
.

Pyttern: a Python-Based Program Query Language
Julien Liénard1, Kim Mens1 and Siegfried Nijssen1

1Université catholique de Louvain

Abstract
Despite an abundance of tools available for expressing and detecting structural patterns in program source
code, their steep learning curve often creates a barrier for non-expert developers. To address this issue, we
present Pyttern, a program query language for Python that is easy to learn and use while maintaining sufficient
expressiveness for defining and detecting small structural coding idioms. Pyttern leverages a combination of
Python syntax and regex-like wildcards to identify coding patterns. To evaluate the strengths and limitations
of our language prototype, we conducted a study involving 30 junior developers. Participants were asked to
compare our language with established program query languages by expressing and detecting small coding
idioms or flaws. Based on the feedback gathered from this study, we highlight Pyttern’s strengths and areas for
improvement.

Keywords
Programming Language, Query Language, Pattern Matching, Python, Static Program Analysis, Software Tools

1. Introduction

Detecting structural patterns in program source code can be useful, to check whether developers
produce high-quality code that adheres to best practices [1]. In an educational context, it can help
raise students’ awareness of such practices and help educators assess their students’ understanding
of programming concepts and techniques. By identifying common misconceptions in student code,
personalised feedback and instruction could be provided to overcome such mistakes.

Teachers of introductory programming courses (e.g., secondary school teachers), however, are not
always expert developers. While program query languages (PQL) may help providing insights into
common coding patterns or flaws observed in students’ programs, teachers’ lack of extensive software
engineering experience may pose challenges when adopting such languages that often have a steep
learning curve.

To address this issue, we propose a program query language that balances usability and expressiveness,
providing a tool that is intuitive and easy to learn while still sufficiently powerful to write and detect a
wide range of structural code patterns. This paper presents an initial prototype of that language, which
was presented to a group of junior developers with the aim of identifying the language’s strengths and
limitations in practical usage.

Our proposed program query language is called Pyttern, a deliberate blend of the words ‘Python’
and ‘pattern’. Pyttern is a Python-based query language that combines regular expression elements
with Python syntax while performing its search on abstract syntax trees. Its main purpose is to help
non-experts write expressive structural patterns to detect in programs, in a language that is easy to
read and write by remaining close to the Python language it reasons about. In effect, the patterns to
detect resemble Python programs with holes represented by expressive wildcards.

The feedback obtained on the usage of this language during our preliminary evaluation has identified
several areas of improvement that will influence Pyttern’s future development. By iteratively refining
the language based on user feedback, we hope to improve its usability and efficacy, eventually making
it a helpful resource for teachers looking for ways to analyze student coding patterns.

BENEVOL24: The 23rd Belgium-Netherlands Software Evolution Workshop, November 21-22, Namur, Belgium
$ julien.lienard@uclouvain.be (J. Liénard); kim.mens@uclouvain.be (K. Mens); siegfried.nijssen@uclouvain.be (S. Nijssen)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:julien.lienard@uclouvain.be
mailto:kim.mens@uclouvain.be
mailto:siegfried.nijssen@uclouvain.be
https://creativecommons.org/licenses/by/4.0/deed.en

2. Related Work

In our evaluation (Section 4) we compare the strengths and weaknesses of Pyttern to some other
program query languages. Although many different PQLs have been proposed over the years, we
limited ourselves to three of them because of the limited number of participants in our study and the
time they had available. We opted for logic meta programming, AST traversal and regular expressions,
because of their prevalence and popularity in the field. They also represent vastly different approaches
to program querying.

Regular expressions (RegEx) are a widely used instrument for finding patterns in character sequences.
Codegex [2] and other program query languages or tools [3, 4, 5] often rely on regular expressions,
among other techniques, to analyze and query code. A majority of lint [6] and many other program
analysis tools work by parsing programs into an abstract syntax tree (AST) and traversing that tree to
analyse the structure of a program. Finally, quite some research has been conducted to explore the power
of logic meta programming to declare programming patterns as logic rules on top of object-oriented
programs, reified as a logic knowledge base [7, 8, 9, 10, 11]. Each of these different approaches will be
compared to Pyttern in Section 4.

