
A Hybrid Ant Colony-Cellular Automata Algorithm for
Improved Edge Detection of Images
Safia Djemame1,2,*

1Computer Science Department, Faculty of Sciences, Ferhat Abbas University, Setif1, Setif, 19000, Algeria
2LRSD Laboratory, Ferhat Abbas University, Setif1, Setif, 19000, Algeria

Abstract
The cellular automaton is an abstract model of computation. Investing the capabilities of cellular automata
in image processing has proved to be promising. This paper presents a method for edge detection of images
based on two dimensional cellular automata with extended Moore neighborhood model. This method uses ant
colony optimization (ACO) to find the best linear rules of CA that produce satisfactory edge detection in one-time
iteration. The performance of this approach is compared with some existing edge detection techniques. This
comparison shows that the proposed method to be very promising for edge detection on various images with
good quality and significantly low execution time.

Keywords
image processing, cellular automata, complex system, edge detection, ant colony optimization, metaheuristic,
pheromone

1. Introduction

In the contemporary era, there is a wealth of data available, and a significant portion of this data comes
in the form of images. These can include things like DNA microarrays, satellite maps, astronomy obser-
vations, and many others. Image processing has played a critical role in the technological advancements
of recent years and has become a valuable tool in a variety of scientific research fields, including health,
industry, and astronomy. This type of processing is primarily concerned with enabling machines to
interpret and analyze images, extracting important information in the process. Among these preprossec-
ing operations, segmentation represents a crucial process in image processing, and it involves various
techniques, one of which is edge detection. One of the primary objectives of edge detection is to reduce
the data size to be processed in subsequent stages of image processing. Although there are many edge
detectors available in literature, none of them are perfect, and achieving optimal edge detection that
produces high-quality edges while minimizing processing time is an area that requires ongoing research
and development. The present work is a contribution to this ongoing quest for improved edge detection
techniques. Many research works focus on finding increasingly efficient segmentation techniques to
optimize the quality of contours and reduce computation time.In this study, our focus is on modeling
an image with a powerful and complex system, the cellular automaton, which we combine with the
metaheuristic ACO to extract transition rules that enable good contour segmentation. The present
paper is organised as follows: In the first section, we introduce the working context and the domains of
interest that we focus on. In the second section, we provide some fundamental concepts about cellular
automata. In the third section, we explain the concept of ant colony algorithm. In the fourth section,
we cite some related works. In the fifth section, we detail how we used the ACO algorithm to optimize
a CA for the task of edge detection. In the sixth section, we explain the execution of ACO algorithm. In
section seven, experimental results are shown, both visual and numerical, and a comparison is done. In
section eight, we conclude with a summury and future prospects.

RIF 2024: The 13th International Conference on Research in Computing at Feminine, University of Abdelhamid Mehri, Constantine2,
May 20–21, 2024
*Corresponding author.
$ safia.zazoua@univ-setif.dz (S. Djemame)
� https://www.researchgate.net/profile/Djemame-Safia (S. Djemame)
� 0000-0002-8383-2819 (S. Djemame)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:safia.zazoua@univ-setif.dz
https://www.researchgate.net/profile/Djemame-Safia
https://orcid.org/0000-0002-8383-2819
https://creativecommons.org/licenses/by/4.0/deed.en


2. Basic Concepts of Cellular Automata

The popularity of cellular automata can be attributed to their simplicity and their ability to model
complex systems, despite the fact that they are simple. Essentially, cellular automata can be considered
a basic model of a decentralized extended system composed of numerous individual components, or
cells. The interactions between these cells are limited to local interactions, and each cell has a specific
state that evolves over time based on the states of its neighboring cells. Overall, this structure can
be regarded as a parallel processing mechanism. Remarkably, even though the structure of cellular
automata is straight-forward, when iterated numerous times, it can generate intricate patterns that
have the potential to simulate a plethora of complex natural phenomena. A cellular automaton is a
dynamic system comprising of a grid pattern, with each cell within this pattern being assigned a state
from a finite pool of states. The system evolves in discrete time steps, with the state of a cell at time
’t+1’ being dependent on the states of a limited number of neighboring cells, as dictated by a specified
transition rule. Every iteration of the system operates through the application of the same set of rules
to every cell in the grid, thus generating a new ’generation’ of cells entirely based on the prior one [1].

