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Abstract
In sustainable building design, optimizing lighting systems is essential to reducing energy consumption while
maintaining occupant comfort. Photosensors, which guide the lighting control system in adjusting illumination
based on ambient light levels, are critical in achieving energy efficiency and visual comfort. However, the
optimal placement of these sensors is a complex task due to the dynamic and multidimensional nature of lighting
conditions within a building. This study presents a novel approach for optimizing photosensor placement using
multivariate Long Short-Term Memory (LSTM) models. Unlike conventional methods, LSTM models leverage
historical data on indoor light patterns from photosensors and sunlight factors to capture long-term dependencies
in time-series data. The proposed method is distinguished by its capacity to anticipate future lighting conditions,
thereby enabling the system to adopt a proactive approach to environmental variations, representing a notable
advancement over traditional reactive models. This approach allows for more accurate forecasts by accounting
for past fluctuations in light conditions and associated environmental variables. The proposed method seeks to
determine the optimal sensor placement, maximizing energy savings by ensuring efficient use of natural light
while minimizing artificial lighting and maintaining visual comfort. Simulation results demonstrate significant
improvements in energy efficiency compared to traditional sensor placement strategies, making this approach a
promising solution for sustainable building design. The study highlights the importance of integrating advanced
machine learning techniques like LSTM to enhance energy performance and sustainability in modern buildings,
also looking at user satisfaction regarding visual comfort.
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1. Introduction

Buildings account for a large share of global energy consumption, around 40% of the overall energy
demand. Moreover, they account for approximately 30% of carbon dioxide (CO2) emissions [1], contribut-
ing substantially to greenhouse gas effects, including climate change and global warming. Mitigating
or eradicating adverse environmental impacts while simultaneously enhancing positive ecological
outcomes through the building’s design, construction, and operational processes is essential to pro-
moting the development of sustainable buildings. In light of the ongoing urbanization process and
the concomitant rise in expectations regarding occupant comfort, it becomes imperative to develop
energy-efficient lighting systems that adapt to the daily dynamics of living spaces.

Energy-efficient lighting represents a fundamental aspect of sustainable building design, profoundly
impacting both environmental sustainability and operational costs. To address this challenge, it is
essential to investigate the potential of emerging technologies, such as photosensors, to enhance the
efficiency of lighting management. Photosensors are critical in optimizing lighting systems in modern
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buildings by adjusting artificial lighting based on ambient light levels. Proper sensor placement ensures
that natural light is effectively utilized, reducing the reliance on artificial lighting and thus lowering
energy consumption. However, determining the optimal placement of these photosensors is a complex
challenge, as lighting conditions within a building fluctuate throughout the day due to changes in
sunlight, room usage, and weather conditions.

Numerous studies have chosen to install illuminance sensors either at the top of the desk or at a
predetermined location that accurately represents the desk’s position [2, 3, 4]. However, the work plane
is not an appropriate location to directly install reference photosensors, as they can be easily shaded or
interrupted by activities such as reading or movement. Numerous design guidelines and manufacturers,
such as [5, 6, 7]1, have identified the ceiling as the primary location for sensor installation. Even if
sensors can be positioned on light fixtures or walls, it is contingent upon the specific type of sensor
employed and the room’s configuration. However, such traditional sensor placement methods that rely
on static strategies fail to account for the dynamic nature of lighting environments. These factors lead
to suboptimal energy savings and comfort levels.

To address this issue, this study proposes an advanced approach using Multivariate Long-Short-Term
Memory (LSTM) models [9, 10], a recurrent neural network (RNN) well-suited for handling time-series
data and predicting complex patterns. LSTM is designed to memorize long-term temporal dependencies
through memory cells containing several types of gates and to learn nonlinearity. By leveraging
LSTM models, which can process multiple variables over time, optimal lighting conditions can be
predicted based on historical data, environmental factors, and building usage patterns. This research
aims to optimize the placement of photosensors in buildings by modeling lighting conditions with
multivariate LSTM models. The approach allows for a dynamic, data-driven solution that maximizes
energy efficiency while maintaining optimal lighting conditions for occupants. Integrating advanced
machine learning techniques into building design can significantly enhance the sustainability of modern
structures, reducing their carbon footprint and operational costs.

