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Abstract 
The CellCards knowledgebase aims to systematically gather, and represent individual cell types. This 
study presents our development of a dynamic extraction, transformation, and loading (ETL) pipeline 
designed to automatically populate the CellCards database with a vast array of cells from ontologies, 
including the Cell Ontology (CL) and Cell Line Ontology (CLO). The CellCards database schema includes 
five tables, with a key feature being the use of one table to encompass all necessary terms from the 
ontologies and another table to outline the relationships among these terms. The ETL process is powered 
by a Python script that embeds SPARQL queries directed at the Ontobee SPARQL endpoint. The final 
ETL program successfully extracted and loaded over 3,500 cell types from CL and 40,000 cell line entries 
from CLO into the new CellCards database, including the cell type name, parent cell type, synonyms, 
anatomical locations, etc. The gene biomarkers of cells were automatically extracted from the Common 
Coordinate Framework Ontology (CCFO). This enhanced database will be used to update the website 
and query program, with these updates scheduled for summer 2024.  
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1. Introduction  

CellCards (https://cellcards.org) is an innovative, ontology-based knowledge system designed to 
systematically collect and integrate cell type information from a variety of sources about the diverse 
array of cells of the human body [1]. By doing so, CellCards aims to utilize the hierarchical 
organization of cellular data, paving the way for a structured approach to understanding cellular 
functions and relationships.  
      Ontologies have been widely used to consistently and semantically represent the knowledge 
about various cell types. The Cell Ontology (CL) [2] and Cell Line Ontology (CLO) [3] are two 
community-based ontologies for representing various cell types and cell line cells, respectively, 
which were used as our primary source of data extraction and reference for associating each cell 
type’s annotations and relationships correctly. Other cell-related ontologies utilized include Uberon 
Anatomic Entity Ontology [4], used primarily for fetching anatomical entities that have 
relationships with cells from CL or CLO, Common Coordinate Framework Ontology (CCFO) [5] as 
the primary source of biomarker data, and the HUGO Gene Nomenclature Committee (HGNC) [6] 
as the source for related biomarkers IDs. 
       This paper reports our development of an enhanced ETL (Extract, Transform, Load) data 
pipeline that extracts, transforms, and loads over 3,000 cell types from CL and 35,000 cell lines from 
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CLO, adding to around 45,000 rows of data across the tables in the CellCards database, utilizing 
methods such as multi-threading, and REST API requests, programs such as MySQL Workbench to 
manage the database, different query languages such as SPARQL and SQL to extract and load data, 
and Python that executes the ETL pipeline. 

2. Methods 

Data sources: Cell information is extracted from the CL [2] and CLO [3], gene names/labels and its 
association with each cell type contained within the aforementioned ontologies come from CCFO [5] 
and its annotation comes from HGNC [6].  

Updated design of CellCards MySQL database schema: The new database schema is based 
on the Genomics Unified Schema (GUS) Schema that was originally developed for the VEuPathDB 
project (https://github.com/VEuPathDB/GusSchema). Instead of having each type of entity (such as 
cell, cell line, anatomical entity, gene, etc.) as a table, the GUS schema uses a small number of general 
tables to represent different types of entities.    

ETL development: The ETL data extraction method automates the data insertion process into 
the various tables within the CellCards MySQL database. A Python script was developed to streamline 
this workflow. The ETL process can be broken down into three main steps: (1) Extract: The ETL 
program embeds specific SPARQL query scripts to extract data from the ontologies. The most efficient 
scripts were integrated into the Python script through use of the SPARQLWrapper library 
(https://github.com/RDFLib/sparqlwrapper). This step involves taking an input cell ID (e.g., 
CL_0000653) and its relevant ontology (such as CL or CLO) and appending them to an 
Internationalized Resource Identifier (IRI) prefix to perform the SPARQL query appropriately. (2) 
Transform: Once the data is extracted, the next step is to transform it into the desired format. This 
might involve operations such as trimming whitespace, adding semicolons, or compiling multiple 
values into a single list if storage in a single column is desired. (3) Load: This final step involves all 
the operations required to load transformed data into its appropriate table in the CellCards database. 

 

 
 

Figure 1: An ETL flowchart for querying a specific cell type in an ontology, such as CL.  
 

A slightly different approach was taken to obtain the biomarker information during the extraction 
and transformation steps. Firstly, a SPARQL query on the CCFO ontology was executed to get each 
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cell's biomarker IDs (HGNC IDs) and names. Then, three data structures were utilized to efficiently 
associate each biomarker with its corresponding cells: a set that contained all distinct HGNC IDs 
returned from the SPARQL query and two hashmaps. The first hashmap mapped a CL IRI to its key 
in the t_cells table, allowing a quick lookup of cell information. The second hashmap mapped an 
HGNC ID to a list of strings, with the gene's label as its first entry. This list of strings was then 
populated by the t_cells IDs of the cells associated with this biomarker as the results from the SPARQL 
query were parsed, where each cell's t_cells ID was obtained through its association to its CL IRI in 
the first hashmap mentioned, ensuring that each cell type's biomarker data was accurately linked to 
its database entry. 

