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Abstract
The Gene Ontology (GO) encapsulates shared knowledge on the functions of gene products and provides
a knowledge structure for enrichment analyses of omics data. Such analyses enable researchers to place
their findings in the context of current biological knowledge. These results are therefore time-sensitive,
and change with our changing knowledge of biology. For research hot spots, such as cancer, or the recent
SARS-CoV-2 pandemic, the evolution of knowledge is rapid and can heavily influence the interpretation
and comparability of omics results. Consequently, as GO evolves, terms and their annotations are
merged, added or made obsolete. This can have further influence on the meaning and consistency of
conceptualized knowledge for related terms, which is known as semantic drift.

In this study, we investigated the extent of GO evolution and semantic drift by analysing changes to
the GO network structure, connectivity and materialization. We assessed the impact of these temporal
changes by reanalysing functional enrichment data and comparing the differences between biological
conclusions that can be drawn with different versions of GO. In addition, we provide an open-source
tool to enable researchers to perform functional enrichment analyses using GO from any time-point. It
can be used to improve the comparability and reuse of published data, and to enable researchers to gain
new insights from their own datasets as new knowledge is shared.
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1. Introduction

The Gene Ontology Knowledge Base (GOKB), made up of the Gene Ontology (GO) and its
annotations (GOA) [1, 2] [3, 4] is used throughout the life sciences in many analysis methods,
including functional enrichment, semantic similarity and link prediction[5, 6, 7, 8, 9, 10, 11].
These applications highlight the importance of the GOKB for analysing data in the context of
our current biological knowledge. As our knowledge changes, GOKB evolves to reflect those
changes, with some ontology terms and annotations becoming obsolete or merged, and new
terms and annotations being added[12]. This means that reanalysing data with new versions of
GOKB can provide new insights. Additionally, if studies are performed with outdated versions
of GO, conclusions and results from these studies should not be directly compared[13].

Previous work has shown that researchers rarely provide metadata related to the version of
GOKB in publications [14] and tools which use the GOKB as a knowledge source do not often
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follow the GO monthly release schedule, thereby providing analysis results based on outdated
knowledge from older versions of GOKB[15]. This can have an impact on the reproducibility
and comparability of results[16].

In this study, we conducted a comprehensive analysis of the changes to GOKB network
structure from 2015 to 2021, aiming to understand the extent of ontology evolution (i.e. the
explicit addition, merging or obsolescence of terms), and semantic drift (i.e. the implicit changes
in the meaning of terms caused by the evolution of related terms). We measured the extent of
these changes using changes to semantic similarity and ontology materialization and assessed
the biological impact of GO evolution on differences in functional enrichment results. For
functional enrichment, we present a case study from SARS-CoV-2 protein interaction data,
where rapid comparison was necessary and time-sensitive, and different versions of GO lead to
large differences in functional enrichment results. Overall, our research shows the importance
of versioning for the use of GOKB, and motivates a greater focus on the temporal aspects of
knowledge management. The tool we developed for performing the functional enrichment
analysis and comparison is also provided at github, the tool dynamically collects GOKB data
from any selected time-points, performs functional enrichment, and provides a method for
visualizing the enriched terms according to their proximity in the GO hierarchy.

Materials and methods

Data Sources used in this study

• Gene Ontology and GO Annotation archive files were obtained from http://release.
geneontology.org/ in monthly intervals from Jan 2015 to Dec 2021, and also from Sep
2023 (the latest version at the time of the analysis. We used human annotation files
’goa-human.gaf’ which includes proteins annotated in Swiss-Prot[17] or the longest
TrEMBL[18] transcript if there is no Swiss-Prot record.

• Protein reviewing status, describing UniProtKB[19] status of reviewed (Swiss-Prot) or
unreviewed (TrEMBL), were acquired from UniprotKB[19]. A total of 20386 proteins were
labelled reviewed, which denotes that they were annotated in Swiss-Prot.

• The SARS-CoV-2 viral protein interaction network was obtained from Gordon et al.[20]
and can be downloaded from Ndex SARS-CoV-2. 332 high-confidence interactions between
27 SARS-CoV-2 viral proteins and human proteins were included.

