
Learning Data Visualization in Python Utilizing an
Autograding and Feedback System
Nikola Dimitrijević1,*, Nemanja Zdravković1 and Vijayakumar Ponnusamy2

1Faculty of Information Technology, Belgrade Metropolitan University, Tadeuša Košćuška 63, 11000 Belgrade, Serbia
2Department of Electronics and Communication Engineering, SRM Institute of Science and Technology, Kattankulathur, Chennai,
India

Abstract
In this paper, we propose an interactive tool for Python data visualization libraries in order to overcome some
of the typical problems encountered in other, predominantly online, Jupyter-based courses. We also set up an
automated grading system that can automatically assess solutions to multiple test cases for students.

The widespread use of the Python programming language over the past few decades has brought interest in to
a peak with an ever-increasing amount of people realizing its potential for incorporation into various educational
environments from primary school to the university setting. Python – being one of the most common and popular
languages for data analysis, visualization and machine learning, the python ecosystem has a richer set of libraries
providing power for data visualization. Over the last few years, many data visualization libraries for Python
have been created and this often renders researchers and analysts making a choice for a specific application very
confusing not only because there are relatively many libraries but also many competing libraries, could work for
different situations.

Additionally, we include a curriculum for learning these libraries, as well as a refresher on Python with all
necessary libraries as prerequisites.

Keywords
data visualization, elearning, jupyter, python

1. Introduction

The ability to effectively visualize data is becoming an essential component of data analytics and the fields
of data science and applied artificial intelligence (AI). Data visualization allows analysts, researchers,
and students to convert complex data into informative graphics. This conversion facilitates easier
pattern recognition, trend analysis, and helps make well-informed decisions [1, 2]. As organizations and
research bodies increasingly rely on data visualization to communicate complex findings, the demand
for these skills is growing significantly. Despite its importance, learning data visualization may be
challenging for trainees who lack experience in programming, certain statistical concepts, or the tools
used for creating visualizations [3]. Furthermore, confusion and ineffective learning often result from
the wide array of available software and libraries and the absence of structured guidance in numerous
online resources [4]. However, understanding and learning can be increased by conveying complex
information intuitively and clearly.

Python has become a leading language for data visualization, thanks to its simplicity, versatility,
and an extensive range of libraries, including Matplotlib, Seaborn, Plotly, and Bokeh. Python packages
include libraries that enable data visualization and provide the ability to build specialized software.
These libraries possess powerful tools that let users create everything from basic bar charts to intricate,
interactive dashboards [5, 6]. It is a general-purpose language that allows smooth integration with ma-
chine learning models, data processing, and computations. As a result, it is favored by both academia and
industry. Python’s nature as an open-source platform reduces barriers to entry significantly when com-
pared to proprietary software like MATLAB, which requires costly licensing fees citeozgur2017matlab.

Proceedings for the 15th International Conference on e-Learning 2024, September 26-27, 2024, Belgrade, Serbia
*Corresponding author.
$ nikola.dimitrijevic@metropolitan.ac.rs (N. Dimitrijević); nemanja.zdravkovic@metropolitan.ac.rs (N. Zdravković);
vijayakp@srmist.edu.in (V. Ponnusamy)
� 0000-0002-6595-9277 (N. Dimitrijević); 0000-0002-2631-6308 (N. Zdravković); 000-0002-3929-8495 (V. Ponnusamy)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

52

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:nikola.dimitrijevic@metropolitan.ac.rs
mailto:nemanja.zdravkovic@metropolitan.ac.rs
mailto:vijayakp@srmist.edu.in
https://orcid.org/0000-0002-6595-9277
https://orcid.org/0000-0002-2631-6308
https://orcid.org/000-0002-3929-8495
https://creativecommons.org/licenses/by/4.0/deed.en


This makes Python an affordable option for students, researchers, and professionals working in educa-
tional and professional contexts. Unlike proprietary tools, Python’s ecosystem supports innovation and
widespread accessibility without requiring extensive financial resources. Moreover, Python’s capabili-
ties offer robust data visualization that can be integrated into numerous applications. Python, being
adaptable and comprehensive, allows users to innovate without restriction. Its popularity continues to
rise, reinforcing its status as a vital tool in modern data visualization.

