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Abstract
Reinforcement Learning (RL) describes a family of algorithms teaching an agent to determine a policy for
interacting with its surrounding environment. Recently, the RL paradigm has been successfully applied to the
anomaly detection problem by learning a meta-policy on a set of already labelled datasets. The meta-policy is
subsequently actively applied to a flow of incoming unseen observations, representing the test environment. The
interesting point of this approach is that one can apply the meta-policy without further tuning to a small number
of meta-features that can be directly extracted from any new dataset.

For this kind of approach, a central question is the selection of a good set of meta-features. To date, two
strategies have been explored, the first relying on meta-features defined in terms of the distances with the points
that the expert has already labelled, and the second exploiting the direct and reverse nearest-neighbor rankings
of these labelled points.

However, both strategies present the disadvantage that the worst-case cost of the meta-feature extraction
procedure is, for each incoming point, linear in the dataset size (and, hence, quadratic as a whole). To alleviate
the computational cost associated with the crucial meta-feature extraction step, in this work, we investigate a set
of hybrid features that takes into account both distances and rankings, but has, for each incoming point, constant
cost. Experiments highlight that the approach preserves accuracy while offering advantages in terms of resource
consumption.
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1. Introduction

The Anomaly Detection task is one of the main discovery problems and its goal is to isolate objects in a
dataset that are suspected of being generated by a different process with respect to the rest of the data.

The presence of anomalies is due to many reasons, like mechanical faults, fraudulent behavior, human
errors, instrument errors, or simply through natural deviations in populations. We can distinguish
three approaches to anomaly detection, namely supervised, semi-supervised, and unsupervised [1].
Supervised methods create a classifier after being trained on data labeled as normal and anomalous. In
this setting usually, the classes are unbalanced since the anomalies are rare. Semi-supervised methods
are trained with examples of just the normal class, thus they are also called one-class classifiers.
Unsupervised methods take in input a dataset and try to find anomalies in it by assigning a score to
each object. Several statistical, data mining and machine learning approaches have been proposed to
detect outliers, namely, statistical-based [2], distance-based [3, 4, 5, 6], density-based [7, 8], reverse
nearest neighbor-based [9, 10, 11], isolation-based [12], angle-based [13], SVM-based [14, 15], deep
learning-based [16], and many others.

An alternative approach to classical outlier detection methods aimed at reducing false-positive rates
is based on Active Anomaly Detection (AAD), which involves humans in the loop. There are several
traditional anomaly detection scenarios where an analyst is involved in checking the top instances from
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Feature Type Description Cost
Detector D: Score related to the unsupervised detector

Binary
B1: indicator asserting the existence of an anomalous instance 𝒪(𝑑𝑛2)

in the 𝑘-nearest neighbors

Anomaly

A1: minimum distance between 𝑥𝑖 and the set of instances 𝒪(𝑑𝐵𝑛)
currently labelled as anomalous

A2: mean distance between 𝑥𝑖 and the set of instances 𝒪(𝑑𝐵𝑛)
currently labelled as anomalous

A3: the position occupied by the nearest known anomaly in the nearest neighbors 𝒪(𝑑𝑛2)
list of 𝑥𝑖, that is min𝑗∈𝐻𝐴

𝑅𝑖𝑗, where 𝐻𝐴 is the set of the known anomaly indices
A4: the position 𝑅𝜇𝑖 occupied by 𝑥𝑖 in the nearest neighbors 𝒪(𝑑𝐵𝑛)

list of 𝑥𝜇, where 𝜇 = argmin𝑗∈𝐻𝐴
𝑅𝑖𝑗

Normality

N1: minimum distance between 𝑥𝑖 and the set of instances 𝒪(𝑑𝐵𝑛)
currently labelled as normal

N2: mean distance between 𝑥𝑖 and the set of instances 𝒪(𝑑𝐵𝑛)
currently labelled as normal

N3: the position occupied by the nearest known normal item in the nearest neighbors 𝒪(𝑑𝑛2)
list of 𝑥𝑖, that is min𝑗∈𝐻𝑁

𝑅𝑖𝑗, where 𝐻𝑁 is the set of the known normal items indices
N4: the position 𝑅𝜈𝑖 occupied by 𝑥𝑖 in the nearest neighbors 𝒪(𝑑𝐵𝑛)

list of 𝑥𝜈, where 𝜈 = argmin𝑗∈𝐻𝑁
𝑅𝑖𝑗

Table 1
Meta-features adopted in Meta–AAD-based approaches.

a ranked list of anomalies to identify as many true anomalies as possible. In AAD this human feedback
can be leveraged to help the system to identify more anomalies. In this work, we consider the AAD
scenario in which the anomaly detector queries the analyst by selecting instances one at a time. In this
scenario, the system can adjust the decision functions by leveraging the expert’s knowledge gained
from their responses to the queries. This human feedback can help the anomaly detector to promote
the instances of interest and discourage the instances out of interest, showing the analyst more true
anomalies in subsequent iterations.
A recent interesting improvement of AAD is the Active Anomaly Detection with Meta-Policy

