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Abstract
The problem of automatically assigning reviews is a crucial task in conference management. Not only
is it a time-consuming and challenging task, but it is also one of the most important peculiarities that
contribute to the good/bad organisation of the conference, not to mention the degree of satisfaction
of the people involved. During review assignments, many constraints come into play: the maximum
number of papers per reviewer, the minimum number of reviews per paper, conflict handling and, last
but not least, the similarity between papers’ topics and reviews’ interests. In this paper, we propose
a strategy to map topics using the ACM Computing taxonomy, and a modelization of the problem in
a Constraint Satisfaction setting relying on the Answer Set Programming (ASP) logical framework.
This strategy, although not scalable, showed the capability of managing many real situations that have
not been captured so far. Experiments demonstrated the goodness of performances for small/medium
numbers of papers.
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1. Introduction

The problem of assigning papers to reviewers is fundamental in organizing conferences, work-
shops or peer review processes. The challenge lies in the fact that many constraints come into
play. An effective assignment should, in principle, guarantee that every paper is reviewed by
(at least two) persons among the most competent in the field(s) in which the paper resides.
Moreover, it is expected that reviewers are comfortable in the reviewing process by judging
papers they feel are related to their line of research, offering the possibility to create a profitable
interaction between the reviewed and the reviewer. A mapping satisfying these conditions does
not seem tough in principle. Yet in reality, these ideal conditions clash with constraints that
make the assignment cumbersome, time-consuming, and with a generally lower satisfaction of
the researchers involved, possibly causing frustration and a lower quality of the event itself.
More formally, the problem of paper assignments can be viewed as finding a function (assign-
ment) mapping papers to (a set of) reviewers. Given a finite set of papers 𝒫 = {𝑝1, 𝑝2, ..., 𝑝𝑘},
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a finite set of authors 𝒜 = {𝑎1, 𝑎2, ..., 𝑎𝑚} with authorship function 𝒯 : 𝒫 → 2𝒜, and a set
of reviewers ℛ = {𝑟1, 𝑟2, ..., 𝑟𝑛}, the assignment function ℱ : 𝒫 → 2ℛ is a function that
assigns to each paper a set of reviewers. The function is neither injective since multiple papers
may be submitted to the exact set of reviewers (although rare) nor surjective given that it
is not mandatory in all cases a person has to work on reviewing. Figure 1 shows the visual
interpretation of an assignment function. The rest of the paper is organised as follows: Section 2
provides the theoretical background of the involved concepts, Section 3 provides an overview of
the state-of-the-art for this task, Section 4 provides the modelization of the model, Section 5 lists
the ASP implementation of the modelization, Section 6 shows the result of the experimentation
and gives more insight about the process and, finally, Section 7 concludes the manuscript and
gives rise to future extensions and integrations.
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Figure 1: An example of papers’ assignments.

2. Background

2.1. Ontologies

In order to understand how to relate topics of interest of reviewers with those related to the
papers, a large, standard and comprehensive conceptualization needs to be considered. We
refer to these conceptualizations as ontology . This concept has origins in philosophy. The
Computer Science community understood the need to catalogue and classify a domain since
the early beginning of the discipline. The word ontology is used with different meanings in
different communities. In the early days, ontology designers sought to provide a complete
classification of every concept available in the “universe” of knowledge. Not too far did this
approach fail due to the overwhelming amount of objects to be classified and the variety
of possible ways in which objects can be categorized according to the specific use, context,
period and many other environmental factors. Last but not least, the objective of an ontology
formalization is to provide a formalization that is “stable”, as much as possible. For this reason,
it should not be too tight to a specific context.



In the AI field, the aim is to create a model of the reality of interest. From a formal point of
view, an ontology is a triple (𝒞, ℛ, 𝒜) in which:

• 𝒞 is a set of concepts.

• ℛ is a set of relationships between concepts.

• 𝒜 is a set of axioms on which the universe we want to describe is based [1].

