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Abstract
The worsening climate crisis calls for immediate action to reduce the environmental impact of energy-intensive
technologies, including Artificial Intelligence (AI). Reducing AI’s environmental footprint involves adopting
energy-efficient strategies for training Deep Neural Networks (DNNs). One such strategy is Data Pruning (DP),
which decreases the number of training instances, thereby lowering total energy consumption. Several DP
methods, such as GraNd and Craig, have been introduced to accelerate model training. On the other hand,
Active Learning (AL) techniques, originally designed to iteratively select relevant unlabeled data instances for
being labeled by human experts, can also be leveraged to train models on smaller, but informative, subsets.
However, despite reducing the volume of training data, many DP and AL-based methods involve expensive
computations that may significantly limit their potential for energy savings. In this work“-in-progress”, we
propose a framework, named DPET , that efficiently integrates data selection techniques within an AL-like
incremental training. Empirical analyses on a benchmark dataset show that the proposed approach offers a better
balance between accuracy and energy efficiency in the training of DNN models.
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1. Introduction

Recent advancements in Artificial Intelligence (AI) have significantly transformed industries like
healthcare, finance, and manufacturing, impacting personal and professional life. However, this rapid
expansion has raised concerns regarding increased energy consumption and carbon emissions [1]. Deep
Learning models, which require vast data and computation for training Deep Neural Networks (DNNs),
are major contributors to this surge in energy use [2]. The electricity needed for AI model training,
largely generated from non-renewable sources like coal and natural gas, contributes to climate change [3].
In response, Green-AI research aims to reduce AI systems’ environmental impact by minimizing energy
consumption, utilizing renewable energy, and developing energy-efficient AI hardware. This work
particularly addresses the challenge of combining data selection with deep learning methods to lower
energy usage while maintaining model accuracy.

Existing solutions Several approaches have been proposed to tackle the issue of reducing energy
consumption in AI. One key method is Data Pruning (DP), which involves extracting a compact subset,
or coreset, from a large dataset while preserving its most relevant information [4]. This smaller sample
can be used as a more cost-effective substitute for the original dataset in machine learning tasks [5].
However, many DP methods involve heavy computations, which can negate the benefits of reducing
the training dataset size. Recent studies show that random sampling schemes often perform as well
as, or better than, DP methods [6, 4, 7]. The Repeated Random Sampling (RS2) method [6] builds on
this idea by randomly selecting a data subset for each training epoch, aiming to cut training costs.
Despite the potential of DP and random sampling methods, a key limitation is the need to determine
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Figure 1: Overview of the proposed DPET framework.

the optimal data amount beforehand, misjudgments can lead to wasted time and energy. To address
this, Active Learning (AL) approaches [8, 9, 10], originally designed to minimize labeling costs, can
be leveraged to reduce training costs by focusing on informative data subsets [11, 12, 13]. However,
the repeated retraining required by standard AL schemes can be too energy-intensive, as shown in
empirical experiments [11].

Contribution Given the limitations of current data pruning and sampling methods for efficient Deep
Neural Network (DNN) learning, this paper introduces DPET , a framework that combines a RS2-based
DNN warm-up with an iterative AL-like scheme to refine the model with informative data selections.

Experiments on benchmark datasets demonstrate that DPET significantly reduces the computational
and energetic costs of training large DNN models without sacrificing accuracy. These findings suggest
that DPET holds promise for promoting more sustainable DNN training, particularly in the context of
Green-AI initiatives.

2. Proposed approach

Let𝒟 a dataset, to be pruned, that consists of pairs (𝑥𝑖, 𝑦𝑖), where each 𝑥𝑖 is a data instance, and each 𝑦𝑖 is
a one-hot vector representing a class label, with 𝐶 classes in total. The goal of data pruning is to extract
a representative subset 𝒟𝑠 such that its size is much smaller than 𝒟. A DNN model 𝜙𝜃, parameterized
by 𝜃, is trained using gradient descent, with the additional benefit that training on 𝒟𝑠 consumes less
energy compared to training on the full dataset 𝒟.

The proposed DPET framework, a “work-in-progress” extension of [13], is currently under devel-
opment, with the dotted blocks in Figure 1 representing ongoing work. It operates in two distinct
phases:

• Warm-up: DPET first selects the most suitable pre-trained model from an internal pool or
some external repositories (like those that have become available recently in many application
sectors like, e.g., natural language processing/understanding, computer vision), based on the
characteristics of the current dataset. Afterward, it applies optimization techniques such as
model pruning, cutout regularization, and low-precision parameter quantization to compress the
model and enhance its efficiency. At the end is used the RS2 algorithm to quickly converge on
a preliminary model configuration for 𝜙𝜃. This approach is faster than traditional methods like
SGD. However, RS2’s performance gain slows down over time, so the algorithm switches to an
active learning (AL)-based procedure to continue improving model performance efficiently.



• Fine-tune: DPET selects additional instances from𝒟 iteratively, using an instance ranking function
𝑓𝑟𝑎𝑛𝑘 and a dissimilarity measure d (such as Euclidean distance or KL divergence) to compute
an importance score for each instance. The model is updated and trained using both new and
“old” (i.e. previously-selected) instances –for the sake of efficiency, the user could require the
framework to only select a subset of the old instances leveraging replay-based mechanisms like
those used in Continual Learning [14]. This iterative process allows the algorithm to reduce
computation and energy costs. This adaptive method is more flexible than traditional data
pruning techniques, which require pre-determined reduction levels. Due to the high quantity of
parameters involved, a component named Hyperparameters’ Tuner is involved in the progress to
improve DPET performances by automatically managing them.