In other program query languages, like Pyttern, queries are written in a syntax close to that of the host
programming language. Such queries typically take the form of a code snippet, potentially incorporating
additional syntax that goes beyond the capabilities of the underlying programming language. Such
queries are relatively straightforward to express, even for non-expert users, assuming that they are
sufficiently familiar with programming in the host language. The level of expressiveness and precision
achievable with such code queries varies, depending on the user intent, language definition and the
particular search engine in use.
Plain code represents the simplest form of code query, involving code snippets defined within the

syntax of the host programming language itself [12, 13, 14].
Code with holes takes a different stance. Instead of relying on a search engine to determine to what

similar code fragments a given code snippet matches, some search engines support queries that explicitly
define one or more ‘holes’ within the code [15, 16, 17]. Such queries allow the user to specify holes
as placeholders for part of the code. Some search engines go further and accept queries in custom
languages that significantly extend an existing programming language [18, 19].

In particular, a main source of inspiration for Pyttern was SCRUPLE [15]. SCRUPLE is a tool to
describe high-level patterns for querying over C source code. It contains a set of symbols that can
be used as substitutes (‘holes’) for syntactic entities in C. The SCRUPLE pattern language derives its
expressive capability from four primary categories of pattern symbols: wildcards for single syntactic
entities, wildcards for collections of syntactic entities, named wildcards and some additional features.

SCRUPLE uses an extended nondeterministic finite state automaton to match patterns in the code.
This Code Pattern Automaton (or CPA) uses 3 types of transitions: move to the left child, move to the
right neighbour and move to the next parent. It ensures that the CPA will always terminate as every
node can only be checked once with those transitions. If the CPA finishes on a terminal state, there is a
match. This technique served as inspiration for the matching algorithm used in Pyttern which uses the
same set of transitions when matching patterns in code. But Pyttern does not use a CPA but relies on
Tree Matching between the pattern and the code AST.

3. The Pyttern language

Pyttern is a new pattern description language with a Python-like syntax that blends readability and
flexibility, enabling developers of any skill level to define and detect various coding patterns and
flaws. By incorporating explicit wildcard elements, Pyttern allows for clear and expressive definition of
complex code patterns.

1 def count(lst, predicate):
2 →tot = 0
3 →for val in lst:
4 →→if predicate(val):
5 →→→tot += 1
6 →return tot

Listing 1: Example of an accumulator pattern in Python.

1 def ?(?*):
2 →?accumulator = 0
3 →?:*
4 →→for ? in ?:
5 →→→?:*
6 →→→→?accumulator += ?
7 →return ?accumulator

Listing 2: Accumulator pattern in Pyttern.

1 def approx_pi(n):
2 →var = 0
3 →if n > 0:
4 →→for i in range(n):
5 →→→var = (-1)**i / (2*i + 1)
6 →→var *= 4
7 →return var

Listing 3: Example of a flawed instance of the accumulator pattern in Python due to the use of ’=’
instead of ’+=’ at line 5.

Motivating example To illustrate this, let’s assume a teacher wants to check that their students
are using an accumulator pattern as instructed to solve a specific exercise. An accumulator pattern,
as illustrated in code listing 1, refers to a technique where you first initialize an accumulator variable
(line 2), and then iterate over a sequence (line 3), updating the accumulator variable with the result of
some operation during the iteration (line 5). In the end, the accumulator variable which retains the
cumulative result of all these operations is returned as result (line 6).

A possible Pyttern pattern to check whether a Python function implements an accumulator, is shown
in Listing 2. The key elements of the accumulator pattern are clearly visible on lines 2 (initialisation),
4 (iteration), 6 (accumulation) and 7 (returning) of the pattern. The remainder of the pattern consists
mainly of wildcards that serve as placeholders or "holes" in the program. For example, we are not
interested in the exact function name or argument list on line 1, nor the exact iteration variable or range
on line 4. Other wildcards such as those on lines 3 and 5 indicate that the for-loop and accumulation,
respectively, can occur at any indentation level. The code shown earlier in listing 1 matches this Pyttern
(accumulator) pattern. The colours indicate what wildcards match what part of the code. The program
shown in listing 3 does not match this pattern. It does not correctly increment the accumulation variable
on line 5 since it uses a mere assignment "=" instead of the "+=" as expected.

AST matching Even though Pyttern users are not exposed to it, the core idea underlying Pyttern is
to match an Abstract Syntax Tree (AST) representing a pattern, to the AST of a program in which to
detect the pattern. When matching a Pyttern pattern to a program’s AST, Pyttern aligns each node in
the pattern’s AST with corresponding nodes in the program’s AST. Pyttern matches nodes using their
labels starting from the root node.