ℛ is therefore a subset of the Cartesian product 𝒞 × 𝒞. An ontology can also be devoid of
axioms, in which case it is called non-axiomatized. An ontology can be basically seen as a set
of concepts connected through relationships: hence, graphs are often used to describe them.
A graph 𝒢 is a pair (𝒱 , ℰ) where 𝒱 represents the set of vertices, in our case the concepts,
while ℰ is the set of arcs joining two vertices. In this case, 𝒱 is the set of concepts 𝒞, and ℰ is
the set of relationshipsℛ. Given this analogy, networks are the most common visual tool
to represent ontologies. They represent an oriented graph in which each arc is labelled, and
the label is, in a very intuitive way, the relationship between the two concepts. We report a small
example in Figure 2 where 𝒞 = {Entity, Object, Person, Engine, Car, Mechanic}, ℛ = {is_a,
has_part, repairs} showing some general concepts put into a hierarchy by the well-known “is_a”
relationship.
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Figure 2: An example of ontology.

2.2. Constraint Satisfaction Problems

The problem of defining the correct function from papers to reviewers has to consider general
constraints regarding (for instance) the minimum or maximum number of reviews per paper,
conflicts between authors, the policy of the conference or workshop, but also some specific
needs of some authors (e.g. availability of a reviewer for few papers). This setting comes under
the Constraint Satisfaction Problem domain.

The classic definition of a Constraint Satisfaction Problem (CSP) is as follows. A CSP 𝒫
is a triple 𝒫 = ⟨𝒳 ,𝒟, 𝒞⟩ where 𝒳 is an 𝑛-tuple of variables 𝒳 = ⟨𝑥1, 𝑥2, ..., 𝑥𝑛⟩,𝒟 is a
corresponding n-tuple of domains 𝒟 = ⟨𝒟1,𝒟2, ...,𝒟𝑛⟩ such that 𝑥𝑖 ∈ 𝒟𝑖, 𝒞 is a 𝑡-tuple of
constraints 𝒞 = ⟨𝒞1, 𝒞2, ..., 𝒞𝑡⟩. A constraint 𝒞𝑗 is a pair ⟨ℛ𝑆𝑗 ,𝒮𝑗⟩ where ℛ𝑆𝑗 is a relation on



the variables in 𝒮𝑗 =scope(𝒞𝑗). In other words, ℛ𝑖 is a subset of the Cartesian product of the
domains of the variables in 𝒮𝑖. A solution to the CSP 𝒫 is an 𝑛-tuple 𝒜 = ⟨𝑎1, 𝑎2, ..., 𝑎𝑛⟩ where
𝑎𝑖 ∈ 𝒟𝑖 and each 𝒞𝑗 is satisfied in that ℛ𝑆𝑗 holds on the projection of 𝒜 onto the scope 𝒮𝑗 .
In a given task one may be required to find the set of all solutions to determine if that set is
non-empty or just to find any solution, if one exists. If the set of solutions is empty the CSP is
unsatisfiable [2].

In our settings, we can map 𝒳 , 𝒟 and 𝒞 according to the automatic paper assignment process.
In this case, 𝒳 is the set of papers, 𝒟 is the power set of the reviewers (2ℛ), and a complete
assignment is a function associating papers with a set of reviewers. The set 𝒞 is composed of a
set of constraints that guide the assignment.

We are not only interested in finding an assignment satisfying the constraints but also in
finding the assignment that maximises the similarity between paper topics and reviewers’
interests. This setting lies in an extension of the Constraint Satisfaction Problem which is called
the Constraint Optimization Problem. Basically, a Constraint Optimization Problem is defined
in the same way as a CSP one but the (function) assignment needs to maximise (resp. minimise)
a target numerical function. Constraint Satisfaction Problems and Constraint Optimization
Problems can be managed by different solvers like Gecode [3] or Chuffed [4].

