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Abstract
Because of their astonishing performances, Deep Neural Network-based approaches have become pervasive in
many human activities. However, they often require a long, energy-intensive training phase, which has a huge
environmental impact.

In recent years, there has been a significant increase in the emphasis placed on environmental themes across
various sectors, driven by growing concerns over climate change and sustainability. This heightened focus has
led to many initiatives, policies and discussions aimed at addressing ecological challenges and promoting a more
sustainable future. For the reasons stated above, Deep Learning cannot be exempted from such initiatives and the
literature is starting to pay attention to these issues. This paper aims at contributing to this field, in particular,
concerning the Anomaly Detection Task whose environmental impact, due to its widespread employment,
deserves to be addressed.

Specifically, we focus on the Anomaly Detection field that, such as many other Data Mining tasks, is not
excluded from this analysis. In particular, we consider Latent𝑂𝑢𝑡, a recently introduced Deep Learning-based
framework for unsupervised Anomaly Detection that exploits both the latent space and the baseline anomaly
score (i. e. the reconstruction error) of a Variational Autoencoder (VAE) to provide a refined anomaly score
performing density estimation in the augmented latent-space/baseline-score feature space.

We analyze the environmental impact of Latent𝑂𝑢𝑡 in terms of carbon footprint by measuring the (estimated)
𝐶𝑂2 consumption through the Python library CodeCarbon. We observe that, with equal 𝐶𝑂2 consumption,
Latent𝑂𝑢𝑡 achieves much better performances than the standard VAE. Moreover, we compare Latent𝑂𝑢𝑡 with
other Anomaly Detection Neural Network-based methods and we highlight that it is the one that obtains the best
results in terms of a balance between high accuracy performance and low carbon footprint.
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1. Introduction

Anomalies can be defined as examples that significantly deviate from the majority of the data to arise
the suspect of being generated by a different mechanism. Anomaly Detection represents a fundamental
task in many human activities, including Healthcare, Cyber-security, Industrial Monitoring, Fraud
Detection, and many others.

It is possible to identify three different types of settings of Anomaly Detection [1]. In the Supervised
setting a dataset whose items are labeled as normal and abnormal is available to build a classifier,
typically the dataset is highly unbalanced and the anomalies form a rare class. The Semi-supervised
setting, also called one-class, is characterized by the presence in input of only examples from the normal
class that are used to train the detector. In the Unsupervised setting the goal is to assign an anomaly
score to each object of the input dataset in order to find anomalies in it.
Classical data mining and machine learning algorithms performing the task of detecting outliers

include statistical-based [2], distance-based [3, 4, 5, 6], density-based [7, 8], reverse nearest neighbor-
based [9, 10, 11], SVM-based [12, 13], and many others [1].
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Recently, the approaches that have achieved the most success have been those based on deep learning
[14], which can be divided into three main families: reconstruction error-based methods employing
Autoencoders (AE), models based on Generative Adversarial Networks (GAN), and SVM-like neural
architectures.

At the basis of the application of Autoencoders (AE) and Variational Autoencoders (VAE) [15, 16, 14] to
Anomaly Detection relies the concept of reconstruction error. More in detail, (Variational) Autoencoders
are trained to map data into a low dimensional latent space and then map them back into the original
space generating in output a reconstruction of the input as similar as possible to it. Since the majority
of the data used for training models belongs to the normal class, it is assumed that these networks are
able to reconstruct the inliers better than the outliers and, thus, the reconstruction error can be adopted
as an anomaly score.
GAN-based models [17, 18, 19, 20] basically consist in the combined, adversarial training of two

sub-architectures, the generator and the discriminator. Specifically, the generator network produces
artificial anomalies as realistic as possible, and the discriminator assigns an anomaly score to each item.

SVM-likemethods [21, 22, 23] leverage the idea of enclosing normal data into a hypersphere employing
a One-Class SVM-like loss function combined with a deep neural architecture. A slightly different
approach that can be included in this family, is introduced in [24] where the architecture presents an
additional final layer composed of just one neuron that produces an anomaly score that, for anomalies,
is as far as possible from a value obtained as the average of randomly sampled normal items anomaly
scores.

Moreover, in [25] has been introduced Deep Isolation Forest (DIF), a novel methodology that utilizes
casually initialized neural networks to map original data into random representation ensembles, where
random axis-parallel cuts are subsequently applied to perform data partition.

Nevertheless, the cost of high power and energy combines with the high accuracy and training speed
of the Deep Learning models. This is leading researchers to be aware of the environmental impact
of deep neural architectures by trading off accuracy against energy consumption and also to perform
characterization in terms of performance, power and energy for guiding the architecture design of DNN
models [26, 27, 28, 29].