Python is widely used, but other programming languages also have important roles in data visualiza-
tion. For example, R is appreciated by statisticians and data scientists because of its rich visualization
packages, like ggplot2 and Shiny. These tools permit sophisticated statistical graphics and interactive
web applications [8]. R, however, can be complex and less intuitive for beginners compared to Python,
especially for those who lack a statistics background. In contrast, Python is popular due to its robust
plotting functions and seamless mathematical computations. However, MATLAB has the downside of
being costly since it is commercial software requiring licensing fees. This aspect makes it less attractive
than other tools. MATLAB’s ecosystem is less flexible compared with modern data science frameworks
and open-source tools. The primary disadvantage is that MATLAB’s high cost limits its accessibility,
particularly for individuals without resources. The integration capabilities with modern data science
frameworks are also less flexible in MATLAB compared to the environment within Python [9].

Considering the numerous benefits of Python, such as its accessibility, ease of learning, and perfor-
mance, it has undoubtedly become the go-to language for developing data visualization solutions. For
those interested in learning data visualization in Python, many online courses and tutorials rely heavily
on Jupyter-based notebooks. These often lack real-time feedback and structured assessments, making it
challenging for learners to evaluate their understanding or get immediate corrections when errors are
made. We propose an interactive learning tool to address this issue, which incorporates an automated
grading and feedback system to assist students in comprehending data visualization, its curriculum
structure, and the benefits of the automated learning environment for Python’s data visualization. By
enhancing the learning process, students are better equipped to increase their knowledge of the subject
matter.

The remainder of the paper is organized as follows. Section 2 highlights some related works in data
visualization and in autograding systems, which form the basis of our proposed model. Afsterwards,
Section 3 and 4 show our approach to designing a course on data visualization coupled with the
curriculum, respectively. Section 5 shows the implementation itself, while Section 6 concludes the
paper, with some indication of future work.

2. Related work

The integration of automated grading systems and interactive learning environments has been a growing
trend in computer science education. With the increasing adoption of programming languages like
Python in both academia and industry, various tools and frameworks have been developed to facilitate
learning, provide real-time feedback, and automate the assessment of programming exercises. In this
section, we review several existing approaches related to automated grading tools, interactive learning
platforms, and their impact on programming education.

2.1. Learning Data Visualization in Programming Courses

Data visualization is a crucial skill for students and professionals alike in technical fields such as
statistics, engineering, computer science, information technologies, and data science. Effective data
visualization can enhance comprehension, and can allow individuals to detect patterns, identify corre-
lations, and ultimately communicate insights more effectively. The integration of data visualization
into programming courses has been widely studied, with Python emerging as the preferred language
due to its rich ecosystem of libraries and ease of use. However, structured approaches to teaching data
visualization remain an ongoing challenge in programming education.

53



One of the key aspects of integrating data visualization into programming curricula is ensuring that
students can engage with visualization techniques interactively while receiving structured feedback. The
authors of [10] explore the use of visualization techniques in Python programming courses, highlighting
the benefits of using graphical representations to enhance learning outcomes in non-computer science
students. Their study emphasizes that data visualization can serve as a bridge for students transitioning
into computational thinking, making it a valuable pedagogical tool.

Several researchers have also investigated how program visualization techniques impact student
engagement and understanding. By introducing Jype, an interactive program visualization and exercise
tool for Python, the authors in [11] designed the tool to support beginners in learning programming
logic. Similarly, the integration of data visualization into programming exercises showed students
to grasp fundamental concepts more effectively at the K–12 level [12]. Their findings suggest that
visual representations of code execution significantly improve learning retention and reduce conceptual
misunderstandings.

Beyond general programming, data visualization plays a fundamental role in specialized areas like
machine learning (ML) and big data analytics. A recent study was done in [13], where the authors
used Python-based visualization techniques to analyze educational datasets, reinforcing the importance
of real-world, project-based applications in learning environments. Additionally, [14] discusses the
development of interactive tutorials for teaching data visualization using Python’s scikit-learn and
other libraries, demonstrating how hands-on activities can enhance student engagement.

Indeed, despite the overall progress in integrating interactive visualization tools into programming
education, challenges still remain in automating feedback and assessment. Most currently existing
platforms, including Jupyter-based courses, provide an interactive coding environment; however, they
lack structured grading mechanisms for visualization exercises. For instance, the authors in [15]
investigate the use of PythonTutor as a visualization tool for introductory programming, concluding
that automated feedback improves student performance by helping them correct errors in real time.
Their study however primarily focuses on debugging rather than evaluating visualization quality,
thus leaving a gap in assessing aesthetic, readability, and interpretability aspects of student-generated
visualizations.