3. Ant Colony Optimization

In the early 1990’s, Marco Dorigo and his team introduced the pioneering Ant Colony Optimization
(ACO) algorithm, inspired by the behavior of ant colonies [2]. Ants are social insects that operate with
the objective of advancing the survival of their colonies instead of focusing solely on the survival of
individual ants. The ACO algorithm takes inspiration from the pervasive foraging behavior exhibited
by ants to achieve their colony’s goals. At the crux of their behavior lies indirect communication
among the ants via chemical pheromone trails, which function to guide them toward the shortest
paths between food sources and their nest. When ants forage for food, they initially move in random
directions, leaving a trail of chemical pheromone behind. The pheromones attract other ants who,
in turn, select paths with strong pheromone concentrations. Once an ant finds food, it evaluates its
quality and quantity before carrying it back to the nest, leaving pheromones behind that reflect the
quality and quantity of the food found. These pheromone trails attract other ants towards the food
source, thus enabling the ants to discover the shortest paths between their nest and the food source.
The success of ACO algorithms lies in their ability to operate efficiently on large problem instances
with multiple solutions that require optimization. By exploiting the characteristics of real ant colonies,
ACO algorithms offer unique and effective solutions to various discrete optimization problems. The
collective behavior exhibited by real ant colonies has inspired the development of swarm intelligence
techniques, such as the successful strand of ACO algorithms. These algorithms mimic the behavior of
real ant colonies in their search for optimal solutions to discrete optimization problems. The utilization
of real ant colony characteristics has enabled the development of effective and efficient multi-agent
systems. Nonetheless, further research may be required to address the challenges of ACO algorithms to
achieve optimal solutions for complex optimization problems.

3.1. The ACO algorithm

The general steps of ACO algorithm are as follows [2] :
* On each iteration or epoch, all ants build a path to the destiny node (the food source). For the next
node selection, the probabilistic equation (1) is used:

𝑃 𝑘
𝑖𝑗(𝑡) =

⎧⎨⎩
𝜏𝛼𝑖𝑗(𝑡)∑︀

𝑙∈𝑁𝑘
𝑖

(𝜏𝛼𝑖𝑙 (𝑡)

0𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
𝑖𝑓𝑗 ∈ 𝑁𝑘

𝑖 (1)

𝑃 𝑘
𝑖𝑗(𝑡) is the probability that ant k at point i moves to point j at time t.

𝑁𝑘
𝑖 is the set of points that ant k can move to, starting from point i.



Figure 1: a)Path followed by ants, (b)Ants encounter an obstruction, (c)Ants find paths around the obstruction,
(d)Ants follow the short path around the obstacle.[3]

𝜏𝛼𝑖𝑗(𝑡) is the pheromone sensed in the pass that can lead from point i to point j, with 𝛼 jump distance.
• Compute pheromone evaporation using equation (2):

𝜏𝑖𝑗(𝑡)← (1− 𝑝)𝜏𝑖𝑗(𝑡) (2)

p is the evaporation rate value of the pheromone trail. The evaporation is added to the algorithm in
order to force the exploration of the ants and avoid premature convergence to suboptimal solutions.
For p=1, the search is completely random.
• Update pheromone concentration using equation (3), allowing ants to add pheromone after each
iteration of the program in the ant colony system:

𝜏𝑖𝑗(𝑡+ 1) = 𝜏𝑖𝑗(𝑡) +
𝑚∑︁
𝑘=1

Δ𝜏𝑘𝑖𝑗(𝑡) (3)

m is the number of ants.
Informally, an ACO algorithm can be imagined as the interplay of three procedures [17]: Construc-
tAntsSolutions, UpdatePheromones, and DaemonActions.
• ConstructAntsSolutions manages a colony of ants that concurrently and asynchronously visit adjacent
states of the considered problem by moving through neighbor nodes of the problem’s construction
graph. They move by applying a stochastic local decision policy that makes use of pheromone trails and
heuristic information. In this way, ants incrementally build solutions to the optimization problem. Once
an ant has built a solution, or while the solution is being built, the ant evaluates the partial solution
that will be used by the UpdatePheromones procedure to decide how much pheromone to deposit.
• UpdatePheromones is the process by which the pheromone trails are modified. The trails value can
either increase, as ants deposit pheromone on the components or connections they use, or decrease, due
to pheromone evaporation. From a practical point of view, the deposit of new pheromone increases the
probability that those connections that were either used by many ants or that were used by at least one
ant and which produced a very good solution will be used again by future ants. Differently, pheromone
evaporation implements a useful form of forgetting: it avoids a too rapid convergence of the algorithm



toward a suboptimal region, therefore favoring the exploration of new areas of the search space.
• Finally, the DaemonActions procedure is used to implement centralized actions which cannot be
performed by single ants. Examples of daemon actions are the activation of a local optimization proce-
dure, or the collection of global information that can be used to decide whether it is useful or not to
deposit additional pheromone to bias the search process from a nonlocal perspective. As a practical
example, the daemon can observe the path found by each ant in the colony and select one or a few ants
(e.g., those that built the best solutions in the algorithm iteration) which are then allowed to deposit
additional pheromone on the components/connections they used.

4. Related works

ACO was first proposed as a solution to the travelling salesman problem (TSP) [2], [4]. Since then, it has
been successfully applied to numerous discrete optimization problems. Initially, it was used to tackle
classical optimization issues, such as graph coloring, quadratic assignment [5], the maximum clique,
vehicle routing [6], temperature controller [7] and scheduling [9]. More recently, ACO has been applied
to diverse optimization scenarios, such as intelligent scheduling, design of communication networks,
bioinformatics, circuit design-related cell placement, and machine learning[8]. In addition, some
researchers have explored the applicability of ACO algorithms towards dynamic or stochastic problems,
as well as towards solving multi-objective optimization problems[10], and real-world engineering
optimization challenges [11]. In the literature, we found a few research articles that discuss the
combination of ant colony algorithms and cellular automata: In [12], the authors propose an ACO-
based approach to optimize the parameters of a cellular automata-based traffic simulation model. The
algorithm is applied to a real-world traffic simulation problem, and the results demonstrate significant
improvements in the model’s accuracy. The article [13] presents a hybrid approach combining ACO
algorithms and cellular automata to improve the optimization of traffic flow in urban areas. The
proposed approach is evaluated on a simulated traffic network and compared to traditional traffic
control methods, demonstrating superior performance in terms of reducing congestion and improving
traffic flow. In the paper[14] the authors propose a hybrid approach combining cellular automata and
ACO algorithms to address the dynamic network traffic assignment problem. The proposed approach is
evaluated on a collection of real-world urban traffic scenarios, demonstrating superior performance
compared to other optimization approaches. These papers showcase the effectiveness of combining
ant colony optimization algorithms and cellular automata for a variety of optimization challenges,
highlighting advancements in transportation simulation, urban traffic control, and dynamic network
traffic assignment. In the present work, we hope to merge cellular automata with ACO approach for
image processing, specifically edge detection. Cellular automata’s computational talents and capabilities,
along with ACO’s metaheuristic ability, have promising possibilities for generating high-quality outputs.

5. The proposed approach

Our CA has 25 neighbor cells (extended Moore neighborhood), so the number of possible neighbor
configurations is 225 = 33554432. The possible number of CA that can be conceived using combination
of these configurations is 233554432. The problem is to find the rules that perform edge detection the
best within this large number of CA. A choice is established to only use CA with linear rules (only one
neighbor configuration rule for each CA) which is beneficial in terms of computational performance
of the CA and the substantial reduction in the search space to 33554432. The rule convention used to
designate rules is shown in figure (2).

The number within each box represents the rule number associated with a neighbor configuration
that only has that particular neighbor. So, if the next state of a cell depends only on its present state, it
is represented as Rule 1. Similarly, if the next state of a cell is dependent only on its bottom neighbor,
then it is represented as Rule 8 and so on. These twenty-five rules are known as fundamental/basic
rules. All linear rules are derived using these basic rules which are expressed as the sum of the basic



Figure 2: The rule convention model

rules. For example, Rule 130 can be expressed as follows: Rule 130 = Rule 128 ⊕ Rule 2
ACO is used to optimize our search for CA rules that perform better edge detection. The idea is having
a 5×5 space and ants occupy cells of this space and move around while generating pheromones in
discrete time iterations. Pheromones value on every cell might increase if ants generate pheromones
and decrease on each iteration by evaporation.

5.1. Parameters

The number of ants, the pheromone evaporation rate, and the randomness parameter are experimenta-
tion parameters of our implementation of ACO.

5.2. Initialization

This process creates the population of ants and put them in random positions of the 5×5 cells space. It
also initiates the pheromone values in every cell to zero.

5.3. Convert position to rule number

The reason for using a 5×5 cells space in ACO is to project the ants to the CA neighbor model. The
occupied cells in the ACO cells space define the current explored CA rule, an example of this is illustrated
in figure (3), on the left the ants cells space with eight ants, on the right the CA neighbor model having
fundamental rules in circle of the corresponding neighbors. The CA rule number in this example is
8446.
Quantifying the quality of edge produced by CA rule represents the amount of pheromone generated

Figure 3: The translation of ants positions to a CA rule



by the ants. Thus, at each iteration all the ants generate the same amount of pheromone at their position.
Multiple ants occupying the same cell are considered as one ant.

5.4. Update Pheromones

In this step the pheromone values increase in the cells occupied by at least one ant. The value increase
is the same in these cells no matter how many ants in the cell. The increase in pheromones depends on
the computed fitness.
In order to prevent the ACO from getting in local optimums, where pheromone values keep increasing
in only select cells, a mechanism is set in place to push the optimization to explore more rules, by
letting the ants generate pheromones only when significant fitness values are discovered. This is
implemented by creating MinFitness variable, which is initiated by zero (0), and keeping track of the
best fitness value (BestFitness). Whenever a discovered rule has greater fitness value than the best
fitness, the BestFitness is updated using equation (4):

BestFitness𝑡+1 =

{︃
BestFitness𝑡 if fitness ≤ BestFitness𝑡
fitness otherwise

(4)

The pheromone values are updated in all the occupied cells by the equation (5):

Phero(𝑥, 𝑦)𝑡+1 = Phero(𝑥, 𝑦)𝑡 +max(0,fitness−MinFitness) (5)

5.5. Update Ants

In every time iteration, an ant can move from the cell it occupies to any cell within a two-cell
radius (horizontally, vertically or diagonally) without going out of the moving space. Figure (4)
illustrates an example of an ant in the moving space, the cells in gray represent the possible
next position of this ant in one-time iteration. The ant probably moves to the cell with the

Figure 4: The ant moving space with one ant and its possible moves

highest pheromone value. To implement this probabilistic behavior, a randomness parameter R
is introduced in the algorithm. The tendency for the ant to move to a cell x is evaluated using equation (6):

𝑇 (𝑖) = 𝑃ℎ𝑒𝑟𝑜(𝑖) +𝑅 *𝑀𝑎𝑥𝑃ℎ𝑒𝑟𝑜 *𝑅𝑎𝑛𝑑𝑜𝑚() (6)

T(i) is the tendency or probability that the ant moves to the cell i. Phero(i) is pheromone value at the
cell i. R is the randomness parameter. MaxPhero is the maximum pheromone value of the cells that the
ant can move to.Random() is a function that returns random values in the range [0,1[. The algorithm



evaluates the values of T for all possible cells, and moves the ant to the cell with the highest value.
Bigger values of the randomness parameter R imply higher probability that the ants move in a random
way, while smaller values imply higher probability of movements to cells with greater pheromone
values. R=0 means no randomness in the ants’ movement.

5.6. Evaporate pheromones

The pheromone values in every cell are updated using equation (7):

𝑃ℎ𝑒𝑟𝑜(𝑥, 𝑦)𝑡+1 = (1− 𝑝) * 𝑃ℎ𝑒𝑟𝑜(𝑥, 𝑦)𝑡 (7)

p is the evaporation rate.

6. Execution of ACO algorithm

The initial parameters are set to: twenty-five (25) ants, evaporation rate of 5%, randomness parameter
of 5. 500 cycles of the ACO algorithm have been run. After 300 iterations, we found that the best rules
started to emerge. Some of the best rules identified in Moore neighborhood model (r=1) are: 153, 46,
394, 226, 184, 47, 395, some others in extended Moore neighborhood model (r=2): 262271, 1343, 4194767,
262643, 16637.

6.1. The dataset

The testing dataset consisted of a collection of images from the Berkeley University database that had
well-defined ground truth edges [18]. The dataset comprised images captured in indoor and outdoor
settings, encompassing a broad variety of edge types and complexities. This diverse collection of images
enabled us to draw pertinent insights from the data, supporting the validity and usefulness of our
findings.

6.2. Fitness fuctions

In order to evaluate the quality of edges produced by a CA rule, we need a function that measures how
close are the results produced by this CA to the ground truth. Irrespective of the chosen optimization
technique, the outcome greatly depends on the objective function employed, as it plays a critical role
in determining the final results. As part of our study, we utilized two fitness functions, namely the
Structural Similarity Index (SSIM) and Root-Mean-Square Error (RMSE), to assess the quality difference
between the resulting image from cellular automata and the reference image. When dealing with
images containing numerous intensity values, the RMSE can serve as a direct measure for assessing
the similarity between the input and target image. However, it is widely recognized that the RMSE
metric has certain limitations, as it fails to account for inter-pixel relationships, and may inadequately
capture perceptual similarity. SSIM measures the image similarity taking into account three independent
channels including luminance, contrast and structure [15]. It is the well suited measure for gray level
images. The SSIM metric between two images 𝑥 and 𝑦 is defined by equation (8) :

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =
(2𝜇𝑥𝜇𝑦 + 𝐶1)(2𝜎𝑥𝑦 + 𝐶2)

(𝜇2
𝑥 + 𝜇2

𝑦 + 𝐶1)(𝜎2
𝑥 + 𝜎2

𝑦 + 𝐶2)
(8)

where 𝜇𝑥, 𝜇𝑦, 𝜎
2
𝑥, 𝜎

2
𝑦 , 𝜎𝑥𝑦 are the mean of 𝑥, the mean of 𝑦, the variance of 𝑥, the variance of 𝑦, and the

covariance of 𝑥 and 𝑦, respectively. Following [16], 𝐶1 is set to (0.01 * 255)2 and 𝐶2 = (0.03 * 255)2.
The RMSE is calculated according to equation (9):

𝑅𝑀𝑆𝐸 =

⎯⎸⎸⎷ 1

𝑀𝑁

𝑀−1∑︁
𝑟=0

𝑁−1∑︁
𝑐=0

[𝐸(𝑟, 𝑐)−𝑂(𝑟, 𝑐)]2 (9)

where 𝑂(𝑟, 𝑐) is the original image (in our case, the ground-truth image) and 𝐸(𝑟, 𝑐) is the reconstructed
image.



Figure 5: Edge detection on Boat image. (a) Original image (b) Ground truth (c) Rule 1343 (d) Rule
16637 (e) Rule 262271 (f) Rule 262643 (g) Laplacian (h) Scharr

Figure 6: Edge detection on Reindeer image. (a) Original image (b) Ground truth (c) Rule 1343 (d) Rule
16637(e) Rule 262271 (f) Rule 262643 (g) Roberts (h) Canny

7. Experimental Results

In this section, we present the results of application of our hybrid ACO-CA algorithm to a set of
images from Berkeley dataset. Among the numerous results collected, we have chosen to showcase
three images. We demonstrate the execution of the rules 1343, 16637, 262271 and 262643, on the Boat,
Reindeer and Castle images. It is essential to highlight that once the optimal rules have been identified,
they can be directly applied to an image, thereby expediting the process and delivering the intended
output efficiently. The findings presented in figures (5), (6) and (7), convincingly suggest that rules
1343, 16637, 262271, and 262643, obtained via the hybrid ACO-CA algorithm, yield favorable outcomes
when compared to established methodologies such as Canny, Roberts, Laplacian, and Scharr. The edges
generated through these rules exhibit continuity, finesse, and are precisely one-pixel wide, while the
external contours are accurate, smooth and free of any noise. Additionally, these rules offer edges that
possess a high level of detail. Our observations suggest that the results yielded by rules 16637, 262271
and 262643 are quite similar, while the contour obtained through Canny, Roberts, Laplacian and Scharr
edge detectors are thinner, less pronounced, and less precise.



Figure 7: Edge detection on Castle image. (a) Original image (b) Ground truth (c) Rule 1343 (d) Rule
16637(e) Rule 262271 (f) Rule 262643 (g) Roberts (h) Canny

7.1. Fitness Values

Table (1) presents the optimal fitness values attained for the boat, reindeer, and castle images, after
being subjected to evaluation using the RMSE and SSIM fitness functions. The results gathered from
the tests are highlighted in table(1). It is evident from the numerical outcomes that rules 1343, 16637,
262271, and 262643 exhibit superior performance, delivering excellent fitness values. These results
reinforce the visual outcomes produced by the aforementioned rules.

Table 1
Fitness Values for Images: Boat, Reindeer, and Castle

Rule 1343 Rule 16637 Rule 262271 Rule 262643

RMSE SSIM RMSE SSIM RMSE SSIM RMSE SSIM
Boat 0.242 0.98 0.201 0.99 0.214 0.99 0.218 0.99

Reindeer 0.198 0.99 0.197 0.99 0.209 0.98 0.232 0.97
castle 0.210 0.99 0.212 0.99 0.251 0.98 0.284 0.97

7.2. Execution Time

We illustrate the real-time edge detection process of the proposed method and compare it with established
algorithms like Canny, Laplacian, among others, to carry out a comprehensive assessment. Table (2)
highlights the execution time for various methods, including the proposed one, on three different images
used to compute the edge detection time. The most noticeable observation from table (2) is as follows:
- The run time for Laplacian, Roberts, and Scharr is relatively similar and considerably less than Canny
edge detector, which face challenges in achieving a real-time response. This obstacle represents one of
the downsides identified for this method in our study.
- The CA rules extracted provide the least time-consuming approach and demonstrate variation from
one rule to another. This outcome can be considered one of the most significant advantages of this
research.



Table 2
Execution time for images: Boat, Reindeer and Castle

Boat Reindeer Castle

Roberts 0.04165248 0.09558476 0.04625441
Scharr 0.02812411 0.02745476 0.02654187

Laplacian 0.04125389 0.03652478 0.02998415
Canny 0.12755896 0.13654418 0.15789965

Rule 1343 0.02426531 0.01362247 0.01812589
Rule 16637 0.01406481 0.01654147 0.01729865
Rule 262271 0.01567119 0.01112574 0.014009952
Rule 262643 0.01412859 0.01512652 0.01438215

8. Conclusion

This research introduces a novel technique for edge detection implementation via cellular automata
utilizing an extended Moore neighborhood and optimization of the process of rules extraction with ACO
algorithm. Even though this approach requires a larger rule space, our work employs a metaheuristic
to uncover the optimal set of rules providing the best possible results. This strategy enables the
identification of a subset of rules capable of producing high-quality edges within a single iteration.
Experimental analysis performed on multiple images shows that these rules yield image outputs
with enhanced contrast levels, while effectively smoothing the object edges present in the image.
Comparisons between the resultant edges and the ground truth edges, alongside established edge
detection techniques such as Canny, Roberts, Laplacian, and Scharr, are made using SSIM and RMSE
fitness values, which confirm the robust performance of our approach. Notably, our rules demonstrate
faster runtime compared to the aforementioned techniques.
As a future outlook for this study, we aim to investigate other metaheuristics for optimizing the set
of rules in the cellular automata, such as grey wolf algorithm, bee algorithm, dolphin algorithm, and
their quantum version. Additionally, we plan to introduce new principles of Deep Learning and utilize
their robust learning capabilities to accelerate the optimization process and facilitate the attainment of
optimal edge detection in the shortest possible time.

Declaration on Generative AI

The author has not employed any Generative AI tools.

References

[1] E. Fredkin, Digital Machine: A Informational Process Based on Reversible Cellular Automata.
Physica-D (45), 7, 254–270, 1990.

[2] M. Dorigo, L. M. Gambardella, “Ant Colony System: A Cooperative Learning Approach to the
Traveling Salesman Problem,” IEEE Transactions on Evolutionary Computation, 1(1), 53-66, 1997.

[3] T. Dusan. “Swarm intelligence systems for transportation engineering: Principles and
applications.” Transportation Research Part C-emerging Technologies 16 (2008): 651-667.
DOI:10.1016/J.TRC.2008.03.002

[4] A. Colorni, M. Dorigo, V. Maniezzo, Distributed optimization by ant colonies, In Proceedings of
ECAL’91 European Conference on Artificial Life, Elsevier Publishing, Amsterdam, The Netherlands,
pp 134-142, 1991.

[5] Maniezzo V, Colorni A. “The Ant System applied to the quadratic assignment problem”, IEEE
Trans. Data Knowledge Engineering, 11(5), 769–78, 1999.



[6] B. Bullnheimer, R.F. Hartl, C. Strauss Applying the ant system to the vehicle routing problem, In:
Voss S., Martello S., Osman I.H., Roucairol C. (eds.) Meta- Heuristics: Advances and Trends in
Local Search Paradigms for Optimization, Kluwer, Boston, pp 285-296, 1999.

[7] S. Katiyar, A. Mittal, A. Q. Ansari, T. K. Saxena, "Ant Colony Algorithm Based Adaptive PID
Temperature Controller," Proc. 7th Int. Conf. on Trends in Industrial Measurements and Automation
(TIMA 2011), CSIR, Chennai, January 2011.

[8] Y. Sun, S. Wang, Y. Shen, X. Li, A. T. Ernst, M. Kirley "Boosting Ant Colony Optimization via
Solution Prediction and Machine Learning", Computers and Operations Research, vol. 143, p.
105769, 2022.

[9] W. Deng, J. Xu and H. Zhao, "An Improved Ant Colony Optimization Algorithm Based on Hybrid
Strategies for Scheduling Problem," in IEEE Access, vol. 7, pp. 20281-20292, 2019.

[10] L. Yongbo, H. Soleimani, M. Zohal. "An improved ant colony optimization algorithm for the multi-
depot green vehicle routing problem with multiple objectives." Journal of cleaner production 227:
1161-1172, 2019.

[11] O. Mahamed GH, S. Al-Sharhan. "Improved continuous ant colony optimization algorithms for
real-world engineering optimization problems." Engineering Applications of Artificial Intelligence
85: 818-829, 2019.

[12] X. Yang, J. Han, and Y. He . "Ant colony optimization for cellular automata parameter determination
in transportation simulation." Journal of Transportation Engineering, Vol. 132, No. 11, pp. 853-862,
2006.

[13] R.B. Anggraini and D. Arini. "Ant colony optimization and cellular automata for urban traffic
control system." 2014 International Conference on Control, Electronics, Renewable Energy and
Communications (ICCEREC), pp. 96-100, 2014.

[14] T.Q. Dai, S. Yang, and C.F. Cai. "A cellular automaton-ant colony optimization hybrid approach to
the dynamic network traffic assignment problem." Journal of Advanced Transportation, Vol. 44,
No. 3, pp. 193-209, 2010.

[15] Z. Wang, E.P. Simoncelli, A.C. Bovic, “Multi-scale structural similarity for image quality assess-
ment”, in Proc. 37th IEEE Asilomar Conf. On Signals, Systems and Computers, Pacific Grove, CA,
2002.

[16] Z. Wang, A.C. Bovik, H.R. Sheikh, E.P. Simoncelli, "Image quality assessment: from error visibility
to structural similarity," IEEE Transactions on Image Processing, vol. 13, no. 4, pp. 600-612,2004.

[17] M.Dorigo, T. Stützle. ""Ant colony optimization: overview and recent advances". Springer Interna-
tional Publishing, 2019.

[18] P. Arbelaez, M. Maire, C. Fowlkes and J. Malik, "Contour De-
tection and Image Segmentation Resources," [Online]. Available:
https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/ resources.html


	1 Introduction
	2 Basic Concepts of Cellular Automata
	3 Ant Colony Optimization
	3.1 The ACO algorithm

	4 Related works
	5 The proposed approach
	5.1 Parameters
	5.2 Initialization
	5.3 Convert position to rule number
	5.4 Update Pheromones
	5.5 Update Ants
	5.6 Evaporate pheromones

	6 Execution of ACO algorithm
	6.1 The dataset
	6.2 Fitness fuctions

	7 Experimental Results
	7.1 Fitness Values
	7.2 Execution Time

	8 Conclusion