2.3. Answer Set Programming

Answer Set Programming (ASP), also known as Disjunctive Logic Programming (DLP)
under stable model semantics, is a powerful framework for Knowledge Representation and
Reasoning. Originating from the work of Gelfond, Lifschitz, and Minker in the 1980s, ASP has
gained increasing interest within the scientific community. One key factor in its success is its
highly expressive language: asp programs can precisely express any property of finite structures
over a function-free first-order structure that is decidable in nondeterministic polynomial time
with an NP oracle, meaning asp encompasses the complexity class Σ𝑃

2 = 𝑁𝑃𝑁𝑃 . As a result,
asp enables encoding programs that cannot be converted to SAT in polynomial time. Notably,
asp is entirely declarative (the sequence of literals and rules does not affect the outcome), and its
encodings for a wide range of problems are concise, straightforward, and elegant. Unfortunately,
the high expressiveness of asp comes at the price of a high computational cost in the worst
case, making the implementation a tough task.

2.3.1. Syntax

Following a convention dating back to Prolog, strings starting with uppercase letters denote
logical variables, while strings starting with lowercase letters denote constants. A term is either
a variable or a constant. An atom is an expression 𝑝(𝑡1, ..., 𝑡𝑛), where 𝑝 is a predicate of arity
n and 𝑡1, ..., 𝑡𝑛 are terms. A literal 𝑙 is either an atom 𝑝 (positive literal) or its negation ¬𝑝
(negative literal). Two literals are said to be complementary if they are of the form 𝑝 and ¬𝑝 for
some atom 𝑝. Given a literal 𝑙, ¬𝑙 denotes its complementary literal. Accordingly, given a set ℒ
of literals, ¬ℒ denotes the set {¬𝑙 | 𝑙 ∈ 𝒜}. A set ℒ of literals is consistent if its complementary
literal is not contained in ℒ for every literal 𝑙 ∈ ℒ. A disjunctive rule (rule, for short) 𝑟 is a
construct: 𝑎1 ∨ ... ∨ 𝑎𝑛 ⇐ 𝑏1, ..., 𝑏𝑘,¬𝑏𝑘+1, ...,¬𝑏𝑚 where 𝑎1, ..., 𝑎𝑛, 𝑏1, ..., 𝑏𝑚 are literals and



𝑛 ≥ 0, 𝑚 ≥ 𝑘 ≥ 0. The disjunction 𝑎1 ∨ ... ∨ 𝑎𝑛 is called the head of 𝑟, while the conjunction
𝑏1, ..., 𝑏𝑘,¬𝑏𝑘+1, ...,¬𝑏𝑚 is referred to as the body of 𝑟. A rule without head literals (i.e. 𝑛 = 0)
is usually referred to as an integrity constraint. A rule having precisely one head literal (i.e. n =
1) is called a normal rule. If the body is empty (i.e. 𝑘 = 𝑚 = 0), it is called a fact. If 𝑟 is a rule of
form (1), then ℋ(𝑟) = {𝑎1, ..., 𝑎𝑛} is the set of literals in the head and ℬ(𝑟) = ℬ+(𝑟) ∪ ℬ−(𝑟)
is the set of the body literals, where ℬ+(𝑟) (the positive body) is {𝑏1, ..., 𝑏𝑘} and ℬ−(𝑟) (the
negative body) is {𝑏𝑘+1, ..., 𝑏𝑚}. An asp program (also called Disjunctive Logic Program or DLP
program) 𝒫 is a finite set of rules. A not-free program 𝒫 (i.e., such that ∀𝑟 ∈ 𝒫 : ℬ−(𝑟) = ∅) is
called positive or Horn, and a v-free program 𝒫 (i.e., such that ∀𝑟 ∈ 𝒫 : |ℋ(𝑟)| ≤ 1) is called
normal logic program. In asp, rules in programs are usually required to be safe. A rule 𝑟 is
safe if each variable in 𝑟 also appears in at least one positive literal in the body of 𝑟. An asp
program is safe if each of its rules is safe. A term (an atom, a rule, a program, etc.) is called
ground if no variable appears in it [5].