The rest of the paper is organized as follows. Section 2 introduces related works. Section 3 presents
the LSTM model. Results and conclusions are presented in Sections 4 and 5.

2. Related works

Recent research has extensively explored the optimization of light sensor placement for indoor lighting
control, revealing various advanced methodologies to enhance energy efficiency and visual comfort.
One notable study employed Artificial Neural Networks (ANNs) to determine the optimal positioning
of light sensors, achieving highly accurate predictions with a Mean Squared Error (MSE) of 2.20 × 10−3
and a correlation coefficient (𝑅2) of 0.9583. This approach demonstrated the capability of ANNs
to significantly improve the effectiveness of daylight-linked lighting control systems by accurately
predicting sensor positions, which in turn enhances energy efficiency in buildings [11]. In parallel,
another study introduced a novel method for optimal sensor placement by integrating the inverse square
law and Lambert’s cosine law to calculate illumination levels. This method utilized the k-medoids
clustering algorithm to identify the best sensor positions by grouping room coordinates based on light
levels. The approach was validated through extensive field measurements and simulations, proving its
high accuracy in determining the optimal sensor locations and demonstrating its practical applicability
in real-world scenarios [12]. Furthermore, research focusing on spaces equipped with dynamic shading
devices developed spatial sensitivity curves to address the challenges of varying daylight conditions. The
study tested different sensor placements to identify locations that ensure consistent light control despite
dynamic shading variations. The results highlighted the necessity of carefully selecting sensor positions
to maintain optimal illuminance levels on the work plane and achieve the highest correlation between
sensor measurements and actual light conditions [13]. Additionally, advancements in optimization
techniques have been explored, such as the Battle Royale Optimization (BRO) algorithm combined
with a fuzzy logic controller. This approach was shown to improve energy efficiency by up to 30.8%,

1A more exhaustive list can be found at [8]



alongside reducing initial costs and energy demand, while ensuring compliance with the EN12464-1
standards [14]. Another innovative method, Particle Swarm Optimization (PSO), was used to develop a
new optimal light sensor placement technique known as OLSPM-PSO. This method shows a reduction
in the required sensors and energy consumption, exhibiting superior accuracy in light distribution
compared to other methods [15]. These studies emphasize the increasing complexity of lighting systems,
highlighting the importance of advanced methodologies for optimizing energy efficiency and visual
comfort within smart buildings.

Innovations proposed by our study LSTMs are an advanced class of neural networks designed to
handle and predict sequential data, making them particularly well-suited for analyzing and interpreting
time-series data collected from sensors. The aforementioned approaches are typically static and lack
the capacity to adapt to environmental variations. Thus, they cannot respond effectively to real-time
changes, such as daytime fluctuations in sunlight or alterations in occupants’ activities. Our study
focuses on developing an LSTM-based approach to analyzing data collected from light sensors installed
in an office. This approach can predict future illumination levels by learning from historical data to create
accurate predictive models. The generated forecasts enable a deeper understanding of future lighting
trends, promoting more proactive and informed management. Our approach differs from the previous
ones in several points. While earlier research employed various methods, such as ANN and clustering
algorithms, to optimize sensor placement and improve lighting control, our approach introduces a novel
predictive element. Previous studies primarily focused on optimizing sensor locations or enhancing
control systems based on current or historical data. In contrast, our method leverages LSTM networks
to provide future-oriented predictions, allowing for dynamic lighting system adjustments based on
anticipated conditions. In contrast to conventional methodologies, which depend on fixed data sets,
our LSTM model incorporates a diverse array of variables, encompassing historical data and real-time
environmental conditions. This integration markedly enhances the precision of lighting predictions.
Moreover, previous works required extensive validation through field measurements and simulations to
confirm their effectiveness. Our LSTM-based approach aims to streamline this process by providing real-
time forecasts, thus enabling more immediate and adaptive responses to changing lighting conditions.
This advancement enhances the accuracy of lighting predictions and contributes to a more efficient and
sustainable energy management strategy in both office and residential settings.

