-aware applications. By combining the temporal reasoning

capabilities of LTL
f
with the declarative and expressive power of ASP, LTL

ASP

f
enables efficient modeling

and verification of complex temporal behaviors, making it particularly well-suited for knowledge-

intensive domains.

Through a series of examples, we demonstrated how LTL
ASP

f
provides expressive and manageable

solutions, particularly when handling properties like node reachability or graph connectivity. The

integration of ASP allows for high-level, declarative reasoning about individual states derived from

temporal specifications, significantly enhancing the framework’s flexibility and expressiveness in

modeling complex systems. Future work will explore additional reasoning tasks within the LTL
ASP

f

framework, such as satisfiability checking, and extend its applicability beyond green-aware domains to

other dynamic systems requiring advanced temporal reasoning.
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