To address these gaps, our proposed approach extends existing autograding methodologies by
incorporating structured feedback for data visualization assignments. By automating the evaluation of
visualization outputs and ensuring adherence to best practices, we aim to provide a comprehensive,
interactive learning experience for students learning data visualization in Python.

2.2. Autograding tools for Programming Education

The general concept of autograder systems has been present in Higher Education Institutions (HEIs)
for over half a century. Autograders help teaching staff such as professors and teaching assistants
by reducing the work load of having to manually grade all students’ programming assignments. The
bias of the teaching staff is removed as well, as the autograder always reports objectively. This is
especially important for students in the fields related to data visualization, as the vast majority of
their assignments would in the form of writing a computer program to run a specific task and present
some data. Autograders have evolved with the emergence of new technologies and programming
languages [16, 17]. The first generation of autograders was simple, and were mostly tied to lower-
level programming languages. An autograder would yield a type of "True" or "False" answers, and
the answer was determined by checking a strict set of successive instructions written by the student.
The second generation of autograders often employed tools, which came with the operating system,
and programming languages such as C, C++ and Java were used to build the autograders. In turn,
these systems could check assignments in their respective language. The third and last generation of
autograders emerged with the rise of the high-speed Internet and modern web development technologies.
In such systems and platforms, a web application is hosted on a server with a user interface (UI) to the
student. A student can write their program in a browser, without the need of an interpreter/compiler or
an development environment software installed on their computer [18, 19].

54



3. Proposed Approach and implementation

We first analyzed the current available tools for data visualization in Python, i.e. the libraries, and how
to find the best manner to incorporate the tools in a education-friendly environment such as Jupyter.

3.1. Matplotlib

Matplotlib is one of the most widely used data visualization libraries in the Python programming
language. It provides a low-level, yet flexible interface for generating both static and animated visualiza-
tions, and interactive ones as well. Matplotlib is designed to work with NumPy arrays and allows users
to create a wide range of plots, including line plots, scatter plots, bar charts, histograms, and more. Its
versatility has made it the foundation of several other Python visualization libraries, including Seaborn
and Plotly [20].

Matplotlib is particularly effective for scientific computing and academic research, where reproducibil-
ity and fine-grained control over visual elements are crucial. It is commonly used in engineering and
data science applications. As demonstrated [21], Matplotlib is highly effective for presenting complex
data in Python-based environments. The use of Matplotlib is also good for more complex visuals like
3D data visualization, especially within the Jupyter Notebooks, therefore demonstrating its capability
to visualize multidimensional datasets interactively [22].

3.2. Seaborn

Built on top of Matplotlib, Seaborn is a high-level visualization library. It simplifies the process of
creating aesthetically pleasing statistical visualizations by providing built-in themes and more intelligent
default settings. Compared to Matplotlib, Seaborn is designed for statistical data visualization first and
foremost, making it especially useful in data analysis and ML applications. It integrates seamlessly with
Pandas DataFrames, enabling quick visualization of complex datasets with minimal code. Studies such
as in [23] emphasize Seaborn’s advantages in generating insightful statistical visualizations, particularly
for exploratory data analysis (EDA) in research and education. The authors of [24] also discuss how
Seaborn enhances data storytelling by providing advanced features such as heatmaps, violin plots, and
regression plots, which help in uncovering hidden trends in data.

3.3. NumPy

NumPy is the core numerical computing library in Python, forming the backbone for many data analysis
and visualization tasks. It provides efficient array operations, enabling fast computation of large datasets,
which is essential for visualizing high-dimensional data. NumPy is extensively used in ML, finance, and
scientific research, where handling large matrices and performing numerical operations are critical.
NumPy plays a crucial role in data preprocessing and transformation before visualization, acting as a
bridge between raw data and graphical representation [25]. Additionally, Sundaram et al. highlight
NumPy’s role in feeding structured numerical data into visualization tools like Matplotlib and Seaborn,
making it indispensable for effective data presentation [26].

3.4. Jupyter Notebooks

Jupyter Notebooks provide an interactive, web-based environment for writing and running Python code,
making them a preferred tool for teaching and practicing data visualization. Jupyter supports inline
plotting, enabling users to visualize data immediately within the notebook interface, which enhances
the learning process and facilitates iterative data exploration. Jupyter’s integration with Matplotlib,
Seaborn, and NumPy allows seamless interaction with visualization tools. Jupyter has a significant role
in real-world data visualization applications, as it demonstrates its utility in presenting data trends
using Python libraries [27]. Additionally, the authors of [28] emphasize the use of Jupyter in data
science education, where interactive coding helps students understand complex visualization concepts.