3. LSTM Conceptual Scheme for Optimal Lighting Sensor Placement

In this study, we propose a novel method for optimizing the placement of lighting sensors in smart
buildings using Long Short-Term Memory networks [9, 10]. LSTMs, a type of neural network well-
suited for handling time-varying data, enable the model to capture complex temporal patterns and
accurately predict lighting conditions. The LSTM model is specifically designed to identify temporal
dependencies in lighting data, with layers dedicated to learning from historical patterns and making
informed predictions. By leveraging this predictive approach, we aim to improve lighting management
in smart buildings, offering a data-driven sensor placement and validation solution. The following are
the main steps for developing the proposed LSTM neural network. Accurate data collection enables
the model to capture comprehensive information, while feature engineering facilitates the extraction
of meaningful patterns. Normalization ensures that measurement scales do not affect learning, and
the LSTM architecture optimizes the storage of relevant information. Collectively, these steps enhance
prediction accuracy and improve lighting management performance.

Data Collection It represents a fundamental stage in generating forecasts, as it determines the quality
of the resulting predictions. The data required for our LSTM model can be broken down as follows: (i)
Illuminance [lux] is a key factor for our objectives. It is measured by light sensors positioned at various
points within the building. These sensors provide brightness readings that fluctuate over time, so
collecting these readings over an extended period is essential to obtain a comprehensive representation.
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Figure 1: The architecture of the adopted stacked LSTM neural networks and the related LSTM cell schema

(ii) Environmental Conditions: Factors such as direct sunlight, cloud cover, time of day, and season
influence daylight. This data can be obtained through external sources. The data was acquired with a
frequency of five minutes.

Feature Engineering and Data Preprocessing Before training an LSTM model, preparing and
transforming data into a format that the model can utilize effectively is essential. This process is crucial
for ensuring the model’s optimal performance. In particular, Feature extraction involves identifying
salient characteristics within a given data set and deriving meaningful information from the raw data.
Temporal features pertain to the order or sequence of events, such as the time of day, the day of the
week, and the season. Spatial characteristics include the distance to windows and the position in relation
to light sources. Historical light levels refer to previously recorded readings at specified time intervals.
Extracting pertinent features enhances the model’s capacity to discern meaningful patterns within the
data set, thereby facilitating more precise and pertinent forecasts of lighting conditions. On the other
hand, Normalization and Scaling allows data to be transformed into a uniform scale to ensure effective
learning by the model. Min-Max normalization scales the data to a range between 0 and 1. For instance,
if a sensor reads values between 100 and 500, min-max normalization transforms these values into a
range between 0 and 1. Z-score standardization transforms the data to have a mean of 0 and a standard
deviation of 1, facilitating comparison by scaling the data so that values can be compared more easily.
In this study, the Min Max normalization technique was employed to ensure that the model could learn
effectively and accurately interpret the variations in the sensor readings.

LSTMModel Design The architecture of the adopted deep neural network is shown in Figure 1a,
where the LSTM cells are used as basic building blocks in the hidden layers. The input layer mainly
processes the data, receiving temporal data organized in time windows. In our model, the inputs are the
current illuminance values of a given photosensor to be examined, solar elevation and azimuth values,
and the illuminance value on the work plane at previous time steps. LSTM layers store long-term
information due to their gating mechanisms, which allow the model to retain or discard information,
which is beneficial for identifying complex patterns over time. Dense layers process the output of the
LSTM layers and provide the final prediction, such as the future illumination level on the work plane.
Figure 1b shows the architectural scheme of the LSTM cells 2. For each LSTM cell, inputs are the current
feature vector 𝑥𝑡, the memory from the last LSTM cell 𝐶𝑡−1, and the output of the last LSTM cell ℎ𝑡−1.
On the other hand, the outputs are the new updates memory 𝐶𝑡 and the current output ℎ𝑡.