GO and GO Annotations

A given version of the GO graph, G, can be represented as 𝐺 = (𝑉,𝐸) where 𝑉 represents
the set of GO terms and 𝐸 represents edges in the graph. Edges are the relationships between
two terms in the hierarchy, representing the majority of interactions in GO. GOA refers to all
the statements relating GO terms to a particular gene product. For a single statement, a gene
product is annotated with a specific GO term, supported by different sources represented by
evidence codes, ranging from high quality manually annotated experimental evidence, to lower
quality automatically generated annotations [21].

https://github.com/chestnzu/GO-evolution.git
http://release.geneontology.org/
http://release.geneontology.org/
https://www.uniprot.org/uniprotkb?facets=reviewed%3Atrue%2Cmodel_organism%3A9606&query=%2A
https://www.ndexbio.org/#/network/43803262-6d69-11ea-bfdc-0ac135e8bacf


The number of terms and edges in GO were recorded for each release between Jan 2015 and
Dec 2021. Differences between the numbers of new terms and obsolete terms were calculated
using two consecutive releases of GO. We applied the same methodology to calculate the
differences in GOA, and represented the differences by ratios. Ratios that changed by more than
10% across two consecutive releases were considered significant and further analysed to identify
changes to Evidence Code (EC) composition[22]. The proportion of annotations categorized by
each evidence code was also recorded. Increases in the number of manually curated evidence
codes, as opposed to those automatically generated, were considered indicators of an increase
in annotation quality.

Quantification of changes to the GO network

We analysed and characterized each GO aspect Biological process (BP), Molecular Function
(MF), and Cellular Component (CC) separately, classifying edges into two groups based on their
relationship type: subclass (is_a), and others (part_of, regulates etc). Then we computed the
average degree for each aspect and the overlap ratio of the edge lists from Jan 2015 and Dec
2021, using a Jaccard index method (shown below).

𝐽(𝑉1, 𝑉2) =
|𝑉1 ∩ 𝑉2|
|𝑉1 ∪ 𝑉2|

(1)

Where 𝑉1, 𝑉2 ⊂ 𝑉 and contain the top 20 nodes in 2015 and 2021 by degree.
We also calculated the degree centrality of GO terms to identify structurally important hub

terms, as they play a critical role in network structure and knowledge representation. We
compared the top 20 hub terms (i.e. those with the highest degree centrality scores) between
Jan 2015 and Dec 2021, to explore the overall structural effects of GOKB evolution.

Impact of GO Evolution on Materialization

Materialization is the process of inferring implicit statements in an ontology based on provided
axioms [23]. To evaluate the impact of GOKB evolution on the materialization of a specific term,
we used a size-based metric to calculate the Consistency Score of the represented Biological
Knowledge (CSBK).

𝐶𝑆𝐵𝐾 =
|𝐴1 ∩𝐴2|
|𝐴1 ∪𝐴2|

(2)

Where 𝐴1 denotes the set of entailed axioms related to term v in 2015, and 𝐴2 denotes the set
of entailed axioms in 2021.
We use breadth-first search (BFS)[24] to find all possible paths to represent the axioms where
the source was a particular term v in a given version of GO. If there was a path from a particular
term v to an parent term 𝑣𝑝, then the subclass axioms linking the particular term v to 𝑣𝑝 must
exist. Terms were divided into three groups based on their positions; 1) internal terms, 2) leaf
terms, and 3) Switch terms. Switch terms were defined as terms that transitioned from being
internal in 2015 to leaf terms in 2021, or vice versa. For each group, we visualized the consistency
scores by using a violin plot. The higher the consistency score, the less influence the terms
received from the evolution of GOKB.



Assessing GO Evolution with Semantic Similarity

Semantic similarity methods measure the proximity of two ontology terms. Where semantic
drift occurs, the proximity can change, resulting in larger or smaller values of semantic similar-
ity. There are many different methods to calculate the semantic similarity between ontology
terms. These include edge-based methods, which are based on the length of the path between
compared terms[25], node-based methods, which rely on the Information Content values (e.g.
Resnik[26][27]), and representation learning methods like Onto2Vec[28] and Node2Vec[29],
which rely on the inferred and asserted logical axioms.