If the pattern would contain no wildcards, the pattern would match the program code only if it is

identical to the program. However, Pyttern offers more flexibility through wildcards, which allows a
pattern to match a program by skipping some nodes in the program’s AST. A one-to-one correspondence
between nodes in the pattern and program ASTs is hence not rigidly enforced any more when these
wildcards are employed, enabling Pyttern to identify more complex code patterns where certain nodes
may be omitted or repeated in the program’s structure.

Pyttern’s wildcards Pyttern’s syntax and semantics thus revolve around the specification and
definition of matches of patterns that capture structural code characteristics within a program. They are
defined using a combination of Python and regular expression-like syntax. Table 1 summarises some of
the wildcards Pyttern currently supports to represent various code patterns. To make the understanding
of the language easier, each of its wildcards start with the ’?’ character. A more in depth description
and examples for each of the Pyttern wildcards can be found on GitHub1.

Wildcard Meaning
? Matches a single node in the AST
?* Matches zero or more nodes in an AST list node
?{n, m} Match between n and m nodes
?name Matches a single node and names it for later reference
?[Type, ...] Match an AST node of any of the given types
?: Matches the body of this wildcard at one nesting level
?:* Matches the body of this wildcard at any nesting level

Table 1
Wildcards supported by the Pyttern language.

Some implementation details For wildcard matching, Pyttern employs a recursive approach. It
relies on backtracking to take into account all potential instances of matching characters and wildcards,
which is necessary to process the named wildcards correctly, as they lead to dependencies between
matched parts of code that are far away from each other. The pattern matching begins by taking into
account the program’s top-level structures and then proceeds recursively through nested parts.

To construct ASTs for the Python programs on which the pattern will be matched, we use the native
AST class provided by Python.2 We cannot use the same AST class to produce ASTs for patterns
expressed in Pyttern, as it features special wildcard constructs that don’t exist in Python. Instead, we
use an ANTLR [20] parser library for Python, along with a Python grammar extension that complies
with Pyttern’s wildcard syntactic constructs. Our main motivation for choosing ANTLR is that it is
relatively straightforward to extend it with additional constructs for the wildcards.

Pyttern’s matching algorithm then employs a modified Depth-First Search (DFS) strategy to align and
match both ASTs. This DFS traversal is adapted to account for situations where nodes may be skipped
based on the wildcards used in the pattern. The DFS traversal navigates through both ASTs at the same
time to match corresponding nodes. If there are no children in both trees, the algorithm moves on to the
nodes’ right neighbour. Otherwise, it moves to the current nodes’ first child. The method goes to the
parent nodes’ neighbour if there are no right neighbours. When matching a wildcard, the wildcard can
change this sequence by directly going to the nodes’ right neighbour or the parents’ neighbour, skipping
some steps in the process. We use the same principle as explained in section 2 for SCRUPLE [15]. This
ensures that we always terminate the matching process.

4. Comparing Program Query Languages

Experiment To assess possible strengths and limitations of Pyttern w.r.t. other program query
languages (PQL), we conducted a study involving 30 junior developers. The participants were master-
1https://github.com/JulienLie/pyttern/tree/main
2https://docs.python.org/3.12/library/ast.html

https://github.com/JulienLie/pyttern/tree/main
https://github.com/JulienLie/pyttern/tree/main
https://docs.python.org/3.12/library/ast.html

Short name Description
if instead of while Code fragments without a while loop containing an if where instead there

should have been a while statement.
Erase argument value Code fragments that accidentally or purposefully erase an argument variable

by reassigning it to a constant.
Loop variable not used Code containing a loop with a loop variable that is not used inside the loop.
Misplaced return In Python, nested blocks are defined using indentation. This sometimes causes

a return statement to be at the wrong indentation level.
Too much indentation When writing programs, less experienced students sometimes create complex

solutions with lots of different indentation levels.
print instead of return Some students use a print statement instead of a return statement at the

end of their Python function.

Table 2
Coding idioms and flaws to be detected with different PQLs.

level university students in computer science or computer science engineering who followed a course
on programming paradigms. As part of this course they were asked to compare different PQLs by
expressing and detecting the same coding idioms or flaws in a dataset of student code that was provided
to them. The requested coding idioms and flaws can be found in Table 2. The four PQLs selected for this
study were: regular expressions with Python’s re module, AST traversal with Python’s ast module, our
Pyttern language prototype, and the use of Prolog with a set of predicates reasoning over an AST reified
as logic facts. Before the study, the participants completed anonymous surveys on their background as
well as on their knowledge of the two PQLs assigned to them.