This paper aims to provide a contribution in this direction, and, in particular, to the field of Anomaly
Detection by analyzing the behaviour of recent methods from the point of view of the detection
performance as well as from the point of view of their carbon footprint. Specifically, we focus on the
Latent𝑂𝑢𝑡 algorithm [30, 31, 32, 33], an anomaly detection framework that applies to any deep neural
architecture as a baseline to obtain a refined score, and we compare it with the baseline architecture on
which it is applied and deep learning-based competitors from the other families.

2. The Latent𝑂𝑢𝑡 algorithm for Unsupervised Anomaly Detection

Due to the quite good performances they obtained as well as their versatility, the ones based on
(Variational) Autoencoders have become the most widespread Anomaly Detection approaches relying
on Deep Neural Networks.
The main issue about them is that they often generalize so well to reconstruct also anomalies [30],

thus worsening the capability of detecting anomalies of the reconstruction error.
In [31] Latent𝑂𝑢𝑡 is introduced. It is a methodology that enhances both the reconstruction error and

the latent space distribution of the Variational Autoencoder in order to obtain a refined anomaly score.
Specifically, the first variant of the Latent𝑂𝑢𝑡 (Figure 1) algorithm considers the enlarged feature space
𝐹 = 𝐿 × 𝐸, where 𝐿 represents the latent space and 𝐸 is the reconstruction error space (usually 𝐸 ⊆ ℝ),
and performs a 𝑘-NN density estimation in the space 𝐹.

In Figure 1 the complete workflow of Latent𝑂𝑢𝑡 is showed. Each point of the dataset 𝑥 ∈ 𝑋 is mapped
into the latent space 𝐿 of the VAE (blue points represent inliers, red ones represent anomalies) by means
of the encoder 𝜙𝑊 and then reconstructed back in the original space �̂� ∈ 𝑋 by means of the decoder 𝜓𝑊.
Then, the reconstruction error 𝐸(𝑥) = ‖𝑥 − �̂�‖22 is computed, the feature space 𝐹 = 𝐿 × 𝐸 is created, and



Figure 1: Latent𝑂𝑢𝑡 receives the dataset as input and maps it into 𝐹. The transformed dataset is then processed
by unsupervised anomaly detection methods which provide an anomaly score for each point.

the 𝑘-NN density estimation is performed in it to compute the Latent𝑂𝑢𝑡 anomaly score.
The motivation behind this procedure is based on the observation that anomalies tend to lie in the

sparsest regions of the augmented feature space 𝐹. This happens because even when their reconstruction
error is not exceptionally large, is still significantly larger than that of their most similar normal items.
In [32] Latent𝑂𝑢𝑡 has been expanded in order to be potentially applied to any neural architecture

that has three fundamental properties:

• it outputs an anomaly score,
• it has a latent space 𝐿,
• it performs a mapping from the original data space 𝑋 to 𝐿 through an encoder-shaped module.

In particular, the neural models on which Latent𝑂𝑢𝑡 has actually been tested are AE, VAE, GANomaly,
Fast–AnoGAN, SO − GAAL, and MO − GAAL.

Moreover, in [33] it has been showed that the separation properties of the enlarged space 𝐹 allow any
generic anomaly score (not only the 𝑘-NN) to perform better when applied on it than on the input data
space 𝑋.

3. Experimental results

3.1. Experimental setup

In our experiments we consider the tabular datasets cardio, letter, lympho, mammography, pendigits,
pima, satellite, satimage-2, speech, thyroid, from the ODDS repository [34] as well as the image datasets
MNIST [35], Fashion-MNIST [36], and CIFAR10 [37].

The last three datasets (differently from the ones from the ODDS repository) are multi-class, thus to
make them suitable for the anomaly detection task we adopt a one-vs-all strategy, meaning that we
consider one class as normal and we randomly sample 𝑠 items from each other class. If not otherwise
stated, we set 𝑠 = 10. Specifically, we select the class “0” as normal for the MNIST dataset, the class
“Sandal” for Fashion-MNIST, and the class “deer” for CIFAR-10.

As for the implementation details of the algorithm, we consider the original version of Latent𝑂𝑢𝑡
with the VAE as baseline architecture, and the 𝑘-NN with 𝑘 = 50 as estimator of the density of the
feature space 𝐹. The latent space dimension ℓ of the VAE is set to ℓ = 2 for tabular ODDS datasets and
to ℓ = 32 for image datasets. As for the encoder structure (the decoder is symmetric to it) we adopt
the same strategy used in [33], i. e. we insert hidden layers of dimension ℓ𝑖 = ⌊ 𝑑

4𝑖 ⌋ between the input

𝑑-dimensional space and the ℓ-dimensional latent space for each 𝑖 ∈ ℕ+ such that ⌊ 𝑑
4𝑖 ⌋ > ℓ.