We used two methods to calculate the semantic similarity between GO terms in different
GO versions. The first method, Resnik[26], is one of the most commonly used methods, and
computes the semantic similarity of two ontology terms using the Information content (IC)
value of their Most Informative Common Ancestor (MICA), that is:

𝑠𝑖𝑚(𝑣1, 𝑣2) = 𝐼𝐶(𝑀𝐼𝐶𝐴) (3)

The IC value is an indicator of the specificity and informativeness of a given term[26]. The IC
value of a specific term can be determined by how frequently it appears within the annotation
corpus, Which is:

𝐼𝐶(𝑣) = − log(𝑝) (4)

The IC value of the term can be normalized by dividing the maximum IC value. That is:

𝐼𝐶norm(𝑣) = 𝐼𝐶(𝑣)/𝐼𝐶𝑚𝑎𝑥 (5)

The second method we used was a machine learning-based method named Onto2Vec.
Onto2Vec is an approach that learns the vector representation of GO by transforming the
existing and inferred ontology axioms into text sequences and then embedding these ontology
terms into vectors based on the context provided by the surrounding text[28]. Here, we used the
Jan 2015 and Dec 2021 versions of GO and Onto2Vec to represent ontology terms by numerical
vectors, using the python package mowl[30] version 0.3.0. The following parameters were used
in Onto2Vec; Vector Size 200, Min Count 1, Window 10, Epochs 5, sg 1, negative 5.

To examine changes to semantic similarity, we randomly generated 20 sets of 50000 GO-term
pairs, for each GO aspect that were not marked as obsolete in 2015 or 2021.

We used a paired t test to identify significant semantic similarity changes with the Benjamini-
Hochberg multiple testing correction. Results with an adjusted p-value below 0.05 were classified
as statistically significant. To ensure robustness, we repeated this experiment 5 times.

The Impact of GO Evolution on Functional Enrichment Analysis

We investigated the impact of GO evolution on enrichment analysis results using data from
a highly cited SARS-CoV-2 Protein-Protein interaction network (PPI) published during the
pandemic[20]. Since the outbreak of SARS-CoV-2, more than 960,000 research papers have been
published on this topic, according to the Covid Data Portal (https://www. covid19dataportal.org/)
[35]. This intense activity contributed to a rapid increase in biological knowledge. We therefore
expected to observe changes in GOKB as a result, particularly in to immunological terms and



annotation. Our original intention was to compare pre- and post-pandemic GOKB versions and
show the extent to which knowledge changed in that period. However, the original analysis
showed that GO enrichment analysis was conducted using GOKB from MSigDB v6.1 (which
was released in Oct 2017). Consequently, we analysed the data from that time-point in addition
to using a GOKB version from a date close to the publication date (March 2020), and from a
version after the pandemic (September 2023). We hypothesized that the use of an earlier version
of GOKB in the original analysis may have resulted in missing insights relating to SARS-COv2
knowledge gained in the early days of the pandemic. Analysing three time-points allows us to
investigate whether this was the case.

Enrichment analysis was conducted using a package we developed (V1.0), which can be found
at here. The GOKB data used in the analysis was downloaded from the GO archive. We used the
whole GO annotation as the reference set, and a hypergeometric test to calculate the p-values,
and the adjusted p-values using Benjamini-Hochberg procedure (enriched terms <0.05). The
top 20 enriched terms were used for comparing the differences between enriched results sets,
using a Jaccard index and visualised using networkx version 3.2.1. The enriched terms of a
viral protein cluster were grouped based on their proximity in the GO hierarchy. For any two
enriched terms, if the length of the path between them was less than four, edges on the path
were added to a networkx graph. Graph clusters were annotated with their Most Informative
Common Ancestor (MICA).