2.3.2. Semantics

From [6] the semantics of asp programs can be defined. For every program 𝒫 , its answer sets
are defined by using its ground instantiation 𝑔𝑟𝑛𝑑(𝒫) in two steps: first, the answer sets of
positive disjunctive programs are defined, and then, the answer sets of general programs are
defined by a reduction to positive disjunctive programs and a stability condition. Indicating
with ℬ𝒫 the set of positive literals of a program 𝒫 , an interpretation ℐ is a consistent set of
ground literals ℐ ⊆ ℬ𝒫 w.r.t. a program 𝒫 . A consistent interpretation 𝑋 ⊆ ℬ𝒫 is called closed
under 𝒫 (where 𝒫 is a positive disjunctive datalog [7] program), if, for every 𝑟 ∈ 𝑔𝑟𝑛𝑑(𝒫),
ℋ(𝑟) ∩ 𝒳 ≠ ∅ whenever ℬ(𝑟) ⊆ 𝒳 . An interpretation which is closed under 𝒫 is also called a
model of 𝒫 . An interpretation 𝒳 ⊆ ℬ𝒫 is an answer set for a positive disjunctive program 𝒫 , if
it is minimal (under set inclusion) among all (consistent) interpretations that are closed under
𝒫 .

3. Related Work

Many solutions to this problem rely on semi-automatic processes. Dumais et al. [8] introduced
a strategy based on a first random assignment that reviewers can evaluate and then, taking into
account the feedback, use the Latent Semantic Index (LSI) [9] to measure similarity between
papers and reviewers. Historically, there exists many techniques to get the hidden semantics.
More common strategies are Vector Space Models [10] or Latent Dirichlet Analysis [11]. In
the Knowledge Graph field, they have been overcome by graph embedding techniques [12].
Many automatic strategies still require additional information from reviewers. For instance,
they are asked to select keywords from a list of standardised concepts [13]. Similarity can also
be computed by processing the history of authors (publications) as in [14]. By linguistic model,
it is possible to create a dataset of similarities between the author’s history and papers and train
a classifier.

Nguyen et al. [15] introduced an Ordered Weighted Averaging (OWA) operator to average
different parameters of reviewers and authors (publications, keywords, students, etc). Similarity
among papers and reviewers sometimes has been mapped as the distance between authors and



reviewers. To this extent, many graph-based algorithms are useful. For instance, co-author
relationship and then use the above-mentioned graph embeddings or a cosine similarity [16].

To the best of our knowledge, Kalmugov [17] developed the algorithm that performs best,
while also distributing papers in a homogeneous way and prioritising assignments for which
the reviewer is highly confident with the topic. The assignment is not done singularly but as a
batch, and with a greedy algorithm it gets closer to local optimization.

All these works explore a wide range of methods to compute the distance between papers
and reviewers. Yet there is still the need to model constraints in the assignment process, which
gives us reasons to explore a new approach.

4. Problem Modellization

Having shown the ingredients we are going to use, we describe here how we model the problem.
First of all, we need a taxonomy (ontology) of disciplines in the Computer Science field. This
taxonomy allows us to measure the similarity between topics. Referring to Figure 2, we have
only a set of classes and the is_a relationship. The structure we will have is a (rooted) tree,
in which the root is named Computer Science, and from that, all the specializations will be
given. With this structure, we have a connected graph, in which it is always possible to find a
path connecting two classes by traversing the is_a arcs or their inverses (indicated as is_a−).
Hence, the algorithm used is the Shortest Path Length [18]. In our case, the Shortest Path Length
coincides with the minimum number of edges (is_a or is_a−) needed to connect the two
nodes in the graph. More formally, we have a tree 𝒯 = (𝒱, ℰ) where 𝒱 is the set of nodes and
ℰ : 𝒱 ×𝒱 expressing the is_a function. We simplify the notation (𝑣1, 𝑣2) ∈ ℰ with 𝑣1 – is_a
– 𝑣2 and we generalise with is_a* to represent is_a or is_a−. We define a path from 𝑣0 to 𝑣𝑛
as 𝑣0 – is_a* – 𝑣1 – is_a* – ... – is_a* – 𝑣𝑛. The minimum number of needed is_a* is the
Shortest Path Length. Given the tree structure, it is necessary to assume that 𝑣𝑖 ̸= 𝑣𝑗∀𝑖 ̸= 𝑗 in
order to find the minimum path. Given ℒ the length of the taxonomy, the distance between two
nodes 𝑎, 𝑏 (indicated as distance(𝑎, 𝑏) always exists and 0 ≤ distance(𝑎, 𝑏) ≤ 2ℒ. The
two extreme cases (distance = 0 or distance = 2ℒ) happen, respectively, when 𝑎 = 𝑏 and
when 𝑎, 𝑏 have only the root of the tree as a common parent.