2Figure is adapted from the literature.
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Figure 2: Data acquisition was conducted in a lab of the Department of Energy, Information Engineering and
Mathematical Models (DEIM) at the University of Palermo (Fig.2a). A photosensor on the ceiling (Fig.2b). The
apparatus emulates the position of a sensor on a work surface, situated at the typical height of a desk (Fig.2c).

Several parameters must be optimized to train the LSTM neural network: (i) The optimizer adjusts
the model weights to minimize the error. Adam has been chosen as it combines gradient descent with
moving averages of gradients to improve convergence. (ii) The Loss Function quantifies the discrepancy
between the model’s predictions and the actual values. The Root Mean Squared Error (RMSE) is chosen,
it is calculated as the mean of the squares of the differences between predictions ̂𝑦𝑖 and actual values 𝑦𝑖.

RMSE =
√

1
𝑛

𝑛
∑
𝑖=1

(𝑦𝑖 − ̂𝑦𝑖)2 (1)

Model Evaluation and Validation The model’s evaluation is conducted using a subset of the dataset,
thereby ensuring that it demonstrates data generalization that has not been previously encountered.
It is crucial to highlight that the validation is based exclusively on the predicted data, as opposed to
the data collected by the photosensors on the desk. This methodology permits the examination of the
model’s efficacy in predicting lighting conditions instead of merely comparing predicted values with
actual measurements. The coefficient of determination (𝑅2) is a number between 0 and 1 that quantifies
the degree to which a model’s output can be explained by its input. In other words, it measures how
well a statistical model predicts an outcome. It is calculated as:

𝑅2 = 1 −
∑𝑛

𝑖=1(𝑦𝑖 − ̂𝑦𝑖)2

∑𝑛
𝑖=1(𝑦𝑖 − ̄𝑦)2

(2)

where 𝑦𝑖 are the observed values, ̂𝑦𝑖 are the expected values, ̄𝑦 is the average of the observed values, and
𝑛 is the total number of observations. As reported in [16], the prediction performance is considered:
Excellent for 𝑅2 ≥ 0.9, Good for 0.7 ≤ 𝑅2 ≤ 0.9, Fair for 0.3 ≤ 𝑅2 ≤ 0.7 and Poor for 0 ≤ 𝑅2 ≤ 0.3.

4. Experimental Evaluation

4.1. Scenario description

Data acquisition was performed within a laboratory on the rooftop of the Department of Engineering
at the University of Palermo (see Fig.2a). The total area of the space is 106𝑚2, while its overall height
measures 4.4𝑚, including a false ceiling. The room has four windows, each measuring 2.4𝑚 in width and
2.9𝑚 in height. These windows are positioned in a southeast orientation. Adjacent to the windows is a
balcony distinguished by its lush green roofing system. The windows are partially obscured by a solar
shelter measuring 2.7𝑚𝑥19𝑚 [17]. Furthermore, vegetation on green roofs can significantly impact the
indoor daylight contribution, influencing the surface’s color and reflectance properties. The variation in
albedo can occur throughout the annual cycle and over extended timeframes, particularly in response
to changes in vegetation type or as vegetation matures, leading to additional shading effects. Figures 2b
and 2c show a photosensor located on the ceiling and the sensor that emulates a sensor placed on a
work plane located at the same height as the classical height from the ground of a desk.



then a new training is necessary in case of different conditions (e.g.
changes in room geometry, colours, modification of green roof
vegetation, etc.).

In Fig. 4 some pictures of the laboratory are shown.
The artificial lighting system provided by 4 LED pendant lumi-

naires (Arano LED BPS 640 W21L125 1XLED/480 LIN-PC) of 54W
nominal power consumption (Fig. 5).

The laboratory is equipped by a Daylight Linked control system
[29]. It is composed by two light andmotion detectors, one scenario
programmer; one touch dimmer; three manual actuators and four
basic controls (common switches).