Results

GO evolution - Terms and Annotations

Between Jan 2015 and December 2021, the number of terms in the Gene Ontology grew from
40,470 to 43,789. Fig 1A shows that instead of steady growth, the number of GO terms peaked
in Dec 2018 and then started to decline until the end of 2021. Fig 1b presents the differences
in the numbers of terms in two consecutive releases. We observed a greater variation in BP
compared to the other two aspects, with more terms being added and being made obsolete.

A similar situation was observed for GO human annotations, which increased from 441,062 in
Jan 2015 to 616,308 in Dec 2021. As Fig 1B and Table 1 shows, multiple reductions and increases
occurred. The largest reduction occurred between June 2016 and July 2016, during which 89,743
annotations were removed, while only 260 annotations were added. This corresponds with
the documented removal of annotations associated with unreviewed proteins. Analyzing the
changes to the proportion of annotations categorized by different evidences codes in GOA
(Fig 2) shows experimental evidence codes increased from 29.5% in Jan 2015 to 55% in Dec 2021,
and became the largest annotation group, while electronic annotations, which constituted the
largest part of GOA and accounted for 43.2% in 2015, experienced a decline from 190,464 in Jan
2015 to 73,882 in Dec 2021, ranked third by the end.

Quantifying changes to the GO network structure

Analysing the number edges in GO revealed an overall growth (Table 2) with overlaps in edge
composition between 2015 and 2021 of 65% BP, 65% MF, and 35% CC, indicating large structural

https://github.com/chestnzu/GO-evolution.git


Figure 1: A) Number of GO terms and annotations per month, between Jan 2015 and Dec 2021. Due
to the absence of annotation file for July 2017, there is a dip in annotations. B) Changes to GO terms
between consecutive releases. Red = added terms, yellow = obsolete terms, and grey = total number of
terms

changes across the network. The average degree, which is an indicator of the density of the
network, decreased overall, with the largest being in CC (18%).

The degree distribution of GO follows a power law, and can therefore be considered scale-free.
As such, the hub terms play an important role in connectivity. Significant changes to the highest
ranked hub terms can signify large changes to the network structure. Our analysis showed the
majority of CC hub terms changed (17/20), and one third of BP hub terms (7/20). There was a
much smaller effect observed in MF hub terms (4/20).
Overall, we conclude that GOKB evolution exerts a large influence on the structure of GO.

Materialization of Biological Knowledge in GO

The conceptualized biological knowledge of a particular GO term can be seen as a specialisation
or an intersection of biological knowledge represented by all its parents, according to asserted
and inferred axioms. As parent terms become obsolete, or new parent terms are added, this
conceptualized knowledge changes, influencing both asserted and inferred axioms[23], and

Table 1
GOA changes between 2015 and 2021. Annotation changes between 2015 and 2021. For two consecu-
tive releases, a change ratio of 10% or more was considered significant

GO Version Differences Obsoleted Added Ratio

16.06.01–16.07.01 89,483 89,743 260 18.73%
16.11.01–16.12.01 39,877 44,867 4,990 11.23%
18.02.01–18.03.06 57,264 3,914 61,178 13.03%
19.03.18–19.04.17 51,381 3,989 55,370 10.79%
19.04.17–19.05.09 54,471 1,920 56,391 12.82%
20.06.01–20.07.16 88,470 4,500 88,970 16.80%



Table 2
GO Network Metrics

Biological Process Molecular Function Cellular Component

Parameter 2015 2021 pt1 2015 2021 pt 2015 2021 pt

terms 26,929 28,429 +5.57% 9,859 11,177 +13.4% 3,682 4,183 +13.61%
edges 65,515 66,348 +1.27% 12,428 14,003 +12.7% 7,182 6,997 +2.58%
avg_deg 4.87 4.67 -4.11% 2.52 2.51 -0.4% 3.90 3.20 -17.95%
avg_deg(is_a) 3.90 3.67 -5.90% 2.44 2.44 0% 3.07 2.30 -25.08%
avg_deg(other)2 0.97 1 +3.09% 0.08 0.07 -12.5% 0.83 0.9 +8.43%
overlap3 100% 65.09% -34.91% 100% 65.49% -34.51% 100% 34.74% -65.26%

resulting in semantic drift.
Terms located at the leaf positions within the GO network have no child terms, so any modifi-