A shared conceptualization is useful for aligning papers’ topics with reviewers’ ones. To this
extent, the keywords are used for the papers; for the reviewers, we use the labels available on
Google Scholar. Obviously, paper keywords and researchers’ labels are not syntactically aligned.
Here the shared conceptualization comes into play. In order to align words syntactically, we use
the Large Language Model (LLM) GPT-4o [19]. The query asked to select, for every keyword
in the paper (also taking into account the others) the closest category in the ontology. Quite
similarly, for every Google Scholar label of researchers, we asked for the closest category in the
ontology. As it happens in general with LLMs, hallucinations are a problem in the results. To
mitigate this problem, we do not take the result provided by GPT-4o as it is but we try to link it
to the correct ACM label. We make use of the Levehnstein distance [20] to retrieve the string
that has the lowest distance with the label provided by the LLM. Given the interpretation of
this distance (i.e. the number of characters to be added, removed or changed in order for two
strings to be equal), we decided that if the value is greater than 40% of the length of the closest



ACM category, then the label provided by the LLM is discarded since considered unreliable.
Ultimately, we have a full syntactic mapping between papers and researchers. From now on,
we use keyword both for paper keywords and researchers’ labels since they have been mapped
within a common vocabulary.

The Constraint Optimization Problem is provided with the following variables (and domains):

• 𝒫 = {𝑝1, ..., } papers,

• 𝒲 = {𝑤1, ..., } researchers,

• ℛ ⊆ 𝒲 reviewers,

• 𝒦 = {𝑘1, ..., } keywords,

• ℒ : (𝒫 ∪𝒲) → 2𝒦 labelling function on papers and authors,

• 𝒜 : 𝒫 → 2𝒲 authorship function on papers,

• 𝒞 : 𝒲 × 2𝒲 conflicts relationship between researchers.

Having defined the distance between two keywords, we can define the distance between a
paper and a researcher. Both papers and researchers are represented by sets of keywords, and,
intuitively, we look for the similarity between the two sets. For every keyword of the paper,
we look for the keyword of the researcher minimizing the distance. The same keyword for
the researcher may be used more than once. Formally, the distance between a paper and a
researcher is computed as: distance(𝑝, 𝑟) =

∑︀
𝑘∈ℒ(𝑝)min𝑙∈ℒ(𝑟) distance(𝑘, 𝑙).

Stepping back to Figure 2, let’s suppose a paper 𝑝 has keywords mechanic, car and entity,
and the reviewer 𝑟 has labels engine, object, and entity. For the keyword mechanic, the
closest reviewer’s label is one of the three indifferently since the minimum distance is 2, for car
the closest are engine and object with distance 1, and for entity we have an overlap with
the reviewer’s label. Hence, in this case, the distance is 0. In the end, the sum is 2 + 1 + 0 = 3.

The objective is to find the assignment 𝜃 : 𝒫 → 2ℛ that minimizes
∑︀

𝑝∈𝒫
∑︀

𝑟∈𝜃(𝑝) distance(𝑝, 𝑟).
Many constraints can be considered for this task. Given 𝑀,𝑁 ∈ N, the ones we consider are:

i. ∀𝑟 ∈ ℛ , |𝑝 ∈ 𝒫 : 𝑟 ∈ 𝜃(𝑝)| ≤ 𝑀 ,

ii. ∀𝑝 ∈ 𝒫 , |𝜃(𝑝)| ≥ 𝑁 ,

iii. ∀𝑝 ∈ 𝒫 , 𝜃(𝑝) ∩ 𝒜(𝑝) = ∅,

iv. ∀𝑝 ∈ 𝒫 , 𝜃(𝑝) ∩ {𝑟 | ∃𝑎 ∈ 𝒜(𝑝) : 𝑟 ∈ 𝐶(𝑎)} = ∅,

v. |𝑝 ∈ 𝒫 : 𝑟𝑖 ∈ 𝜃(𝑝)| ≤ 𝑛𝑖, 𝑛𝑖 < 𝑀 .