(Meta–AAD), which learns a meta-policy with the aim of optimizing the number of discovered anomalies
keeping the same budget 𝐵, that is to say, the number of instances presented to the human for feedback.
Given a dataset 𝑋 = {𝑥1, … , 𝑥𝑛} ⊆ ℝ𝑑, at each iteration the policy selects an example 𝑥𝑖 to submit to

the expert that will assert whether 𝑥𝑖 is actually an anomaly or not. The state of the policy is recorded
in a vector ŷ ∈ R𝑛 such that, for each 𝑗 ∈ {1, … , 𝑛}, we have that the element 𝑦𝑗 is equal to −1, if the item
𝑥𝑗 has been submitted to the expert and reported as an anomaly, 1, if 𝑥𝑗 has been submitted to the expert
and reported as normal, 0, if 𝑥𝑗 has not yet been submitted to the expert.
At the beginning of the policy, we have 𝑦𝑗 = 0, for each 𝑗 ∈ {1, … , 𝑛}, and then at each iteration, the

state of the item selected for the query is updated according to the expert feedback.
In AAD the instance presented to the human is that scoring the highest value of anomaly score and,

due to feedback, the anomalous scores are adjusted to promote the anomalous instances to the top, thus
the main goal is to make the top instance more likely to be anomalous so maximizing the immediate
performance.

Thus, in [17], first the meta-policy is trained and any Deep Reinforcement Learning (DRL) algorithm
can be used to this aim. In particular, authors adopt Proximal Policy Optimization (PPO) [18], a family of
methods for reinforcement learning, in which a deep neural network is trained iteratively by sampling
data through interaction with the environment, and by using these data for the optimization of a state
function using stochastic gradient ascent.

Then, for all the instances, the meta-features are extracted and the probability of the meta-policy is
computed. The instance with the highest probability is presented to the human.
A fundamental part of this process is the meta-features extraction. Formally, the aim is to define a

function 𝑔 ∶ 𝑋 × y → R𝑛×𝑙, where 𝑙 is the number of meta-features, such that its image is as much as



possible independent from the dataset. The framework allows flexible choices, in Table 1 are listed
the main features adopted in literature. Among all these features an important role is played by the
unsupervised anomaly detector D. Indeed, it is the only feature in the table that is computed before
the training process and that is not updated after the expert’s feedback. Its main goal is to provide a
bootstrap phase to the active process in the initial phase when the other features are not stable yet. As
for the other meta-features they can be initialized at any arbitrary value for all the points, so that at the
very first step of the active process the algorithm cannot discriminate on their basis.

In [17], that is the first approach considering theMeta–AAD paradigm, authors propose the following
set of 𝑙 = 6 meta-features: D (in particular they adopt the Isolation Forest algorithm [12]), B1, A1, A2,
N1,N2. It is worth noticing that all these features are distance-based, because of this, in [19], it is argued
that this fact may cause some issues in the query selection phase due to the specific distance distribution
of the dataset. In order to relieve this dependence, it is introduced an innovative approach, called
Meta–AAD–Rank, for the choice of the meta-features based on nearest neighbor rankings rather than
on distances. Specifically, this set of meta-features includes D, B1, A3, A4, N3, N4 and also proposes
the adoption of the CFOF algorithm [20, 21, 11] as anomaly detector since it is reverse neighbor based.
Specifically, the CFOF algorithm is involved in the meta-feature D.

2. Meta–AAD–Light

Both the Meta–AAD and Meta–AAD–Rank require substantial memory, mainly due to the distances
matrix calculations involved in certain meta-features.

Specifically, to compute the feature B1, A3 and N3 for a single item 𝑥𝑖, the values of the distances of
𝑥𝑖 from all the other points in 𝑋 are needed, thus the cost is 𝒪(𝑑𝑛) and 𝒪(𝑑𝑛2) for the whole dataset.

Because of this, in order to reduce the computational cost, we propose a further set of features, called
Meta–AAD–Light, that is obtained as a combination of the previous two. Specifically, the meta-features
of Meta–AAD–Light are represented by D, A1, A4, N1, N4.

In addition, we introduce a novel binary feature, referred to as B2, which has a linear computational
cost and is defined as follows:

B2: indicator asserting whether 𝑥𝑖 belongs to the 𝑘-nearest neighbors of any known
anomalous instance

The computation of the Meta–AAD–Light meta-features does not require computing the distances
(and the associate rankings) among all the data points, but only the information about the distances be-
tween the points already classified as normal or anomalous and all the other points. In this way, the mem-
ory occupation goes from 𝒪(𝑑𝑛2) forMeta–AAD andMeta–AAD–Rank to 𝒪(𝑑𝐵𝑛) forMeta–AAD–Light
where 𝐵 is the number of queries and it is usually very smaller than the size 𝑛 of the dataset.