Thus, the room has been set up with 6 photosensors Delta Ohm
HD 2021T (measuring range 0.02e20 klx) placed in six different
positions (two on the ceiling, two on the work plane level and 2 on
the walls), for measuring illuminance, and a Power Monitoring
Device (SENTRON PAC3200) for displaying all the relevant system
parameters in low-voltage power distribution.

Fig. 5 shows the indoor space of the laboratory and some of the
photosensors.

The data have been collected during a period from June 2016
until February 2017 with a 5-min interval by the six photo-sensors.

5. Architecture, training and validation of the ANNs

In following sections, the ANNs which have been utilised for the
purposes of the research are described more in detail. In particular
for each model are presented: the set of input variables, the output
and the statistical attributes of the data set. A description of the

optimised ANN architecture is also provided together with a pre-
liminary correlation analysis between input data and the value of
the lighting sensor on the work plane level. Results are then
described by analysing error frequency distribution, mean square
error, standard deviation and R2 of the regression between calcu-
lated and actual values.

5.1. Four “mono sensor” neural networks

In a first step, four different networks have been tested, each one
processing the signals from one of the four installed photosensors.

The input data used for the training of the neural networks were
as follows:

! Illuminance values measured by 4 different sensors (C1, C2, W1,
W2), one per time [lx];

! Absorbed power by the luminaries [W];
! Horizontal global irradiation [Wh/m2];
! Number of the day in a year, 1÷365;
! Number of minutes of the day, 0÷1440;
! Solar elevation ["];
! Solar azimuth ["].

Fig. 4. Pictures of the laboratory.

Fig. 5. Plan of the laboratory with the location of the photosensors used to measure
and the main devices of the DLCs.

Fig. 6. Preliminary correlation analysis between input data and the value of the
lighting sensor on the work plane level.

Fig. 7. The scheme of the final architecture of the “one sensor” ANN.
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Figure 3: Sensors are located in distinct areas of the office: ceiling (C1, C2), wall (W1, W2), and work plane (P).

4.2. Experimental results

A series of experiments was conducted to evaluate the effectiveness of the proposed approach for
optimizing photosensor placement using Multivariate LSTM models. The experimental setup [17]
involved a typical office building environment equipped with five photosensors collecting different light
exposure levels (see Figure 3). Among them, one is positioned on the work plane to capture the real
light illuminance levels. The remaining are located in different office points, two on the ceiling and two
on the lateral walls. Hence, four tests have been conducted to determine the best photosensor showing
the best correlation with the illuminance levels on the work plane and the best-predicted light levels.

The LSTM model was trained for each test using historical data collected over 18 days from the
photosensor on the work plane and other photosensors, including illuminance and energy consumption
records and sunlight conditions. During such a period, some environmental conditions changed (e.g.,
solar radiation). The model’s performance was assessed based on its ability to predict future work plane
lighting levels and optimize sensor placement accordingly. Tables 1 and 2 show the evaluation results.

As we can see, the model achieved high prediction accuracy with a coefficient of determination (𝑅2)
of 0.986 and a mean RMSE of 0.024. This indicates that the LSTM model effectively captures the complex
relationships between the illuminance level on the work plane and the illuminance level on a different
location over time. To confirm such a result, Figure 4 shows the trend of the predicted values on the
work plane from the lighting levels collected on the optimal sensor.

R2

Sensor Min Max Mean Standard Deviation
𝐶1 0.959 0.967 0.964 0.003
𝐶2 0.955 0.970 0.963 0.004
𝑊1 0.963 0.980 0.973 0.005
𝑊2 0.981 0.989 0.986 0.003

Table 1
TheMin, Max, mean, and standard deviation of 𝑅2 related to different photosensors are presented. The𝑊2 sensor
shows the most favorable overall performance, exhibiting a higher average 𝑅2 and a low standard deviation.