Constraint (i) guarantees that at most 𝑀 papers are assigned to each reviewer so as to not
overload someone. Constraint (ii) guarantees that a paper is reviewed by at least 𝑁 reviewers,
to guarantee a certain reliability and heterogeneity in the judgment process. Constraint (iii)
guarantees that authors do not review themselves. Constraint (iv) generalizes (iii) and avoids
conflicts between authors and reviewers. Constraint (v) includes a family of constraints. It



guarantees that a specific reviewer (for some reason) is not available to review more than a
quantity of papers that is lower than the maximum 𝑀 .

Finally, the solution to our problem is argmin𝜃
∑︀

𝑝∈𝒫
∑︀

𝑟∈𝜃(𝑝) distance(𝑝, 𝑟) satisfying
constraints from (i) to (v).

5. Implementation

We opted for ASP to model the problem given its competitive performance, expressiveness, and
optimization utilities. Clingo1 is responsible for grounding and solving and has the capability
to abduce all the possible solutions. When Clingo performs optimization, intermediate results
are available. The optimal solution is not guaranteed to be unique, and Clingo provides all
the possible models. For the experiments, we selected the IRCDL dataset available from the
20th anniversary in which all the (315) publications of the first twenty editions were available.
Authors, titles, and keywords were extracted from the dataset. As per reviewers, we opted for
the Program Committee members of the 20th edition of IRCDL.

In the computer science field, in order to categorize topics we used the ACM Computing
Classification System2. In principle, this taxonomy is not rooted but we added the root Computer
Science for two reasons: (i) we can compute distances between topics not having a common
ancestor, instead of complicating the notation and the management with possible undefined
values, and (ii) to use the root as a collector for extremely general keywords or research areas
in the field. The classification includes 1915 categories and 1928 is_a relationships between
categories.

In the constraints, we force every paper to be reviewed by at least two authors, and ev-
ery author cannot be assigned to more than four papers. For every author we have affilia-
tions, and by general rule we consider authors to be in conflict if and only if they belong
to the same affiliation (or have one affiliation in common). All experiments have been con-
ducted on an Intel(R) Core(TM) i7-1065G7 CPU @ 1.30GHz-1.50 GHz processor with 16GB
of RAM. The chosen execution is multithreaded with 4 cores. In the implementation, we
tended to anticipate all the possible preprocessing phases like finding ancestors in the ACM
classification and conflicts among researchers. Full ASP implementation is available here
(https://zenodo.org/records/14733925).

Listing 1 shows the ASP implementation of the automatic reviews’ assignment.

Listing 1: Automatic Reviews’ Assignment in ASP

1 %sort areas
2 ancestor(X, X, 0) :- area(X).
3 ancestor(X, Y, 1) :- parent(X, Y).
4 ancestor(X, Y, N) :- parent(X, Z), ancestor(Z, Y, N-1).
5

6 has_child_ancestor(X, Y, A) :- parent(A, B), ancestor(B, X, _), ancestor(B, Y, _).
7

1https://potassco.org/clingo/
2https://dl.acm.org/ccs



8 %find first common ancestor
9 1 { first_common_ancestor(X, Y, A) : ancestor(A, X, _), ancestor(A, Y, _) } 1

10 :- area(X), area(Y).
11 :- first_common_ancestor(X, Y, A), has_child_ancestor(X, Y, A).
12

13 %compute distance between two areas
14 distance(X, Y, D1 + D2) :-
15 first_common_ancestor(X, Y, A),
16 ancestor(A, X, D1), ancestor(A, Y, D2).
17

18 %conflicts between researchers of the same affiliation
19 conflict(X, Y) :- X != Y, affiliation(X, U), affiliation(Y, U).
20