55



Figure 1: Test assignment using Matplotlib.

An example of an assignment for plotting a simple curve using Jupyter with Numpy and Matplotplib
is shown in Fig. 1. Plots can be directly displayed within the notebook using the %matplotlib
inline command. This will generate a high-quality, customizable plot inside the notebook, leveraging
Matplotlib’s versatility.

Figure 2 illustrates the workflow of an autograding system implemented within Jupyter Notebooks.
The system is designed to evaluate students’ code correctness and visualization outputs against prede-
fined tests and provide structured feedback while storing results in an external database. The system
follows a similar approach to our previous works, described in [19, 29, 30]. Below is a detailed breakdown
of each component in the flowchart

1. Task Cells
These are predefined problem statements provided to students inside the Jupyter Notebook. Each
task cell describes a coding problem, typically including:

• The dataset to be used;
• The type of visualization required (e.g., bar plot, scatter plot);
• Expected output format or specific requirements.

This ensures standardization across all student submissions.

56



Figure 2: Workflow of the Jupyer autograding system.

2. Test Cells
The test cells contain predefined test cases that automatically validate students’ code. These tests
check for:

• Correct function outputs (e.g., whether a function returns expected numerical values);
• Proper visualization elements (e.g., correct labels, title, color scheme);
• Code execution correctness (e.g., avoiding runtime errors).

In the workflow, the system compares student responses with expected outputs to ensure correct-
ness. If a student’s code deviates, the test fails, prompting feedback generation.

3. Student Code
The student writes and executes code in response to the given tasks. Their code interacts with
the predefined test cells, which either:

• Pass the execution, confirming correctness;
• Fail execution, requiring revisions.

This allows the automatic evaluation system to check whether the solution meets the expected
structure and logic.

4. Plots Generation
If the student’s solution involves data visualization, their code should generate plots. Evaluation
Criteria:

57



• Correct plot type (e.g., histogram vs. scatter plot);
• Proper labeling (titles, axis labels);
• Accuracy of plotted data points;
• Formatting and aesthetics.

The system captures the generated plots and compares them with reference outputs.
5. Test Evaluation

This is the core of the grading system, where all student code outputs (including plots) are
analyzed. The grading mechanism:

• Runs predefined test cases on the student’s code;
• Compares expected vs. actual outputs (numeric values, plots, etc.). Checks for code efficiency,

correctness, and adherence to problem constraints.

If the student’s solution meets all requirements, it passes; otherwise, it fails, triggering corrective
feedback.

6. Feedback System
After test evaluation, the system generates automatic feedback for students. The feedback
includes:

• Pass/Fail status for each test case; Error messages for failed tests, helping students debug
their code; Hints or suggestions (if enabled) for improvement.

This real-time feedback helps students iterate on their solutions before final submission.
7. External Database

The final test results are stored in an external database for further use. The database stores student
identifiers, test scores and evaluation metrics, execution logs (to track errors and improvements).
This allows instructors to analyze student performance over time, track common mistakes and
learning gaps, and to provide personalized learning suggestions.

4. Curriculum and Learning Path

Project-based learning (PBL) and interactive educational approaches have been widely recognized as
effective strategies for teaching programming. The authors of [31] investigate the impact of project-based
learning in programming courses and report positive effects on student motivation and problem-solving
skills. Their study suggests that engaging students in hands-on projects leads to deeper learning and
retention of programming concepts. Our approach builds on this idea by incorporating structured
project-based assignments within an interactive Python visualization curriculum, ensuring that students
not only learn visualization techniques but also apply them in practical scenarios.

The project-based course structure ensures that students learn by doing, with each module building
towards real-world applications. Instead of just theoretical learning, every module will have a mini-
project, and the course will culminate in a final capstone project where students apply everything
they’ve learned. After completing the four phases, students can take the final capstone project where
students select a real-world dataset (from Kaggle, government open data, or business case studies) and
create a complete visualization project, presenting findings using Jupyter Notebooks. The summary of
the modules is given in Table 1.