The survey results are summarised in Figure 1. Our participants were primarily intermediate to
advanced Python developers with little experience in program query languages and intermediate
knowledge of Prolog (the basic concepts of Prolog were introduced earlier in a course they all attended).

Design Patterns PQL Prolog Python
Topics

Never Heard Of It 0

Beginner 1

Intermediate 2

Advanced 3

Expert 4

Complete Mastery 5

Ra
tin

g

2.312 1.000 2.062 3.375

Previous knowledge of different topics for the experiment

Figure 1: Background knowledge of the study participants

Next, during a two-hour session per language, they had to write program queries in two PQLs they
were assigned to. After the study, they completed another anonymous survey on how they appreciated
the two PQLs they experimented with. Finally, they were asked to experiment on their own with a third
PQL of their choice, and write a final report of about 5 pages, to compare the different PQLs they had
tried from different points of view. Table 3 shows how the languages were distributed over the different
participants, in such a way that we obtained sufficient coverage of the different PQLs, but with higher
coverage for Pyttern as that was the main language we wanted to compare against.

Language Pyttern AST Traversal RegEx Prolog

first 6 6 4
second 8 8
third 3 6 5 2
Total 17 12 9 10

Table 3
Distribution of query languages over participants

Results Since in this study we observed little or no difference due to the order in which the PQLs
were assigned to the particpants, in what follows we decided to group all results, regardless of the order
in which participants experimented with their first or second PQL.

Several participants did confirm that Pyttern strikes a right balance between expressiveness and ease of
use, although they also confirmed that this is the case for AST traversal. In the case of Pyttern, with
its syntax close to Python, its ease of use comes at the cost of a lack of expressiveness for more complex
queries. In the case of AST traversal, its expressiveness comes at the cost of a steeper learning curve.

Figure 2 indeed shows a tendency of Pyttern being appreciated as more easy to use than other PQLs,
and in particular than using AST traversal. Figure 3 shows that Pyttern scores less than the other
languages on its ability to express more complex patterns.

Strongly disagree Disagree Neutral Agree Strongly agree

AST

RegEx

Pyttern

Prolog

I thought this program query language was easy to use.

Figure 2: Box plot illustrating participants’ ratings on the ease of use of different program query languages.

Strongly disagree Disagree Neutral Agree Strongly agree

AST

RegEx

Pyttern

Prolog

This program query language is sufficiently powerful to allow
 me to express complex patterns in sufficient level of detail.

Figure 3: Participants’ ratings on the expressiveness of different PQLs to capture complex code patterns.

To improve Pyttern’s expressiveness, missing language features highlighted by participants were
having a negation operator or the ability to combine simpler patterns into more complex ones.

As opposed to expressiveness, Pyttern scores better than logic meta programming on several criteria.
As emphasized in Figure 4, it was considered (perhaps surprisingly) more declarative than the other
languages, including Prolog. This is due to the explicit AST representation (or complex regular expres-
sions) that queries need to manipulate in the other languages, whereas in Pyttern this remains hidden
under the hood.

A frequent remark was that Pyttern still lacks extensive documentation. Because of that, occasionally
students had to request help from the Pyttern developer. This is confirmed in Figure 5 and is also the
case for logic metaprogramming, which was also a prototype. Due to its current lack of maturity Pyttern

Strongly disagree Disagree Neutral Agree Strongly agree

AST

RegEx

Pyttern

Prolog

Queries in this program query language are declarative.

Figure 4: Box plot illustrating participants’ ratings on how declarative different query languages are.

Strongly disagree Disagree Neutral Agree Strongly agree

AST

RegEx

Pyttern

Prolog

I think that I would need the support of a
 technical person to be able to use this program query language.

Figure 5: Participants’ perceptions of their need for technical support to use the various query languages.

was also considered weak w.r.t. understanding how to debug queries. A tool similar to Regex101 that
visually illustrates what parts of the code a query matches would be ideal.

Nevertheless, despite those limitations, Pyttern was considered the easiest to learn and use without
needing a lot of background other than Pyttern.