RMSE
Sensor Min Max Mean Deviation Standard
𝐶1 0.035 0.041 0.037 0.002
𝐶2 0.034 0.043 0.038 0.002
𝑊1 0.028 0.039 0.032 0.003
𝑊2 0.021 0.028 0.024 0.002

Table 2
The Min, Max, mean, and standard deviation of RMSE values related to different photosensors are presented.
Sensor 𝑊2 has the lowest RMSE, indicating superior prediction accuracy compared to the other sensors.



4.3. Evaluation of energy saving and visual comfort

The proposed approach was compared to traditional static placement methods by considering the
optimal sensors W2 and a photosensor C_test placed on the ceiling as photosensors for separately
controlling a lighting system. We mainly evaluated the energy savings and visual comfort obtained
using such photosensors. To better understand, we introduce the concepts of lumen, lux, power, and
visual comfort. Lux measures illuminance (E) at any moment, and it is closely related to the concept of
lumen (lm). While lumens quantify the total amount of light emitted by a source, lux accounts for the
spatial distribution of luminous flux (Φ𝑣) by considering the area over which this light is spread [18]. It
indicates how much light is falling on a surface. Then, one lux is defined as one lumen per square meter.
When concentrated within one square meter, a luminous flux of 1000 lumens results in an illuminance
of 1000 lux for that area. The distribution of 1000 lm over an area of 10𝑚2 results in a significantly
reduced illuminance level of merely 100 lux. The following equation expresses this relationship:

Φ𝑣(𝑙𝑚) = 𝐸(𝑙𝑢𝑥) ∗ 𝐴(𝑚2) (3)

However, lux doesn’t directly tell us about energy consumption; instead, it relates to how much light
is produced and distributed over a space. On the contrary, power (P), measured in watts (W), is the
rate at which electrical energy is used by the light source instantaneously. Depending on their efficacy,
different light sources require different amounts of power to produce the same lux level.

Luminous efficacy [19] measures how efficiently a light source converts electrical power into visible
light and quantifies the amount of light output per unit of power consumed expressed in lumens per
watt (lm/W). It indicates how effectively a light source produces light for a given amount of energy
input. Hence, the power P in watts (W) is equal to the luminous flux Φ𝑣 in lumens (lm), divided by the
luminous efficacy 𝜂 in lumens per watt (lm/W) according to the following equation:

𝑃(𝑊 ) =
Φ𝑣(𝑙𝑚)
𝜂(𝑙𝑚/𝑊)

(4)

Hence, the power required to maintain a certain lux level in an area depends on (i) the total lumens
needed to achieve the desired lux level and (ii) the efficacy of the light source.

On the other hand, visual comfort is a subjective measure of how comfortable and effective a lighting
environment is for human vision, especially in workplaces. It can be influenced by a range of factors.
Among them, illuminance plays a crucial role. While visual comfort is often subjective, quantitative
ways exist to compute visual comfort based on specific metrics. In this paper, we use the 𝑉𝐶𝑖𝑛𝑑𝑒𝑥 [20]
that is a measure based on the amount of light falling on the working plane defined as follows:

𝑉𝐶𝑖𝑛𝑑𝑒𝑥 = 100 − 𝑃𝐷𝐿 (5)

where 𝑃𝐷𝐿 is the Percentage of Dissatisfied with lighting in relation to lux. It evaluates visual discomfort
that arises when the illuminance is too low or too high for a specific task or environment. The function
of daylight illuminance 𝐸𝑚𝑖𝑛[𝑙𝑢𝑥] and the predicted PD was calculated with the following equation:

𝑃𝐷𝐿 =
(−0.0175 + 1.0361)

1 + 𝑒𝑥𝑝[4.0835 × (𝑙𝑜𝑔(𝐸𝑚𝑖𝑛) − 1.8223)
× 100 (6)

It is worth noting that visual comfort is greatly influenced by ensuring that illuminance levels are
suitable for the task at hand; for general office work, the threshold of 500 lux is considered comfortable.
Under-lighting (below optimal lux) and over-lighting (above optimal lux) both cause discomfort, too
much light can cause glare, while too little light can lead to eye strain [21].