The 𝐶𝑂2 emissions are estimated by means of the Python library CodeCarbon [38] which bases its
tracking on the power consumption and the geographic location where the code is executed.



3.2. Evolution of performance and emissions of Latent𝑂𝑢𝑡 and VAE during training

The energy consumption of any Deep Learning model is related to the training phase, and, in particular,
to the number of training epochs.

Therefore, it is of crucial importance to understand the behavior of these algorithms as the training
proceeds to optimize the trade-off between the maximization of the performance and the minimization
of energy consumption.
The quantity of 𝐶𝑂2 produced by Latent𝑂𝑢𝑡, which we represent as ℰLatent𝑂𝑢𝑡, is fundamentally

constituted by two terms:

• the emissions ℰ𝑉𝐴𝐸 needed for the training of the architecture and the computation, which is
shared with the Variational Autoencoder,

• the emissions ℰ𝑘-NN used for the building of the feature space ℱ and the computation of the
𝑘-NN algorithm in it.

Since the two operations are carried out in sequence and independently of each other, we have that

ℰLatent𝑂𝑢𝑡 = ℰ𝑉𝐴𝐸 + ℰ𝑘-NN

which means that, with equal training epochs, the carbon footprint of Latent𝑂𝑢𝑡 is always greater
than the one of the Variational Autoencoder. Thus, for a fair comparison, we train the Variational
Autoencoder for 100 epochs and we stop the training earlier for evaluating the Latent𝑂𝑢𝑡 score.

Figure 2: Comparison between the performances of the Variational Autoencoder and Latent𝑂𝑢𝑡 in terms of
AUC during the training epochs. ODDS datasets, group 1.

In figures 2, 3, 4, we show the performances of both Latent𝑂𝑢𝑡 (in orange) and the standard Variational
Autoencoder (in blue) in terms of Area Under the ROC Curve (AUC) as the training proceeds. Observe
that on the horizontal axis is reported the 𝐶𝑂2 emissions (in 𝐾𝑔), which means that, for the reasons
stated above, each value of the AUC of Latent𝑂𝑢𝑡 is obtained with fewer epochs than the relative value
of the VAE.
As we can see, in almost every plot the curve of Latent𝑂𝑢𝑡 is placed above the curve of the VAE.

Moreover, the trend of Latent𝑂𝑢𝑡 is much more regular than the one of the VAE (see in particular the
plots of the datasets cardio, mammography, satellite, satimage-2, mnist, cifar ). This implies that if we
fix a threshold on the amount of 𝐶𝑂2 we want to emit, the score of Latent𝑂𝑢𝑡 always outperforms the
standard score of the VAE. In other words, Latent𝑂𝑢𝑡 is able to better exploit the emissions produced
than the standard architecture on which it is applied.



Figure 3: Comparison between the performances of the Variational Autoencoder and Latent𝑂𝑢𝑡 in terms of
AUC during the training epochs. ODDS datasets, group 2.

Figure 4: Comparison between the performances of the Variational Autoencoder and Latent𝑂𝑢𝑡 in terms of
AUC during the training epochs. MNIST, Fashion-MNIST and CIFAR10 datasets.

This happens because as the training proceeds the reconstruction capabilities of the VAE improve so
much that at some point it becomes able to reconstruct also outliers, thus lowering the anomaly detection
performances of the model. On the other side Latent𝑂𝑢𝑡 benefits of the latent space organization that
produces a progressively better separation between normal examples and anomalies in the feature
space 𝐹.

3.3. Comparison with competitors

We consider as competitors some of the neural networks algorithm implemented in the Python library
PyOD [39], namely Deep-SVDD [21], from the SVM-like family, AnoGAN [17] and ALAD [20], from
the GAN family, and DIF [25]. For the implementation details (number of layers and neurons, training
epochs, learning rate, potential hyperparameters), we refer to the default values fixed in PyOD. As for
Latent𝑂𝑢𝑡, we consider again the setup described in section 3.1 and we perform a few-epochs training,
due to the good convergence properties observed in the last section. Specifically, the VAE is trained for
15 epochs.