cations to them will solely influence the knowledge they themselves represent. Modifications to
internal terms, however, especially those with a high degree, can greatly affect conceptualized
knowledge (materialization) in the network. When analysing terms which became obsolete
in our time-period, we found 49.77% of BP terms, 40.28% of MF terms and 45.16% of CC terms
were internal, and 39.02% BP, 8.12% MF and 20.82% CC were added as new internal terms. This
observation indicates large changes to the materialization of GO. To quantify the impact, we
used a size-based metric from Pernisch et al. [23] to calculate the consistency score of the
represented biological knowledge (CSBK) of all GO terms. Fig 3 shows a violin plot of these
results. The median consistency scores were less than 0.4 in all three GO aspects. The average
consistency score of BP, which occupied the largest proportion of terms, was around 0.8. It
should be noted that Fig 3 also shows that not all terms were influenced by GOKB evolution in
materialization. For MF, more than 50% of terms were stable, with a consistency score of 1.

Figure 2: The ratio of annotation with different evidence codes.Experimental evidence codes (EXP),
Phylogenetically-inferred annotations (PHY), Computational analysis evidence code (COM), Author
statement evidence codes (AUT), Curator statement evidence code (CUR) and Electronic Annotation
(IEA)



Figure 3: Knowledge Consistency Evaluation. Distribution of consistency scores in GO BP, MF and
CC, classified into 3 groups: internal, in 2015 and 2021, leaf, in 2015 and 2021, and switch. Black dots
are median values.

Assessing Changes to GO via Semantic Similarity

The proximity of terms in an ontology can me measured using semantic similarity. As an
ontology evolves over time, we can therefore use semantic similarity to assess proximity
changes. We randomly generated 20 sets of 50000 GO term pairs for each GO aspect and
calculated the semantic similarity scores, using the Resnik and Onto2Vec methods, with Jan
2015 and Dec 2021 versions of GOKB, and then used a paired t-test to determine if there was a
statistically significant difference. To ensure the robustness of the outcome, we repeated the
experiment 5 times. For Resnik, all changes were significant. For Onto2Vec, table 3 shows all
CC results and the majority of MF results were significant. For BP, over half were significant.
The changes in proximity for the majority of terms indicate a large amount of semantic drift in
GO over time.

Table 3
The paired t-test outcome of semantic similarity results, classified as significant (sig) <0.05 adj P-Value,
or insignificant (Insig) >0.05 adj P-Value, repeated over 5 experiments.

BP_Sig BP_Insig MF_Sig MF_Insig CC_Sig CC_Insig

Exp1 14 6 20 0 20 0
Exp2 16 4 19 1 20 0
Exp3 13 7 17 3 20 0
Exp4 17 3 17 3 20 0
Exp5 16 4 19 1 20 0

The Influence of GO Evolution on Functional Enrichment Analysis

Functional enrichment analysis, over GOKB, is one of the most widely used methods for
summarising and interpreting the outcome of large-scale differential expression experiments.
As GO and its annotation corpus evolve, the terms that are considered enriched can change,
which can change the interpretation of experimental conclusions. This can be a powerful way of



Table 4
Jaccard Index of top20 enriched GO terms for each SARS-CoV-2 protein and interacting proteins,
comparing two periods: September 2017 to March 2020, and September 2017 to September 2023

Group 2017 vs 2020 2017 vs 2023 Group 2017 vs 2020 2017 vs 2023 Group 2017 vs 2020 2017 vs 2023
Nsp9 0.481 0.025 M 0.600 0.290 Orf8 0.538 0.481
Nsp2 0.905 0.111 Nsp1 0.818 0.379 Nsp12 0.379 0.538
Nsp13 0.739 0.176 Orf9b 0.538 0.379 Orf9c 0.538 0.600
Orf10 0.739 0.212 E 0.429 0.379 Nsp4 0.6 0.667
Nsp8 0.481 0.250 Nsp7 0.739 0.429 N 0.538 0.667
Orf3a 0.667 0.290 Nsp10 0.818 0.429

gaining new insights from evolving biological knowledge, but it can also lead to reproducibility
and comparability problems if versions of GOKB are not reported well. We reanalysed functional
enrichment data from a highly cited SARS-CoV-2 research paper [20], where knowledge was
rapidly evolving due to the recent pandemic. Gordon et al. investigated interactions between
SARS-CoV-2 proteins and networks of interactions with human proteins. We reanalysed the
data using the same versions of GO and GOA as used originally (September 2017). We show
these results alongside results from performing the same analysis with versions of GO and GOA
that were contemporary with the paper publication date (March 2020), and finally with results
from a more current version, post-pandemic (September 2023).