Before starting the course, students should complete a Python refresher if needed, covering:

• Python Basics (data structures, loops, functions);
• Jupyter Notebooks for coding and documentation;
• Basic Pandas & NumPy (handling data and numerical operations);
• Fundamentals of Data Cleaning.

Students who need a crash course in Python can complete an introductory self-paced module. The
course is divided into four phases, each having two separate modules.

58



Table 1
Project-Based Learning Path for Data Visualization with Python

Phase Module Topics and Mini-Projects
Phase 1: Fundamentals & First Project

Introduction to Data
Visualization

Why Data Visualization? Importance of visualization, types of visualiza-
tions.
Mini-Project: Extract insights from a messy
dataset.

Setting Up the Envi-
ronment

Python, Jupyter, Matplotlib, Pandas Working with Jupyter, setting up visualization
libraries.
Mini-Project: Analyzing sales trends.

Phase 2: Statistical Visualizations & Storytelling
Seaborn for Statisti-
cal Visualization

Distributions, KDE, Boxplots Introduction to Seaborn, visualizing distributions.
Mini-Project: Exploring population demograph-
ics.

Categorical Data Bar plots, count plots Visualizing categorical data and comparisons.
Mini-Project: Analyzing customer segmenta-
tion.

Phase 3: Advanced & Interactive Visualizations
Interactive Visualiza-
tion with Plotly

Interactive line, scatter, bar charts Plotly for interactive data exploration.
Mini-Project: Social media trends dashboard.

Geospatial Data Vi-
sualization

Folium, Plotly Mapbox, Choropleth
maps

Creating interactive geospatial visualizations.
Mini-Project: COVID-19 spread analysis.

Phase 4: Dashboards & Final Project
Time-Series Analysis Time-series plots, moving averages Analyzing trends with time-series data.

Mini-Project: Stock market insights dashboard.

Dashboard Develop-
ment

Dash, Streamlit, combining multi-
ple plots

Creating dashboards with interactivity.
Mini-Project: Business intelligence dashboard.

Capstone Project Final Data Visualization Report Full project using a real-world dataset.
Capstone: Create a full visualization project
(sports analytics, climate change, e-commerce
trends).

5. Conclusion and future work

This paper presents a novel approach to teaching data visualization in Python through an interactive
learning platform that integrates automated grading and real-time feedback within Jupyter Notebooks.
Unlike traditional programming courses that rely solely on static assignments, our system dynamically
evaluates both code correctness and visualization quality, ensuring that students not only learn how
to generate plots but also understand the principles of effective data communication. By leveraging
structured problem-solving tasks, test-driven evaluations, and an automated feedback loop, this system
enhances the learning experience, reduces instructor workload, and promotes self-guided learning. The
expected outcome is a more engaging and scalable educational framework where students progressively
build proficiency in Python visualization libraries, such as Matplotlib, Seaborn, and Plotly, while
receiving instant formative assessment.

Future research can expand upon this framework by integrating AI-driven adaptive learning to
personalize feedback based on individual student performance. Additionally, incorporating natural
language processing (NLP) techniques could allow the system to interpret student queries and provide
context-aware explanations for errors. Another direction involves real-world dataset integration, en-
abling students to work with live data streams for real-time visualization projects. Further advancements

59



could also explore cross-platform compatibility, allowing the system to be implemented in cloud-based
environments and hybrid learning settings, making data visualization education even more accessible
and effective.

Acknowledgment

This paper was supported in part by the Blockchain Technology Laboratory at Belgrade Metropolitan
University, Belgrade, Serbia and in part by the Ministry of Education, Science and Technological
Development, Republic of Serbia ref. no. 451-03-47/2023-01/200029.

Declaration on Generative AI

The authors have not employed any Generative AI tools.

References

[1] L. M. Hudiburgh, D. Garbinsky, Data visualization: Bringing data to life in an introductory statistics
course, Journal of Statistics Education 28 (2020) 262–279.

[2] D. Nolan, J. Perrett, Teaching and learning data visualization: Ideas and assignments, The American
Statistician 70 (2016) 260–269.

[3] S. Nestorov, N. Jukić, S. Rossi, Design and implementation of a data visualization course with a
real-world project component in an undergraduate information systems curriculum, Journal of
Information Systems Education 30 (2019) 202.

[4] B. Bach, M. Keck, F. Rajabiyazdi, T. Losev, I. Meirelles, J. Dykes, R. S. Laramee, M. AlKadi, C. Stoiber,
S. Huron, et al., Challenges and opportunities in data visualization education: A call to action,
IEEE Transactions on visualization and computer graphics (2023).