Once the initial associations were made, the set of HGNC IDs was used to perform a request on 
the HGNC REST API to obtain the gene's NCBI Entrez Gene [7] and PR [8] IDs. Since a set was used 
as its container, we were guaranteed non-repeated HGNC IDs, meaning no unnecessary requests 
would be made. Four threads were then utilized to perform this task, where each executed the request 
to the REST API with a quarter of the HGNC set while respecting the API's limits of 10 requests per 
second. Implementing multi-threading was crucial for run-time efficiency, as without multiple 
threads, this process would take about 30 minutes to complete compared to the current 2-minute total 
run time, significantly speeding up the data extraction process and ensuring that the large volume of 
biomarker data was processed promptly without overloading the API. The Ontology of Genes and 
Genomes (OGG) identifiers were calculated based on its associated NCBI Entrez Gene IDs and the 
OGG ID generation rule [9].  

After this process was done, the results from the threads were combined into another hashmap, 
where the HGNC ID mapped to a list of size 3, containing, in order, its PR ID, NCBI Gene ID, and 
description, which was then used to perform the insertion into the t_gene_proteins table in a similar 
fashion as the preceding tables.  

Testing and evaluation: Our team utilized a manually generated podocyte CellCard to determine 
the specific information we needed to retrieve for each cell type. By closely examining the 
relationships and attributes listed on the podocyte CellCard, we could refine our data extraction and 
transformation processes to ensure we captured all relevant details. Several different ways of 
inputting data into the script were also developed, such as command line options for reading in CSV 
files (file input redirection) or creating a CSV file with the results from the queries.  

3. Results 

3.1  CellCards database schema design 

Our updated CellCards MySQL database includes 5 populated tables (Figure 2). The table t_cells 
contains general information about the cell type and an ID that links a cell type to its biomarkers in 
the t_gene_proteins table, t_synonyms lists alternative names and identifiers, t_ontology_term 
catalogs its ontology data, t_ontology_term_relation outlines the relationships within its original 
ontology, and t_gene_proteins records its associated biomarkers and their identifiers across NCBI, 
HGNC, OGG and PR.  

 



 
 

Figure 2: The CellCards database schema. 
 

3.2  Ontology-based ETL extraction of cell information 

Using the ETL data extraction method, we successfully loaded all of the data present in CL and CLO 
into the CellCards database tables t_cells, t_synonyms, t_ontology_term, t_gene_proteins, and 
t_ontology_term_relation, while optimizing run times by employing multi-threading, significantly 
reducing processing time when requesting data through the HGNC REST API.  

Currently, 2 SPARQL scripts are implemented into the Python ETL and it collectively fetches 
information such as: cell ID, name, definition, “part of” relationships, synonyms, database references, 
and HGNC IDs. This integration formed a flexible and robust scaffold capable of retrieving all of the 
required attributes and characteristics associated with an arbitrary cell ID from either CL or CLO.   

 

 



 
Figure 3: Demonstration of ETL result using the podocyte as an example.  

 
Figure 3 provides a comprehensive illustration of the data available for "podocyte" (CL_0000653) 

across the tables t_cells, t_synonyms, t_ontology_term, t_ontology_term_relation, and 
t_gene_proteins. The figure highlights the detailed and interconnected nature of the data.  

The database now holds over 45,000 rows of data across these five tables. Each table serves a 
distinct purpose in encapsulating the vast array of information derived from the CL and CLO. This 
includes not just basic cell type data but also complex relational data that ties together synonyms, 
ontology terms, and biomarker information, thereby offering a robust and comprehensive resource 
for researchers. This extensive dataset ensures that researchers have access to a wealth of information 
for in-depth analysis and study, further advancing our understanding of cellular biology and 
ontology. 

4. Discussion 

The CellCards ETL (Extract, Transform, Load) method proved to be highly efficient in extracting, 
transforming, and loading thousands of cell records from both the Cell Ontology (CL) and the Cell 
Line Ontology (CLO) into the CellCards database. This process not only established a comprehensive 
foundation for unifying diverse cell type data but also enabled the detailed mapping of cell type 
connections, relationships, and interactions. By doing so, it provides a robust backend infrastructure 
for the CellCards website.  

Developed with semantically enabled interoperable ontologies, CellCards ensures that its data is 
both machine-readable and human-readable, facilitating better understanding and utilization of cell 
data. This design allows the database to seamlessly integrate with various programs, enhancing its 
utility across a wide range of applications, including bioinformatics, computational biology, clinical 
research, and drug development. The ability to integrate CellCards into different computational and 
analytical contexts significantly broadens its applicability and effectiveness in supporting scientific 
research and innovation.  

Future direction: The plan for the web interface is to be simple yet powerful, allowing users to 
navigate and access information efficiently. Future enhancements will include additional 
computational analysis tools that leverage the extensive knowledge within the database. 
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