Figure 4: Top 20 enriched terms (ranked by adj P-Value) for SARS-CoV-2 viral bait protein Nsp9 and its
interacting human proteins between 2017 and 2020 (left), and between 2017 and 2023 (right). Red and
blue nodes exclusively enriched in earlier or later time-points respectively. Grey nodes enriched in both
time-points. Clusters annotated with their most common ancestor.

Table 2 summarizes the results of a Jaccard index obtained by comparing the top 20 enriched
terms between different time-points for each network cluster. Our re-analyses show that the
majority of clusters have a score of below 0.5 when comparing enrichment between 2017 and
2023, which may be expected in a time-period of 6 years. However, four network clusters
had scores of below 0.5 between 2017 and 2020. NSP9 is one example. Only 1 in 20 enriched
terms were shared between 2017 and 2020. In Sep 2017, Nsp9 is enriched in terms related to
RNA transport, cellular anatomical entities and cellular component organization, while at later



time-points, it was enriched in entities related to nuclear transport, structural molecule activity
and RNA location, as figure 1 shows. If the original experiment had used an up-to date-version
of GOKB for their analysis, the function of this cluster, and others with a low Jaccard score
would have potentially been interpreted differently.

Discussion and Conclusion

The GOKB is a dynamic source of biological knowledge, which is essential for many omics data
analyses. Our results highlight the importance of the temporal aspect of GO, and show the value
of re-analysing datasets as our knowledge changes. Since 2015, the number of terms in GO
has grown, but not continuously. There are periods of expansion, and periods of curation and
consolidation. For GO annotation, there has been a general increase in experimentally confirmed
annotations, and a reduction in automatically generated annotations. Both observations indicate
an improvement to the quality of represented knowledge over time. An increase in the number
of annotations may also indicate an increase in human protein function knowledge.

The network analysis results illustrate that GOKB evolution leads to changes in both the
concepts and network structure, affecting the materialization process and inducing semantic
drift. However, we focus specifically on human data, so it would be interesting to explore this
phenomenon more broadly using data from other organisms.

The differences we observed between functional enrichment results were pronounced and
would lead to differences in the biological interpretations of results. It was expected that GOKB
would change rapidly in response to new SARS-Cov2 knowledge. However, the results were
more striking than expected because the authors of the original paper used an outdated version
of GOKB for their initial analysis. The reason for this choice was unclear. The authors reported
the version of the analysis tool that was used, but not the version of GOKB. It is possible that
it was used with the assumption it was the latest version of GOKB. In a related study[14], we
found that some enrichment analysis tools did not report their GOKB update schedule or the
version of GOKB they currently used. Therefore, it may not always be possible for researchers
to easily determine whether analysis tools are using the latest knowledge. In situations where
it is essential that the latest knowledge is incorporated, using the latest available versions of
knowledge resources, and accurately reporting their versions is important for reproducibility.

The continuous evolution of GOKB reflects our evolving biological knowledge, so this dynamic
component is essential for sharing continuous scientific advances and a collective understanding
of biological processes. With increased awareness of the network effects of GOKB evolution
and semantic drift, we can improve reproducibility and therefore comparability and reusability
of such data across the life sciences.
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A. Online Resources

The source code for the functional enrichment tool can be found at github.com/chestnzu/GO-
evolution.git.
Supplementary data can be found at fairdomhub.org/investigations/665

https://github.com/chestnzu/GO-evolution.git
https://github.com/chestnzu/GO-evolution.git
https://fairdomhub.org/investigations/665?graph_view=tree
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