[5] D. Embarak, Karkal, Data Analysis and Visualization Using Python, Springer, 2018. URL: https:
//link.springer.com/content/pdf/10.1007/978-1-4842-4109-7.pdf.

[6] J. Rogel-Salazar, Statistics and Data Visualisation with Python, Taylor and Fran-
cis, 2023. URL: https://www.taylorfrancis.com/books/mono/10.1201/9781003160359/
statistics-data-visualisation-python-jesus-rogel-salazar.

[7] C. Ozgur, T. Colliau, G. Rogers, Z. Hughes, Matlab vs. python vs. r, Jour-
nal of Technology and Education (2017). URL: https://www.airitilibrary.com/Article/Detail/
16838602-201707-201711160005-201711160005-355-371.

[8] S. Fahad, A. Yahya, Big data visualization: allotting by r and python with gui tools, in: IEEE
International Conference on Big Data, 2018. URL: https://ieeexplore.ieee.org/abstract/document/
8538413/.

[9] A. Navlani, A. Fandango, I. Idris, Python Data Analysis: Perform data collection, data pro-
cessing, wrangling, visualization, and model building using Python, Packt Publishing, 2021.
URL: https://books.google.com/books?hl=en&lr=&id=DN4SEAAAQBAJ&oi=fnd&pg=PP1&
dq=importance+of+learning+data+visualization+and+role+of+python+compared+to+r+and+
matlab&ots=P4xcaD_a-g&sig=OB9IRDJev6OWkFdjrxqie2nREY4.

[10] X. Kui, W. Liu, J. Xia, H. Du, Research on the improvement of python language programming
course teaching methods based on visualization, in: 2017 IEEE International Conference on
Teaching, Assessment, and Learning for Engineering (TALE), 2017. URL: https://ieeexplore.ieee.
org/abstract/document/8085571/.

[11] J. Helminen, L. Malmi, Jype-a program visualization and programming exercise tool for python,
in: Proceedings of the 10th Koli Calling International Conference on Computing Education
Research, 2010. URL: https://dl.acm.org/doi/abs/10.1145/1879211.1879234. doi:10.1145/1879211.
1879234.

60

https://link.springer.com/content/pdf/10.1007/978-1-4842-4109-7.pdf
https://link.springer.com/content/pdf/10.1007/978-1-4842-4109-7.pdf
https://www.taylorfrancis.com/books/mono/10.1201/9781003160359/statistics-data-visualisation-python-jesus-rogel-salazar
https://www.taylorfrancis.com/books/mono/10.1201/9781003160359/statistics-data-visualisation-python-jesus-rogel-salazar
https://www.airitilibrary.com/Article/Detail/16838602-201707-201711160005-201711160005-355-371
https://www.airitilibrary.com/Article/Detail/16838602-201707-201711160005-201711160005-355-371
https://ieeexplore.ieee.org/abstract/document/8538413/
https://ieeexplore.ieee.org/abstract/document/8538413/
https://books.google.com/books?hl=en&lr=&id=DN4SEAAAQBAJ&oi=fnd&pg=PP1&dq=importance+of+learning+data+visualization+and+role+of+python+compared+to+r+and+matlab&ots=P4xcaD_a-g&sig=OB9IRDJev6OWkFdjrxqie2nREY4
https://books.google.com/books?hl=en&lr=&id=DN4SEAAAQBAJ&oi=fnd&pg=PP1&dq=importance+of+learning+data+visualization+and+role+of+python+compared+to+r+and+matlab&ots=P4xcaD_a-g&sig=OB9IRDJev6OWkFdjrxqie2nREY4
https://books.google.com/books?hl=en&lr=&id=DN4SEAAAQBAJ&oi=fnd&pg=PP1&dq=importance+of+learning+data+visualization+and+role+of+python+compared+to+r+and+matlab&ots=P4xcaD_a-g&sig=OB9IRDJev6OWkFdjrxqie2nREY4
https://ieeexplore.ieee.org/abstract/document/8085571/
https://ieeexplore.ieee.org/abstract/document/8085571/
https://dl.acm.org/doi/abs/10.1145/1879211.1879234
http://dx.doi.org/10.1145/1879211.1879234
http://dx.doi.org/10.1145/1879211.1879234


[12] M. Mladenović, v. Žanko, The impact of using program visualization techniques on learning basic
programming concepts at the k–12 level, Computer Applications in Engineering Education (2021).
URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/cae.22315. doi:10.1002/cae.22315.