Let’s assume light sources with 100𝑙𝑚/𝑊 illuminate a work plane with a surface area of 10𝑚2. Let’s
assume two lighting control systems to regulate the luminous flux to have a standard level of 500 lux on
the office work plane. Let’s assume the first works with a sensor C_test placed on the ceiling according
to static strategy and the second one with the optimal sensor W2 found with the proposed approach.
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Figure 4: Actual data and predicted data on work plane by using the optimal sensor W2.
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Figure 5: Actual data and predicted data on work plane by using Sensor C_test.

Figures 4 and 5 show the trend of actual data and predicted data using the C_test sensors and the 𝑊2
sensor, respectively. Observing Figure 4, it becomes apparent that the trend of predicted illuminance on
the work plane, when employing the optimal sensor, demonstrates a close correlation with the actual
illuminance measurements. This is not the case with the test sensor.

The graphs depicted in Fig.6 show the amount of power waste by using the first sensor and the
optimal one with respect to the real illuminance level of the work plane. It is worth noting that, using
the C_test sensor, there are periods of time for which the lighting control system doesn’t work efficiently,
thus wasting energy. Conversely, the lighting control system working with the optimal sensors works
very efficiently with the predicted values by producing a very limited amount of energy waste.

Regarding visual comfort, Fig.7 reports that the graph related to how the visual comfort index deviates
from the ideal comfort index at 500 lux. Using the test sensor, the lighting control system tends to
underestimate, on average, the lux level on the work plane with respect to the real one. This behavior
causes the light control system to adjust the light source to a higher level to reach the optimal level of
500 lux. This means there will be too much light on the working plane with respect to the optimal one.
This can cause discomfort due to the glare effect on the working plane. Conversely, using the optimal
sensor, the trend of the predicted illuminance values on the working plane is very similar to the actual
one. However, their trend over time is slightly lower than the real one. In this case, the behavior of
the lighting control system regulates the illuminance at the optimal one, but it may occur that the real
illuminance on the working plane is slightly lower than the optimal one. Since the difference is very
low, the effect on eye strain is limited since the comfort level is comparable to the optimal one.

In summary, results showed an improvement in energy efficiency. These savings were primarily due
to the model’s ability to dynamically adjust light levels based on optimized predicted light conditions,
allowing for more efficient use of daylight throughout the day. Moreover, because the LSTM-optimized
sensor placement can maintain optimal lighting conditions, illuminance levels can be kept within the
recommended threshold of 500 lux for office environments, thus maintaining occupant comfort.
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Figure 6: Energy waste comparison by using the optimal sensor or the test sensor to control a lighting system.
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Figure 7: Deviation of the visual comfort index from the ideal one using the test sensor and the optimal one.

5. Conclusion and Future works

Using an LSTM for optimal lighting sensor placement leverages its strength in handling sequential data
and temporal dependencies. By training an LSTMon historical light level data and other relevant features,
the model can learn to predict optimal sensor placements that maximize energy efficiency and visual
comfort dynamically. This approach allows for adaptive, data-driven decision-making in smart building
management. The experimental results demonstrate that the proposed approach improves energy
efficiency in lighting systems while maintaining occupant comfort compared to traditional methods.
They can be used as a foundation for developing more efficient energy management systems, which
will enhance the quality of life for occupants and reduce the environmental impact of buildings. These
findings highlight the potential of advanced machine learning techniques, such as LSTM, to enhance
sustainability in building design. However, since the accuracy of LSTM predictions is contingent upon
the quality and quantity of the historical data collected, the model’s performance could be suboptimal in
scenarios where data are insufficient or unrepresentative. Additionally, the variability of environmental
conditions and human interactions may present a significant challenge in predicting future scenarios.

We plan to deploy the trained LSTM model on Building Management Systems to make real-time
decisions. Moreover, we are working on implementing a continuous feedback loop in which the system
monitors its performance and provides data back to the model for periodic retraining to ensure it
remains effective under evolving conditions. Finally, we are studying how to incorporate feedback from
building occupants about comfort and adjust the model and sensor placements based on this feedback.
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