5. Conclusion and Future Work

Conclusion Encouraged by the results of our user study, we feel that Pyttern could become an
effective tool for finding symptoms of simple programming misconceptions [21] in small programs.
The purpose of the first prototype of Pyttern presented in this paper was to collect initial feedback
on its strengths and weaknesses in order to further improve it in the future. The user study indeed
highlighted a number of issues that we had not considered before. We will improve upon Pyttern based
on that feedback and conduct a more thorough validation on a more mature prototype in the future.

Limitations One limitation comes from the fact that Pyttern’s parser compares AST structures in a
quite literal manner. As a result, we sometimes have to define multiple alternative patterns. For example,
consider the pattern defined in Listing 2. It will detect all accumulators that use the += statement, but
not those using ?accumulator = ?accumulator + ?. To overcome this, we have to define an
alternative pattern using the second statement. Adding a disjuntion operator (OR) to the language
could overcome this but may come at the cost of less readable patterns. Note that Pyttern’s syntactic
construct ?[Type, ...] already provides some enhanced expressiveness. If in Listing 2 we would replace
line 4 by

→→?[𝐹𝑜𝑟,𝑊ℎ𝑖𝑙𝑒] :

this would allow the looping construct in the accumulator pattern to be either a for-loop OR a while-loop.
Another issue is that Pyttern expects methods and expressions to appear in exactly the order in

which they were specified in the pattern. This is not always desired. For method definitions in a class
the order should play no role, for example.

Futurework Some feedback received from the study participants has already been included in Pyttern.
We are increasing the speed of matching and improving the documentation, but more can be done still.
Performance could be enhanced further, especially regarding backtracking, by implementing smart
memoisation or tabling techniques. We also envision improving the output and providing debugging
and visualisation tools to improve the self-efficacy of Pyttern users so that they need not rely on a
technical person (cf. Figure 5).

We also intend to extend the expressiveness of Pyttern to include negation, the ability to express
alternatives, or the ability to define more complex patterns in terms of previously defined ‘subpatterns’.

Since we are building Pyttern incrementally, further validation of these new language features will
be required. We already have a second experiment in preparation, where Pyttern will be validated
by students following a software maintenance and evolution course. A further survey and validation
with Pyttern’s intended users (non-expert teachers that quickly want to express interesting structural
patterns regarding their students’ potential programming misconceptions) also needs to be envisaged.

Threats to validity Several factors can affect the validity of our current findings. The limited sample
size of participants in the experiment may not accurately reflect the intended user base. In particular,
some participants in our study may have more development experience than our target users. We
observed that despite the higher learning curve, some of our participants were more in favour of using
complex regular expressions or writing parse tree visitors for Python ASTs, because it would allow
them to write more complex patterns.

Given that the experiment was carried out during a Master’s course, there may be bias in the way the
students view the tool that the assistant and course teacher developed. We kept the surveys anonymous
in an effort to mitigate this bias.

For organisational reasons and to gather more data points specifically for the Pyttern language, the
assignment of languages to participants was distributed semi-randomly. The distribution method and
partitioning can be seen in Figure 6. This semi-random distribution could have influenced participants’
perceptions and appreciation of the different languages.

Pyttern

Regex

1/3

1/3

Python AST

1/3

Common Flaws

Flaw 1
Flaw 2
Flaw 3
Flaw 4
Flaw 5

survey

1/4

3/4
Pyttern

Prolog

3/4

1/4

Figure 6: Assignation method and repartition for the experiment

During the study, participants who were assigned Pyttern as their first language identified some small
problems and concerns with the documentation. Because the study’s goal was targeted at enhancing
our early Pyttern prototype, we addressed these concerns right away. As a result, individuals who were
assigned Pyttern as second language received a slightly enhanced version of the prototype, which may
have resulted in a different evaluation than those who used it first.

The box plots were generated based on evaluations conducted after participants had used their first
two languages. After experimenting with a third language, participants were required to write a report
comparing all three languages. These reports may therefore provide a more comprehensive and nuanced
understanding of participants’ final assessments than the box plots alone.

References

[1] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design patterns: Abstraction and reuse of object-
oriented design, in: ECOOP’93—Object-Oriented Programming: 7th European Conference Kaiser-

slautern, Germany, July 26–30, 1993 Proceedings 7, Springer, 1993, pp. 406–431.
[2] X. Zhang, Y. Zhou, S. H. