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Abstract
This paper presents methodology and software for ensuring data quality in open scholarly bibliographic collections.
Considering the case study of OpenCitations Meta and OpenCitations Index, storing bibliographic metadata
and citations respectively, two tools are introduced: a data validator and a data monitor. The validator checks
the syntactic and semantic correctness of bibliographic data before ingestion, providing both machine-readable
reports and user-friendly feedback. The monitor tracks known data issues post-ingestion using SPARQL queries,
ensuring ongoing data integrity. Designed with accessibility in mind, both tools facilitate automated workflows
and user interaction.
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1. Introduction

Reproducible and responsible research assessment increasingly relies on — or, at least, pushes for relying
on — collections of open research information. These datasets are fundamental to implementing open
science principles contextualised in research assessment exercises, as devised in several European and
international initiatives, including the Coalition for Advancing Research Assessment (CoARA)1 and the
Barcelona Declaration on Open Research Information (DORI)2. Recognising their strategic value, public
and private academic publishing organisations have prioritised developing and expanding such open
datasets.

In this context, OpenCitations [1] — a nonprofit infrastructure organisation that fosters unrestricted
access to global citation data and bibliographic metadata — emerges as a pivotal actor. OpenCitations
provides two main collections: OpenCitations Index [2], storing citations links between scholarly
entities, and OpenCitations Meta [3], storing the basic bibliographic metadata (title, authors, year of
publication, publication venue, publishers, identifiers) of the citing and cited entities involved in the
citations available in the OpenCitations Index. These datasets are derived from diverse sources, whose
data is reshaped into the OpenCitations Data Model (OCDM) [4] and ingested into OpenCitations’
collections through an established ingestion workflow.

However, ingesting large volumes of data from heterogeneous sources introduces potential errors
and inconsistencies. These errors fall into two broad categories:

• errors in primary sources, arising from human inaccuracies or software bugs in the originating
systems;

• errors in the OpenCitations ingestion software, stemming from bugs in the conversion and
ingestion processes.
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While OpenCitations’ ingestion workflow already addresses many of these issues, either by sanitising
invalid data or discarding it where automatic correction is not feasible, challenges still need to be
solved. A preliminary validation process is essential to identify and understand incorrect data, minimise
information loss during ingestion, and ensure the accuracy of the final datasets. To meet these objectives,
OpenCitations has developed a custom validation tool presented in this paper, and designed to provide
the precision and granularity necessary for addressing the unique requirements of OCDM.

However, despite these validation and curation mechanisms, some errors can be introduced in further
ingestions, necessitating continuous data quality monitoring even after ingestion. To this end, a tool
for monitoring the quality of data has been implemented, with the objective of tracking the existence of
known errors in the data and helping implement effective prevention and correction strategies.

The rest of this paper is structured as follows. Section 2 analyses the case study and the data
features involved, then describes the methodology followed to develop viable solutions for validating
bibliographic metadata and citation data and monitoring their quality. Section 3 goes over more technical
details on the implementation of the software components. Section 4 discusses other related work about
the quality assessment of RDF data. Finally, Section 5 illustrates the final remarks and suggests possible
future developments.

2. Material and Methods

This section presents an overview of OpenCitations’ ingestion workflow and describes the proposed
methodology for pre-ingestion data validation and post-ingestion quality assurance.

2.1. The data and the current ingestion workflow

In the OpenCitations Index [2], citations are represented as first-class data entities, meaning that each
citation is represented as an entity in its own right, representing a directed link between two other
entities (publication A cites publication B) with its properties, including: citing entity, cited entity, citation
creation date, and citation timespan (i.e. the difference in days between the date of publication of the
citing entity and the date of publication of the cited entity). All the data in OpenCitations Index is
collected from raw citation data openly provided by other external sources, and it is then published
under a CC0 waiver. The current (as of 18 December 2024) sources are Crossref [5], DataCite [6], the
National Institute of Health Open Citation Collection (NIH-OCC) [7], OpenAIRE [8], and the Japan
Link Center (JaLC) [9]. The metadata of the publications involved as either citing or cited entities in
the OpenCitations Index are stored in OpenCitations Meta [3]. For each publication, this collection
provides details including their persistent identifiers (PIDs) for the publication (e.g. DOI), its title, the
publication type (e.g. journal article, book, dataset, etc.), the publication date, the venue and its PIDs,
the page interval, the issue and volume numbers, and the name and PIDs of the agents involved in the
publication, i.e. authors, editors and publisher.

Gathering citation data and bibliographic metadata from diverse primary sources and unifying them
into the OpenCitations Index and the OpenCitations Meta poses significant challenges since each source
represents the data in its own way, and some information might overlap or differ across the sources. To
overcome this challenge, a workflow has been developed [2] to reshape the gathered data according to
the OpenCitations Data Model (OCDM) [4] and then ingest it into the collections. The OCDM is a data
model built by reusing existing ontologies for describing information in the scholarly bibliographic
domain and essentially consists, in the scope of data validation and error detection, of the fundamental
set of rules defining the correct relationships and properties of all entities in OpenCitations Meta and
OpenCitations Index.

The workflow currently implemented for making bibliographic metadata and citation data coming
from external sources OCDM-compliant and ingesting it into OpenCitations’ collections consists of
three steps [2]:

1. Source Preprocess. This step reshapes the data by implementing a metadata crosswalk from



the diverse data models used by original sources to the OCDM, managing the differences in
information content, structure and representation. A central operation in this phase is the
normalisation and validation of external PIDs, such as DOIs for publications or ORCIDs for
authors and editors. The output of the software dedicated to this step, the OpenCitations Data
Sources Converter [10], are two OCDM-compliant tables which are used in the two following
steps: one storing the bibliographic metadata for each publication involved in a citation (where
each row represents a publication and columns store the values for supported metadata content),
the other storing citations (where each row represents a citation and two columns store the PIDs
of the citing and the cited publication, whose scheme depend on the original source, e.g. citations
from Crossref are represented as DOI-to-DOI citations)

2. Meta Process. This step populates the OpenCitations Meta collection. Starting from the table
produced in the first step, the bibliographic metadata to ingest is automatically curated by dedu-
plicating records (i.e. table rows) that feature the same PID as another record and normalising and
correcting their values. Records representing entities that had been registered in OpenCitations
Meta in previous ingestions can be used to enrich the already available metadata for those entities
or to merge them into a single entity (in the case the external PIDs appearing to pertain to a
single entity in the record are instead linked to separate entities in OpenCitations Meta). Each
entity in OpenCitations Meta is represented by the OpenCitations Meta Identifier (OMID), a PID
that is minted and assigned to the entity in the moment of its generation: this is a crucial feature,
as it allows the following step of the workflow to uniquely identify the publications linked by
citations without relying on external identifiers.
The output of this step, whose complete methodology and implementation are detailed thoroughly
in [3], is the OpenCitations Meta dataset itself, stored both in a database and as dump files. Notably,
the software responsible for the operations mentioned above also generates and stores in RDF
files provenance information for each entity, keeping track of the agent that created, modified,
merged or deleted it, the time of the action and the primary source providing the data.

3. Index Process. This step processes the citation tables from the Source Preprocess phase where each
citation is represented as a link between two external PIDs (e.g., DOI-to-DOI, PMID-to-PMID).
By making use of a mapping between these external identifiers and the OMID of the entity they
have been associated with in the previous step (Meta Process), it converts these links into OMID-
to-OMID citations, each of which is uniquely identified as a first-class entity by an Open Citation
Identifier (OCI). Similarly to step 2, the process output consists of the OpenCitations Index dataset,
with citation data stored in a database and as dump files, and provenance information saved in
files only.

The workflow briefly described above is currently only applied to data from authoritative sources,
such as Crossref or DataCite, which structure their data according to a defined data model. While this
workflow is undoubtedly useful — particularly because it allows for the ingestion of a large volume of
data with each execution — its application is effectively limited to data sources where implementing
the metadata crosswalk from the source data model to the OCDM (as outlined in the Source Preprocess
step) is feasible or advantageous. Since this process requires notable effort to manage the idiosyncratic
complexities of each source, creating a custom data conversion system for each source may not be
an applicable strategy, especially for sources that cannot provide certain conditions that facilitate
this process (e.g. a defined data model, clear documentation of the data structure, etc.). Nonetheless,
there are organisations and individuals who, despite lacking these characteristics, hold high-quality
bibliographic data that is not yet easily accessible or reusable. Ingesting this data into collections like
those of OpenCitations is crucial to making a large number of up-to-date citations and bibliographic
metadata openly available.

As has been already pointed out by OpenCitations [11], an effective solution to broaden the number
of open scholarly bibliographic data can be represented by crowdsourcing the data itself: users would
be able to directly submit via dedicate service tables containing citations and metadata to be ingested
into OpenCitations Index and OpenCitations Meta respectively. Users would need to submit tables that



Table 1
Two sample table cells of META-CSV, storing the surnames, names and identifiers of the authors of a
bibliographic resource and the publication date of the bibliographic resource.

... author pub_date ...

... Peroni, Silvio [orcid:0000-0003-0530-4305 viaf:309649450]; Shotton, David
[orcid:0000-0051-5506-523X]

2023-03-13 ...

are already OCDM-compliant and formatted to be natively processed by the relevant OpenCitations
software (i.e. equivalent to the output of the current workflow’s first step, Source Preprocess); in
creating them, they should follow the guide provided in two reference documents [12, 13], in order for
these tables to be interpreted correctly in the Meta Process and Index Process steps of the workflow. As
the tabular documents obtained this way would not be built via a controlled internal process, validating
them becomes imperative to ensure data quality. To fulfill this need, we have developed a custom
validation tool described in the following subsection.

2.2. Pre-ingestion validation

The tabular format has been chosen for user submissions in that it is approachable even by scholars,
researchers and professionals with little coding skills, yet the inherent complexity of the relationships
and information expressable with the OCDM can fit into such a format only following precise rules,
defined in [13, 12]. Following the nomenclature in these reference documents, we will henceforth refer
to the table storing metadata as META-CSV and to the table storing citations as CITS-CSV.

In META-CSV, each row represents a bibliographic resource, i.e. a publication, and the eleven columns
specify: the identifiers associated with the resource; the title; the surname, name, and identifiers of its
authors and editors; the publication date; the venue (i.e. another bibliographic resource containing the
represented document, e.g. the journal containing the article represented in the row); the volume of the
venue containing the document; the issue of the venue containing the document; the page range; the
type of publication; and the name and identifiers of the publisher.

In CITS-CSV, each row represents one citation, and the four columns store the values for the identifiers
and the publication date of the citing and the cited bibliographic resource.

META-CSV and CITS-CSV tables have a layered structure that adds complexity to their validation.
Beyond their tabular organisation of rows and columns, field values within each cell can consist of
either single data units or collections of multiple data units separated by specific delimiters. These
individual units, termed “items”, represent the minimal “portion” used by the document to define a
specific piece of information and, therefore, must be validated individually. For example, in CITS-CSV,
the identifier fields for citing and cited resources may contain multiple items, while in META-CSV, fields
for identifiers, authors, venues, publishers, and editors may similarly admit multiple items.

Adding to this complexity, in META-CSV, some fields contain items composed of smaller components,
such as names and identifiers of entities (e.g., authors, editors, publishers, and venues). Each component
requires distinct validation rules based on its type, leading to diverse validation requirements for
the content of a single field. Table 1, Figure 1, and Figure 2 can be used to understand the abstract
representation of the structure of the table.

Validation rules for the tables encompass both formatting/syntactic and content criteria. Syntactic
rules are defined in the specifications to write well-formed documents [12, 13] and ensure proper data
types, formats, and required fields. The other rules extend beyond syntax, addressing requirements such
as the existence of referenced identifiers in relevant registries and the correctness of the relationships
expressed in the table, also for those requirements that are not explicitly mentioned in the table
specifications (e.g. a META-CSV row corresponding to a bibliographic resource to which a given type
has been assigned may have only a certain set of values in the identifier field to be compliant with
OCDM).



Figure 1: The abstract representation of the internal structure of the table cell containing the data for the author
of a bibliographic resource (see Table 1). The cell contains two items, each of which corresponds to the entity of
an author; each items has internal components of different kinds (the plain text of the surname and name, and
the series of identifiers).

Figure 2: The abstract representation of the internal structure of the table cell containing the data for the
publication date of a bibliography resource (see Table 1). The cell contains only one item, which corresponds to
the value of the publication date. The publication date field always has a value containing a single item.

At the beginning of the validator designing phase, we first identified all the applicable validation
rules for each of the two documents and grouped them into four different categories: rules related to
the format and syntax of the document as prescribed by OpenCitations; rules based on the externally-
defined syntax of PIDs (e.g. the valid structure of a DOI value); rules verifying the existence of an entity
in the real world; and rules checking the relationships between the values. These categories have been
used to structure the validation process into four levels, applied sequentially to the table elements:

1. Wellformedness. This step ensures the document complies with the syntactic rules defined in
[12, 13] to generate well-formed tables, e.g. supported identifier schemes, correct date formats,
etc. Errors at this level block further validation of affected items.

2. ID Syntax. All PID values are checked against syntax rules defined by their issuing organizations,
ensuring formats such as the ones for DOI3, ORCID4, and PMID5 are correctly applied.

3. ID Existence. The existence of mentioned entities in the real world is verified by using their
associated identifiers as a proxy: PIDs are queried against official databases to confirm they are
actually registered as such.

The implementation of the validation process has been guided by the following design principles:

1. Maximum granularity. Each document is validated by applying checks on its smallest parts (in
most cases items, but if applicable also sub-parts of an item) to maximise granularity in the output
and identify faulty table elements with high specificity.

2. Maximum coverage at each execution. At each execution of the process, the entire table is validated
from start to end, i.e. without stopping the process if an error is found: all detectable errors are

3https://www.doi.org/
4https://orcid.org/
5https://pubmed.ncbi.nlm.nih.gov/



collected during the process and returned as a comprehensive collection in the output validation
report. This process makes it easier for users to correct errors, since they are enabled to potentially
address all issues in one correction cycle, avoiding repeated submissions.

3. Non-redundancy. A single item that has already failed a check is not validated against the rest of
the rules, as it will need to be modified by the user. This principle only applies in cases where
compliance with one rule is a prerequisite for compliance with the other rules for the same item.
Otherwise, i.e. if the outcomes of two checks on the same item are mutually independent, both
checks are executed straight away (i.e. before the user intervenes with any corrections).

The custom validator has been designed with the aim of providing a precise and information-rich
feedback on the validity status of the data that is both suitable for programmatic use and human-readable.
Machine-readability is essential for the primary objective of discarding invalid data before ingestion
automatically, and for granting the possibility to use the validation output in other applications (e.g.
for double-checking internally generated documents in the Source Preprocess phase of the ingestion
workflow). Human-readability and user-friendliness are key to the fulfillment of the other fundamental
objective of the validator: providing users with a tool to better understand how to create correct
bibliodata tables.

The output is provided as a report listing all detected errors from a single execution of the validation
process. Each error includes:

• Position details: the exact location of all the single pieces of data involved in that error (relative to
the whole document) and whether the error regards a single item, multiple fields, or multiple
rows.

• Validation level: The validation level where the error occurred.
• Type of issue: Whether the issue is a blocking “error” or a non-blocking “warning”.
• Unique error label: A short label indicating the category to which each error instance belongs,

which can be used by a machine to process the output.
• User message: Natural language explanation of the error and its potential causes.

Particular attention has been given to finding a feasible way to express the position of the error in
the document, so that the specific data points involved in the error could be retrieved and processed
automatically, while at the same time grant the user the possibility to exactly see the single parts of the
document involved in the error. Nonetheless, the format specially designed to indicate error positions
reflects the complexity of the internal structure of the table and can be cumbersome for humans to read.
To solve this limitation, we went further in the direction of user-friendliness and paired the validator
with a component entirely dedicated to the visualisation of the validation report in a graphical interface.
This solution allows users to grasp the basic information about the errors more easily, visualising
directly, on a new tabular representation of the input document, where they are located and their
explanation.

2.3. Post-ingestion data quality assurance

Managing large collections of bibliographic and citation metadata from diverse sources requires a robust
and systematic process to ensure data quality. Despite preventive measures such as validation during
ingestion, errors can persist or emerge over time. To maintain data integrity, it is essential to monitor
the correctness of ingested data regularly, implement correction strategies, and evaluate the success of
these interventions.

A data monitoring tool has been developed for OpenCitations Meta and OpenCitations Index to
address this need. This tool systematically searches for and tracks the presence of pre-identified and
categorised errors in the data, providing actionable insights to guide corrections and assess the outcomes
of previous improvements.

As a preliminary step, all known errors existing in OpenCitations Meta and OpenCitations Index
have been collected and described via the use of a basic framework, which enables us to keep track,



for each error, of details like the assigned error label, actual examples, a description of the issue, the
interested collection, and any strategy or programming solution to find actual data affected by the error.

From here, a subset of error types has been selected, including those reproducible by querying the
databases of the two collections, which are accessible online via the SPARQL endpoint. This is because
retrieving content by querying the databases for a given pattern is much faster than other solutions,
like the programmatic analysis of the whole dump.

The monitoring process works by a simple logic: for each error, the data are tested by trying to
retrieve from the associated collection any results that fall within the pattern representing it; if any
result is retrieved, it means that there is wrong data (i.e. not compatible with OCDM or at any rate not
expected) and the test for that particular error fails. The outcome of all the tests (i.e. whether it passed
or not) is gathered during the process and returned in the final output of the monitor, which includes:

• general details about the execution of the process: the SPARQL endpoint URL of the accessed
database, the queried collection (i.e. either OpenCitations Meta or OpenCitations Index), the date
and time of the execution, the total running time, the path of the configuration file used to specify
which errors have been tested.

• the details for each single error: label, natural language description, retrieving method (i.e. the
exact SPARQL query), test result and details about the execution of that single test, including its
individual running time and execution errors in case they were raised.

The monitoring tool has been designed with extendability, automation, and accessibility in mind. Its
modular architecture ensures that new error tests can be added seamlessly, provided the errors can be
represented through SPARQL queries. This flexibility allows the system to adapt continuously as new
types of errors are discovered and defined.

To facilitate continuous oversight, the monitor can operate fully automatically, with periodic, sched-
uled executions. Currently, the process runs every Monday for both OpenCitations Meta and OpenCita-
tions Index. Similarly to the validator, the monitor prioritizes user-friendliness by presenting its results
in both machine-readable and human-readable formats. This dual representation supports diverse use
cases, from automated integration into workflows to manual examination of findings. Notably, as part
of the automated workflow, the human-readable results are used to update a publicly accessible web
page, offering full transparency into the latest monitoring outcomes. The results can be viewed at:
https://ocmonitor.opencitations.net/.

3. Implementation

This section presents technical details on the implementation of the methodology described above.

3.1. oc_validator

The validator tool described in Section 2 has been implemented in a Python software named
oc_validator, available as a public repository6 under an ISC license and as an installable library in
PyPI7.

The main process is managed by a dedicated class, named Validator, that takes as input the path to
the table to validate (a CSV file that must be formatted as either META-CSV or CITS-CSV) and the path
to the directory where the output files will be stored. As this interface only deals with one document at a
time, another class was added to enable the simultaneous cross-validation of both metadata and citation
data contained in two separate documents (also formatted as META-CSV and CITS-CSV respectively),
which simply wraps in two instances of Validator, one for either document type.

As a first step of the process, the type of table is automatically determined, and a specific method
managing the related operations is called accordingly. Internally, in fact, the processes for validating
META-CSV and CITS-CSV are distinct, though their inner workings are similar.
6https://github.com/opencitations/oc_validator
7https://pypi.org/project/oc-validator/



Figure 3: A screenshot of an example HTML page for the visualisation of a META-CSV document validation
report.

The validation process then iterates over all the table rows and columns (i.e. fields) and, depending
on the field name, elaborates the internal content of the cell (which is initially interpreted as a single
string) according to its abstract internal structure. The appropriate validation rules are sequentially
checked by executing specific functions for each of the extracted items and their sub-components. Each
of the four validation levels has its corresponding class, and each validation rule of the level is checked
by a dedicated class method. In compliance with the design principle of non-redundancy mentioned in
the Material and Methods section, if an element fails a check it is not tested for the other validation
rules that might apply to it, unless the latter are independent of the first check’s outcome.

Whenever a check fails, a dictionary object is generated representing the error and added to a list
that will constitute the validation process output. An example of an error object is represented below
in the form of a JSON object:

{
" v a l i d a t i o n _ l e v e l " : " c s v _ w e l l f o r m e d n e s s " ,
" e r r o r _ t y p e " : " e r r o r " ,
" e r r o r _ l a b e l " : " d u p l i c a t e _ b r " ,
" v a l i d " : f a l s e ,
" message " : " The same b i b l i o g r a p h i c r e s o u r c e i s be ing r e p r e s e n t e d

i n more than one row . P l e a s e check a l l the rows i n v o l v e d i n
the r e p r e s e n t a t i o n o f t h i s p u b l i c a t i o n and u n i f y them or

remove the e x t r a ones . " ,
" p o s i t i o n " : {

" l o c a t e d _ i n " : " row " ,
" t a b l e " : {

" 2 " : { " i d " : [ 0 , 1 ] } ,
" 3 " : { " i d " : [ 0 , 1 ] }

}
}

}

When the end of the document is reached, and all the elements of the table have been validated, the
list containing the error object is stored in a JSON file constituting the machine-readable output of the
process and is converted into a TXT file summarising the latter, which consists of its human-readable
version.



After the validation phase, the JSON output creates a graphical user interface as an HTML page
to visualise the validation outcome better. In the HTML document, the integrated CSS styling and
JavaScript code allow users to interact with the content. The rows of the original document that contain
one or more errors are presented in an HTML table, where the location of the error is signalled by
underlining exactly the wrong content associated with it and accompanying it with a square. By clicking
on each square, the related faulty content is highlighted in all the involved locations, while hovering on
it with the cursor shows the explanation of the error. An example the interface is provided as a static
image in Figure 3.

Figure 4: A screenshot of an example HTML page showing the results of oc_monitor. The test results and the
execution time values are for illustrative purposes only.



3.2. oc_monitor

The monitor tool has also been implemented in the Python software oc_monitor, available as a public
repository8 under an ISC license and as an installable library9 in PyPI.

The central component in the monitor software is the JSON configuration file that is passed as
argument of the two separate classes that actually manage the process: MetaMonitor, in charge of
looking for errors in OpenCitations Meta, and IndexMonitor, looking for them in OpenCitations
Index. The configuration file specifies the URL of the SPARQL endpoint to interrogate and a list of
objects representing an error or an issue in the data. Each of these objects contains: a short label for
the issue; a textual description explaining the nature of the problem and possibly providing examples
of faulty data; a flag to indicate whether the specific issue should be verified at the execution of the
monitoring process; and the actual test for the error, a SPARQL query defining the pattern that would
catch results if the error was present in the collection.
MetaMonitor and IndexMonitor must each be passed the appropriate configuration file to work

properly, but their inner working is similar: for each test in the configuration file, the SPARQL query is
executed against the specified endpoint and a report for the test is generated in the form of a dictionary.
This object contains the information specified in the configuration (label, description and query text)
and a boolean indicating whether the test passed or not. Moreover, details concerning the execution
are included: running time of the query10 and, in case execution errors were raised, e.g. due to HTTP
errors, the problem itself is reported too, providing also a useful insight on the status of the system
infrastructure at the moment of the attempted connection to the server. An example of an object
representing a test result is given below:

{
" l a b e l " : " d u p l i c a t e _ b r " ,
" d e s c r i p t i o n " : " There i s a t l e a s t one c a s e o f m u l t i p l e f a b i o :

E x p r e s s i o n e n t i t i e s s h a r i n g the same ID v a l u e f o r any g iven
scheme ( e . g . the same DOI i s l i n k e d t o 2 s e p a r a t e j o u r n a l
a r t i c l e s , a s i n h t t p s : / / o p e n c i t a t i o n s . ne t / meta / a p i / v1 /
metadata / omid : br / 0 6 1 1 0 3 6 2 3 2 3 3 and h t t p s : / / o p e n c i t a t i o n s . ne t /
meta / a p i / v1 / metadata / omid : br / 0 6 1 6 0 2 2 0 8 8 5 2 ) . " ,

" query " : " PREFIX d a t a c i t e : < h t t p : / / p u r l . org / s p a r / d a t a c i t e / > \
nPREFIX l i t e r a l : < h t t p : / /www. e s s e p u n t a t o . i t / 2 0 1 0 / 0 6 /
l i t e r a l r e i f i c a t i o n / > \ nPREFIX f a b i o : < h t t p : / / p u r l . org / s p a r /
f a b i o / > \ n \ nASK { \ n ? br1 d a t a c i t e : h a s I d e n t i f i e r / l i t e r a l :
h a s L i t e r a l V a l u e ? l i t ; \ n a f a b i o : E x p r e s s i o n . \ n ? br2
d a t a c i t e : h a s I d e n t i f i e r / l i t e r a l : h a s L i t e r a l V a l u e ? l i t ; \ n a
f a b i o : E x p r e s s i o n . \ n FILTER ( ? br1 != ? br2 ) \ n } " ,

" run " : {
" g o t _ r e s u l t " : t rue ,
" runn ing_ t ime " : 2 . 4 8 3 9 8 4 4 7 0 3 6 7 4 3 1 6 ,
" e r r o r " : n u l l

} ,
" p a s s e d " : f a l s e

}

The output of the monitoring phase consists of these objects, stored in a JSON file with some general
details such as the exact date and time of the execution and the total running time.

8https://github.com/opencitations/oc_monitor
9https://pypi.org/project/oc-monitor/
10The execution of each test requires from less than a second to less than 5 minutes, depending on the type of test and factors

such as other ongoing processes on the working server, simultaneous network traffic, etc. Especially considering the small
number of tests, using the SPARQL endpoint is much faster than processing the whole dump, currently comprising more
than 4,6 billion triples for OpenCitations Meta and more than 8,5 billion triples for OpenCitations Index.



As for the validator, the JSON output is used to create a more user-friendly visualisation of the
monitoring outcome, in this case simply by restructuring the content into an HTML page.

Notably, OpenCitations has paired oc_monitor with an automatisation pipeline developed via GitHub
Actions11 and available in the software’s repository: every Monday, the monitor is run against both
collections, and the latest results are added for storage in the public repository and exposed on a public
web page12. For an example of such HTML page see Figure 4.

4. Related Work

As concerns RDF data quality assessment, there have been several endeavours to tackle this problem
[14], though the great majority of the associated tools (where they exist) either require a high degree of
manual configuration or provide information of limited use. An interesting work in this field, whose
approach resembles the one proposed by our paper, is presented in [15]. Here the authors present
a methodology and a tool for assessing the quality of RDF data by following a test-driven approach
inspired by software engineering. They propose the concept of Data Quality Test Patterns (DQTPs),
which encapsulate common data quality issues into structured SPARQL query templates. These patterns
are then used to instantiate actual test-cases (SPARQL queries) by binding specific values to the variables
in the templates. Notably, test-cases can be automatically generated with Test Auto Generators (TAGs),
which interrogate the RDF data to test and try to instantiate test-cases based on the OWL axioms and
RDFS constructs defined in the ontologies used therein. With TAGs, it is possible to ensure that the
data complies with simple schema constraints such as property domain, range and cardinality. For
more complex tests or tests that are not derivable from the constraints formalised in the ontologies,
the authors suggest to manually instantiate specific tests by re-using the DQTPs. The methodology
presented in [15] also defines coverage metrics, which measure the adequacy of the test cases by
assessing how well they capture different aspects of data quality (e.g. property domain coverage, class
membership), represents the test-cases in RDF and associates a URI to each of them.

While this methodology proves effective for datasets with broad and heterogeneous structures —such
as DBpedia, which was evaluated by the authors —its applicability to more controlled environments
like OpenCitations requires careful consideration. The schemas included in the ontologies reused
by the OpenCitations Data Model (OCDM) are well-suited for verifying general or simpler semantic
relationships, but they are often too basic to support the automatic generation of meaningful tests
tailored to the specific constraints and application context relevant to OpenCitations. In contrast to
crowdsourced datasets like DBpedia, the data in OpenCitations is converted and ingested within a
strictly controlled environment, ensuring that many fundamental constraints are already satisfied
by design. As a result, tests generated purely from ontology schemas would, in many cases, verify
relationships whose correctness is already guaranteed, adding little value to the quality assessment
process.

Moreover, many of the properties and classes defined in the ontologies reused by OpenCitations
are not currently utilized in its datasets. This means that an automatic test generation approach, as
described by [15], would likely produce a significant number of non-applicable test cases. Furthermore,
OpenCitations’ current post-ingestion quality assessment relies on a small set of specific tests, carefully
designed based on known issues that have been previously identified in the dataset. At this stage,
implementing a more generalized pattern-based testing methodology would require substantial effort
without offering clear advantages. Instantiating tests manually provides greater flexibility, allowing for
fine-grained selection of the rules to be checked while at the same time avoiding the computational
cost of executing unnecessary test cases: coherently with the aim of providing an insight on the data
quality that is a good representation of its fitness for use, our approach focuses on ensuring that quality
assessments can be performed frequently and that the results are presented in a way that is clear and
easily interpretable.

11https://github.com/features/actions
12https://ocmonitor.opencitations.net/



Additionally, there are practical concerns regarding the long-term viability of adopting the methodol-
ogy proposed by [15], as the software tool implementing their approach does not appear to be actively
maintained.

Nevertheless, [15] remains relevant for large-scale RDF quality assessment, and some of its aspects
could be valuable for OpenCitations in the future. The scalability of its approach makes it suitable for
analyzing extensive datasets, though, as mentioned, in the case of OpenCitations the results might
include information of limited relevance. The representation of test cases in RDF with structured
metadata is another strength of their methodology, offering a formalized approach to documenting and
managing quality assessments. Furthermore, relying on a library of patterns facilitates the creation of
new test-cases in a systematic and reusable way: in case the number of pre-identified issues should
grow, it might be an interesting avenue to explore also for OpenCitations Meta and OpenCitations
Index.

5. Conclusion and Future Works

This work has presented a framework for ensuring the quality of bibliographic and citation data within
the OpenCitations Meta and OpenCitations Index. By addressing pre-ingestion validation, we have
built a system aimed at verifying the compliance of the data eligible for ingestion with the data model
adopted by OpenCitations and with its existing ingestion workflow: the implemented validator ensures
the syntactic and semantic correctness of documents storing data to ingest, identifying errors with
granular precision and enabling both programmatic and user-friendly use. As concerns post-ingestion
quality monitoring, we developed a tool that can be used to continuously evaluate the current data by
verifying its status for known, previously identified issues.

A key feature of both the validation and the monitoring tools is their human-oriented design: the
endeavour to provide both internal and external users with clear and accessible information led to
pairing the machine-readable results of both tools with human-readable and user-friendly interfaces.

While these tools can facilitate data quality management, certain limitations remain. The validator is
inherently tied to OpenCitations’ specific table formats (META-CSV and CITS-CSV) and the rules of
the OCDM, making it unsuitable for use with other data structures and models. Moreover, the monitor
relies on SPARQL queries to detect errors, which limits its capacity to identify issues that manifest only
in data dumps or API behaviours.

Future efforts will focus on integrating the validator into a fully automated data submission workflow,
allowing seamless validation during the ingestion process. This objective is particularly relevant within
the context of data crowdsourcing, as it would streamline operations that can be done automatically
while at the same time valuing the role of human agents in ensuring data quality.
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