21 %maximum of articles to assign to everybody
22 max_articles(4).
23

24 %number of reviews
25 n_reviews(2).
26

27 %minimum distance between a keyword and a reviewer
28 1 { distance_target(K, R, D) } 1 :-
29 keyword(_, K), reviewer(R),
30 D = #min { Dis, R2 : distance(K, R2, Dis),
31 research(R, R2) }.
32

33 %distance between a paper and a reviewer
34 dissimilarity_target(P, R, S) :-
35 paper(P), reviewer(R),
36 S = #sum { D : distance_target(K, R, D),
37 keyword(P, K) }.
38

39 %generate assignments
40 N { assign(P, R, S) : dissimilarity_target(P, R, S) } N :- paper(P), n_reviews(N).
41

42 %avoid conflicts
43 :- assign(P, R, _), author(P, A), conflict(R, A).
44 :- assign(P, R, _), author(P, R).
45

46 %number of assignments per reviewer
47 assigned_reviewer(R, N) :- reviewer(R), N = #count { P,R,S : assign(P, R, S) }.
48

49 %respect limit of reviews per reviewer
50 :- assigned_reviewer(R, N), assign_max(R, M), N > M.
51



Figure 3: Execution times

52 %overall distance in the assignments
53 total_sum(S) :- S = #sum { N,P,R : assign(P, R, N) }.
54

55 %optimize overall distance
56 #minimize {Sum : total_sum(Sum)}.
57

58 #show assign/3.

6. Evaluation

For evaluation, we ran multiple experiments varying the number of maximum articles to be
assigned to each reviewer and the total number of papers. We do not expect that the maximum
number of articles will affect the general performance so much. Conversely, we want to verify
that including constraints creates benefits in the process, and we also tested with and without
the constrain to avoid conflicts. Times reported in Figure 3 consider only the time to reach
the first result (local optimization). Many local optimizations can be output before reaching
the global optimization but the time for moving from one optimization to the next one is quite
constant.

Results show that times are more than acceptable, especially when the number of papers does
not exceed 150. As expected, the number of maximum articles does not affect the results too
much, although increasing that value creates benefits in general. More interestingly, removing
the condition of conflicts is unhelpful when the number of papers increases, as shown in Figure 4.
Our suspect is that removing the computation of conflicts is for sure beneficial at the beginning,
but having more pruning helps in the coupling between papers and reviewers by removing
lots of possible combinations. To date, it is not possible to quantitatively assess the accuracy
of the match given that the dataset of IRCDL has not been labeled according to the reviewer’s



Figure 4: Execution times W/ and w/o conflicts for #papers = 50 and 100

interest. Compared to the state-of-the-art, to the best of our knowledge, this is the first approach
capable of taking into account all the possible constraints given its symbolic nature. Although
the complexity of ASP with optimization is 𝒪(2𝑛 ·𝑚) where 𝑚 is the number of constraints, it
may be worth using it instead of heuristics-based algorithms that cannot take many constraints
(apart from the maximum number of assigned papers) into account. It is likely that for huge
conferences this approach may be limiting, but it could be used in combination with existing
approaches when, for example, allocating fewer papers that are not easy to assign, or solving
specific conflicts during assignments.

The problem of assigning reviews can be generalized as a classification problem. When
thinking about digital libraries in the general run of things, it is possible to categorize documents
into categories. For instance, it is possible to map categories of documents with categories in
the context of specific libraries. Given the physical limitations of libraries, constraints come
into play also in this context. Apart from ontology mapping which is always time-consuming,
the general methodology is reusable and the new constraints can be adapted without many
difficulties.

7. Conclusions and Future Work

In conclusion, in this paper, we showed an alternative modelization in the process of automatic
paper assignments to reviewers. This strategy, given its symbolic nature, can take into account
realistic constraints for the conferences, solve conflicts automatically, and introduce person-
alization in the decision process. Experiments demonstrated that for not big conferences the
performances are more than acceptable, showing also how increasing the number of constraints
affects execution in general.

We look forward to receiving the results of the assignment process by asking IRCDL reviewers
to evaluate the quality of the assignment process. Extensions of this work are the evaluation of



other datasets, for which accuracy can be computed, and explore also different strategies (e.g.
pure CSP) and solvers.
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