In the end, DPET produces a trained model 𝜙 and a coreset. This hybrid approach of combining RS2
with an AL-based fine-tuning procedure helps balance performance and energy efficiency.

Setting guidelines and implementation choices AL provides a way to optimize AI model training
while reducing energy consumption, in line with Green-AI principles. The idea is to strategically select
the most informative data samples from a larger dataset, which can help reduce computational costs
required to reach a target accuracy level. However, the extent of energy savings depends on several
factors:

• Data Sampling Effectiveness: The effectiveness of AL-like data selection strategies is essential to
significantly reduce the overall training costs and avoid to undermine model quality. The greater
is the per-step data sampling effectiveness (and, hence, the lower is the total number of training
instances and AL rounds required), the more substantial is the potential energy saving.

• Data Sampling Complexity: AL sampling methods differ in computational cost. Simpler ap-
proaches are less resource-intensive, while more complex methods can be costly. If the sampling
process is too expensive, it may counteract the overall energy savings.

3. Experimental Evaluation

Test setting and terms of comparison In the experimental evaluation, we used the widely known
CIFAR-10 dataset, containing 60,000 images divided into 10 classes. We compared a partial imple-
mentation of DPET (namely, without using pre-trained models and data replay mechanisms) against
several methods: standard full-dataset training (Standard train), the RS2 algorithm [6], the pure AL
approach from [11], and state-of-the-art DP methods such as Glister [15], GraphCut [16], CRAIG [17],
and GraNd [18], using implementations from DeepCore [4].

Each method was evaluated by measuring both the energy consumption (in Wh) and the accuracy
of the trained models. Following the time-to-accuracy approach in [6], we set accuracy targets (from
60% to 90%) and measured the energy requested by each method used to reach these targets, so we
measured the energy-to-accuracy, unless it exhausted its budget of energy or epochs beforehand.

Hyperparameter Configuration For each test, we trained a ResNet18 model [19] using mini-batch
Stochastic Gradient Descent (SGD), alongside a Cross-Entropy loss. We tested DPET using three ranking
function variants (𝑓𝑟𝑎𝑛𝑘): Least Confidence, Margin Sampling and Entropy scores.

The approach is flexible and can incorporate other AL techniques. For DPET , in the warm-up, we
ran RS2 with a 30% data reduction per epoch (𝑟 = 0.3) over 20 epochs (bootEpcs = 20). In the fine-tune
rounds, 1,000 instances were selected per round, with 10 optimization epochs. Hyperparameters for RS2
and the AL method from [11] were set according to their original papers. RS2 was tested with reduction
factors of 20%, 10%, and 5%, with a total budget of 200 epochs.



A
DPET_margin

DPET_lc
DPET_entropy

Target 60% 65% 70% 75% 80% 85% 90%

Standard train 20 39 59 78 157 626 1018
AL (margin) [11] 135 218 288 357 711 1167 2421

GraNd [18] 838 865 878 902 924 1042 1232
Craig [17] 175 196 231 248 344 442 627
Glister [15] 108 117 133 172 192 380 599

GraphCut [16] 239 364 396 486 621 762 993
RS2 w/o repl 20% 32 39 48 65 82 168 237
RS2 w/o repl 10% 44 59 75 97 108 153 197
RS2 w/o repl 5% 43 56 62 77 94 121 -

DPET (margin) 19 38 42 47 63 94 196
DPET (entropy) 19 39 41 42 63 99 220

DPET (lc) 19 38 41 42 63 98 204

Figure 1
Energy-to-accuracy of a ResNet18 for DPET compared to RS2, AL, standard training and some DP techniques of
ResNet18, targeting 90% accuracy on the full CIFAR-10 dataset. Values are reported every 10 training epochs.
The plot is shown on the left, while the numerical values are presented in a table on the right.

Test results The analysis focuses on three key aspects: computational savings, accuracy, and pruning
ratio, comparing the performance of DPET with the other techniques. A significant advantage of DPET
is its iterative approach to data selection, which eliminates the need to pre-determine the amount of
data to prune, indeed, it dynamically adds only the necessary data to achieve the target accuracy. This
smart data selection allows DPET to reach the desired accuracy more quickly, resulting in computational
savings, even if the pruning ratio is lower than that of other methods.

The results indicate that DPET , as shown in the figure 1, outperforms the other techniques in terms
of computational savings for the same target accuracy, highlighting the effectiveness of its iterative
data selection strategy. This approach not only speeds up the training process but also enables the
achievement of all target accuracy levels considered. In contrast, the other analyzed methods (excluding
the standard training baseline) fail to meet some of the target accuracy thresholds.

4. Conclusion

Based on our analysis, despite its partial implementation, DPET stands out as an efficient method for
training deep neural network (DNN) models on large datasets, providing significant computational
savings compared to standard training and active learning (AL) approaches without compromisingmodel
accuracy. It consistently outperforms other data pruning techniques regarding energy consumption
across various target accuracy levels. This computational efficiency makes DPET particularly suitable
for resource-constrained devices and aligns with the goals of Green AI. To enhance the proposed
framework, we will finalize the implementation and optimization of the dotted blocks to evaluate the
framework’s definitive performance.
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