[13] S. Dol, P. Jawandhiya, Data visualization for the dataset collected from education sector using
python, in: 2024 IEEE International Conference on Data Science and Applications (DSA), 2024.
URL: https://ieeexplore.ieee.org/abstract/document/10593329/.

[14] L. Lo, Y. Ming, H. Qu, Learning vis tools: Teaching data visualization tutorials, IEEE Transactions on
Visualization and Computer Graphics (2019). URL: https://ieeexplore.ieee.org/abstract/document/
8933751/.

[15] O. Karnalim, M. Ayub, The effectiveness of a program visualization tool on introductory program-
ming: A case study with pythontutor, Journal of Computer Science Education (2017). URL: https:
//journal.binus.ac.id/index.php/commit/article/view/3704. doi:10.21512/commit.v11i2.3704.

[16] C. Douce, D. Livingstone, J. Orwell, Automatic test-based assessment of programming: A review,
Journal on Educational Resources in Computing (JERIC) 5 (2005) 4–es.

[17] J. C. Caiza, J. M. Del Alamo, Programming assignments automatic grading: review of tools and
implementations, INTED2013 Proceedings (2013) 5691–5700.

[18] N. Dimitrijević, N. Zdravković, D. Cvijanović, An overview of developed automatic grading
teaching tools for learning different programming languages, in: IAI Academic Conference
Proceedings, 2021, pp. 20–24.

[19] N. Zdravković, N. Dimitrijević, D. Cvijanović, A system for interactive learning of the python
programming language with autograding support, in: E-Learning 2021 : proceedings / The Twelfth
Internacional Conference on E-Learning, Belgrade, 23-24 September 2021., 2021, pp. 131–136.

[20] A. Lavanya, L. Gaurav, S. Sindhuja, H. Seam, Assessing the performance of python data visual-
ization libraries: a review, ResearchGate (2023). URL: https://www.researchgate.net/publication/
369533034_Assessing_the_Performance_of_Python_Data_Visualization_Libraries_A_Review.

[21] A. Yim, C. Chung, A. Yu, Matplotlib for Python Developers: Effective techniques for data
visualization with Python, Packt Publishing, 2018. URL: https://books.google.com/books?id=
G99YDwAAQBAJ.

[22] M. Kabir, Python for data analytics: A systematic literature review of tools, techniques, and
applications, ResearchGate (2024). URL: https://www.researchgate.net/publication/385805476_
Python_For_Data_Analytics_A_Systematic_Literature_Review_Of_Tools_Techniques_And_
Applications.

[23] P. Gupta, A. Bagchi, Data Visualization with Python, Springer, 2024. URL: https://link.springer.
com/chapter/10.1007/978-3-031-43725-0_7.

[24] A. Achanta, R. Boina, Advanced techniques in python for effective data visualization, Research-
Gate (2024). URL: https://www.researchgate.net/publication/377331587_Advanced_Techniques_
in_Python_for_Effective_Data_Visualization.

[25] A. Belorkar, S. Guntuku, S. Hora, A. Kumar, Interactive Data Visualization with Python: Present
your data as an effective and compelling story, Packt Publishing, 2020. URL: https://books.google.
com/books?id=_1PdDwAAQBAJ.

[26] J. Sundaram, K. Gowri, S. Devaraju, An exploration of python libraries in machine learning
models for data science, in: ResearchGate, 2023. URL: https://www.researchgate.net/publication/
373919503_An_Exploration_of_Python_Libraries_in_Machine_Learning_Models_for_Data_
Science.

[27] K. Pandey, R. Panchal, A study of real-world data visualization of covid-19 dataset using python,
International Journal of Modern Health (2020). URL: https://www.ijmh.org/wp-content/uploads/
papers/v4i8/H0834044820.pdf.

[28] D. Embarak, Karkal, Data Analysis and Visualization Using Python, Springer, 2018. URL: https:
//www.academia.edu/download/103702444/Data_Analysis_and_Visualization_Using_Py.pdf.