3. Experimental results

In our experiments we consider the tabular datasets lympho, pima, satellite, satimage-2, shuttle, speech,
wine, from the ODDS repository [22]. Specifically, we adopt a leave-one-out strategy, meaning that for
the evaluation phase on each dataset, we consider a meta-policy trained on all the others.
We fix a budget of 𝐵 = 100 and we consider the following evaluation metrics, used also in [17, 19].

• The total number of anomalies 𝑎𝐵 submitted to the expert in the 𝐵 queries.
• The Precision (Prec), defined as

𝑎𝐵
𝐵′

, (1)

where 𝐵′ = min(𝐵, 𝑛𝑎), and 𝑛𝑎 is the total number of anomalies in the dataset.



Dataset (𝑛 × 𝑑) Meta–AAD Meta–AAD–Rank
aB Prec N-AUC CO2 aB Prec N-AUC CO2

lympho (148 × 18) 0.0000 0.0000 0.0000 - 1% 0.0000 0.0000 0.0000 - 2%
pima (768 × 8) -0.1143 -0.1143 -0.2141 - 9% -0.1014 -0.1014 -0.1913 -29%

satellite (6435 × 36) 0.0000 0.0000 0.0000 -74% 0.0000 0.0000 0.0000 -93%
satimage-2 (5803 × 36) -0.0299 -0.0299 -0.0584 -71% -0.0580 -0.0580 -0.1118 -92%
shuttle (49097 × 9) 0.0000 0.0000 0.0000 -87% 0.0000 0.0000 0.0000 -97%
speech (3686 × 400) 3.2500 3.2500 14.3000 -41% 0.8889 0.8889 2.4000 -75%
wine (129 × 13) 0.0000 0.0000 0.0000 0% 0.0000 0.0000 0.0000 - 1%

Table 2
Comparison between Meta–AAD–Light and Meta–AAD (left side of the table) and Meta–AAD–Rank (right side
of the table) in terms of the considered evaluation metrics as well as the 𝐶𝑂2 emissions.

• The Normalized AUC (N-AUC), that is the area under the curve of 𝑎𝑠 with varying 𝑠 normalized
by the number of the total number of anomalies in the dataset, in formula

2∑𝐵
𝑠=1 𝑎𝑠

𝐵′(𝐵′ + 1)
. (2)

Moreover, in this work, we add a new metric to take into account the environmental impact of
methods. In particular, we compute the 𝐾𝑔 of 𝐶𝑂2 emitted by exploiting the framework CodeCarbon
[23].
In Table 2 we show the results of the experiments. The first column reports the employed datasets

together with their number of samples and dimensions. Columns from 2 to 5 are associated with the
comparison between Meta–AAD–Light and Meta–AAD and columns from 6 to 9 with the comparison
between Meta–AAD–Light and Meta–AAD–Rank. Specifically, for each competitor 𝐶 and for each of
the four above-mentioned metrics 𝑀 (namely, the number of anomalies, the precision, the normalized-
AUC and the emitted 𝐶𝑂2), we compute the relative variation of Meta–AAD–Light with respect to 𝐶
as 𝑀(Meta–AAD–Light)−𝑀(𝐶)

𝑀(𝐶) , where 𝑀(Meta–AAD–Light) is the value of the metrics accomplished by
Meta–AAD–Light and 𝑀(𝐶) the one accomplished by the competitor 𝐶.
We can note that, for the majority of the datasets, Meta–AAD–Light obtains the same detection

performances of Meta–AAD and Meta–AAD–Rank, for two datasets, namely pima and satimage-2, it
is possible to observe a slight degradation in the results, and for the dataset speech we even outper-
form the other two methods. As for the emissions of 𝐶𝑂2, as predicted by the theoretical discussion,
Meta–AAD–Light is much less energy-consumptive. As expected, this is particularly emphasized for
the three datasets with the largest cardinality, where, in two cases (satellite and shuttle), we obtain
the same performance in terms of accuracy while almost halving the 𝐶𝑂2 emissions, and in one case
(satimage-2) we pay a small loss in accuracy to obtain a great benefit in terms of emission.

4. Conclusion

In this paper, we introduced Meta–AAD–Light, a novel meta-features extraction strategy for meta-
active anomaly detection. We prove that, differently from the already existing sets of meta-features,
the computation of Meta–AAD–Light requires constant time for a single item and, then, linear for the
whole dataset. Experiments confirm that while maintaining good performance in terms of accuracy,
the proposed method notably reduces the 𝐶𝑂2 emissions, thus decreasing the environmental impact of
the whole approach.
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