As evaluation metrics we adopt the standard Area Under the ROC Curve (AUC) and the ratio 𝐶𝑂2
𝐴𝑈𝐶

between the emissions of 𝐶𝑂2 (in 𝐾𝑔) produced for the training and the inference of a model, and the
AUC. This last value is a measure combining both performance and energy consumption, indeed it
indicates how much 𝐶𝑂2 is needed (on average) to obtain a single percentage point of AUC.
Table 1 shows the results in terms of AUC. As we can see, Latent𝑂𝑢𝑡 is the best method for half the

datasets, achieving performances close to the best also in the other half. In particular, confirming the



Dataset (𝑑) Latent𝑂𝑢𝑡 Deep-SVDD AnoGAN ALAD DIF
cardio (21) 0.9300 0.9509 0.4460 0.4885 0.9129
letter (32) 0.6206 0.5189 0.5118 0.5094 0.6557
lympho (18) 0.9495 0.9460 0.9847 0.6549 0.8650

mammography (6) 0.8326 0.8767 0.1366 0.5450 0.7415
pendigits (16) 0.9880 0.9748 0.9729 0.4785 0.9363

pima (8) 0.6598 0.6289 0.7571 0.5472 0.6071
satellite (36) 0.7911 0.6460 0.5432 0.4037 0.7574

satimage-2 (36) 0.9984 0.9682 0.0165 0.4292 0.9935
speech (400) 0.5504 0.4968 0.4658 0.4906 0.4633
thyroid (6) 0.9055 0.8743 0.8967 0.4837 0.9613

MNIST (28 × 28) 0.9863 0.9321 0.2176 0.3350 0.9572
Fashion-MNIST (28 × 28) 0.9444 0.9392 0.6634 0.6623 0.6269
CIFAR-10 (32 × 32 × 3) 0.7474 0.6624 0.5756 0.5363 0.6383

Table 1
Comparison with competitors in terms of AUC.

Dataset (𝑑) Latent𝑂𝑢𝑡 Deep-SVDD AnoGAN ALAD DIF
cardio (21) 4.7158e-6 9.6679e-6 1.2619e-3 2.0648e-5 4.0021e-5
letter (32) 5.7428e-6 1.8790e-5 1.3014e-3 1.9605e-5 5.6887e-5
lympho (18) 2.6640e-6 2.9348e-6 5.2290e-5 1.3394e-5 9.8577e-6

mammography (6) 1.5830e-5 4.8771e-5 2.4759e-2 2.9251e-5 1.7729e-4
pendigits (16) 9.2478e-6 3.7444e-5 2.1541e-3 2.7159e-5 1.0738e-4

pima (8) 4.1708e-6 9.1278e-6 1.9493e-6 1.6284e-5 3.3011e-5
satellite (36) 1.1943e-5 4.0915e-5 4.7031e-3 3.1390e-5 1.2655e-4

satimage-2 (36) 9.1152e-6 2.4921e-5 1.4122e-1 2.9071e-5 8.5686e-5
speech (400) 1.9139e-5 5.9722e-5 4.3628e-3 5.4631e-5 1.7098e-4
thyroid (6) 7.5721e-6 1.9487e-5 1.2720e-3 2.2425e-5 5.6633e-5

MNIST (28 × 28) 2.1834e-5 3.7648e-5 1.7076e-2 8.5111e-5 1.3168e-4
Fashion-MNIST (28 × 28) 2.3119e-5 4.6431e-5 5.5211e-3 3.7217e-5 1.9408e-4
CIFAR-10 (32 × 32 × 3) 4.9952e-5 6.9862e-5 7.7896e-3 5.8859e-5 2.1652e-4

Table 2
Comparison with competitors in terms of 𝐶𝑂2

𝐴𝑈𝐶
.

observation made in [31], Latent𝑂𝑢𝑡 is especially effective on higher dimensional, structured data (for
example speech and the image datasets). In Table 2 are shown the results of the experiment in terms of
the ratio 𝐶𝑂2

𝐴𝑈𝐶 . Here, Latent𝑂𝑢𝑡 outperforms its competitors in all but one dataset, exhibiting the best
trade-off between performances obtained and the emissions of 𝐶𝑂2 produced.

4. Conclusion

In this paper, we have focused on the algorithm Latent𝑂𝑢𝑡 for unsupervised anomaly detection in
order to evaluate its performances and measure the environmental impact of its executions. When
compared to the standard architecture on which it is applied, i. e. the Variational Autoencoder, Latent𝑂𝑢𝑡
shows that low energy-consumptive training can lead it to conspicuously better results. Moreover, in
comparison with other neural network-based anomaly detection approaches it has shown superior
performances both in terms of absolute AUC and, most importantly, in terms of the ratio between the
emitted 𝐶𝑂2 and the AUC obtained.
As future development, we intend to expand the discussion about the environmental impact of

Latent𝑂𝑢𝑡 by including a more profound analysis of all its several variants and an investigation special-
ized on the hardware type (e.g., CPU vs. GPU), as well as propose novel measures to better capture the
trade-off between emissions and performances. Finally, as a more ambitious goal, we aim at introducing
a mechanism enabling Latent𝑂𝑢𝑡 to consider the green-aware aspect at training time.
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