[29] N. Dimitrijević, V. Milićević, N. Zdravković, D. Cvijanović, Learning the kotlin
programming language using an autograding system, in: E-Learning 2021 : pro-
ceedings / The Twelfth Internacional Conference on E-Learning, Belgrade, 23-24

61

https://onlinelibrary.wiley.com/doi/abs/10.1002/cae.22315
http://dx.doi.org/10.1002/cae.22315
https://ieeexplore.ieee.org/abstract/document/10593329/
https://ieeexplore.ieee.org/abstract/document/8933751/
https://ieeexplore.ieee.org/abstract/document/8933751/
https://journal.binus.ac.id/index.php/commit/article/view/3704
https://journal.binus.ac.id/index.php/commit/article/view/3704
http://dx.doi.org/10.21512/commit.v11i2.3704
https://www.researchgate.net/publication/369533034_Assessing_the_Performance_of_Python_Data_Visualization_Libraries_A_Review
https://www.researchgate.net/publication/369533034_Assessing_the_Performance_of_Python_Data_Visualization_Libraries_A_Review
https://books.google.com/books?id=G99YDwAAQBAJ
https://books.google.com/books?id=G99YDwAAQBAJ
https://www.researchgate.net/publication/385805476_Python_For_Data_Analytics_A_Systematic_Literature_Review_Of_Tools_Techniques_And_Applications
https://www.researchgate.net/publication/385805476_Python_For_Data_Analytics_A_Systematic_Literature_Review_Of_Tools_Techniques_And_Applications
https://www.researchgate.net/publication/385805476_Python_For_Data_Analytics_A_Systematic_Literature_Review_Of_Tools_Techniques_And_Applications
https://link.springer.com/chapter/10.1007/978-3-031-43725-0_7
https://link.springer.com/chapter/10.1007/978-3-031-43725-0_7
https://www.researchgate.net/publication/377331587_Advanced_Techniques_in_Python_for_Effective_Data_Visualization
https://www.researchgate.net/publication/377331587_Advanced_Techniques_in_Python_for_Effective_Data_Visualization
https://books.google.com/books?id=_1PdDwAAQBAJ
https://books.google.com/books?id=_1PdDwAAQBAJ
https://www.researchgate.net/publication/373919503_An_Exploration_of_Python_Libraries_in_Machine_Learning_Models_for_Data_Science
https://www.researchgate.net/publication/373919503_An_Exploration_of_Python_Libraries_in_Machine_Learning_Models_for_Data_Science
https://www.researchgate.net/publication/373919503_An_Exploration_of_Python_Libraries_in_Machine_Learning_Models_for_Data_Science
https://www.ijmh.org/wp-content/uploads/papers/v4i8/H0834044820.pdf
https://www.ijmh.org/wp-content/uploads/papers/v4i8/H0834044820.pdf
https://www.academia.edu/download/103702444/Data_Analysis_and_Visualization_Using_Py.pdf
https://www.academia.edu/download/103702444/Data_Analysis_and_Visualization_Using_Py.pdf


September 2021., 2021, pp. 137–141. URL: https://www.metropolitan.ac.rs/files/2021/10/
Proceedings-12th-International-Conference-on-e-Learning-2021.pdf.

[30] N. Dimitrijevic, N. Zdravkovic, V. Milicevic, An automated grading framework for the mobile
development programming language kotlin, International Journal for Quality Research 17 (2023)
313–324. URL: http://ijqr.net/paper.php?id=1071. doi:10.24874/ijqr17.02-01.

[31] E. Kisić, M. R. Milić, N. Zdravković, M. A. Conde, The effects of implementing project-based
learning in the programming course, in: eLearning 2023 : The Fourteenth International Conference
on eLearning 2023 / Proceedings 14th International Conference on eLearning (eLearning 2023),
Belgrade, Serbia, September 28-29, 2023., 2024, pp. 55–66.

62

https://www.metropolitan.ac.rs/files/2021/10/Proceedings-12th-International-Conference-on-e-Learning-2021.pdf
https://www.metropolitan.ac.rs/files/2021/10/Proceedings-12th-International-Conference-on-e-Learning-2021.pdf
http://ijqr.net/paper.php?id=1071
http://dx.doi.org/10.24874/ijqr17.02-01

	1 Introduction
	2 Related work
	2.1 Learning Data Visualization in Programming Courses
	2.2 Autograding tools for Programming Education

	3 Proposed Approach and implementation
	3.1 Matplotlib
	3.2 Seaborn
	3.3 NumPy
	3.4 Jupyter Notebooks

	4 Curriculum and Learning Path
	5 Conclusion and future work

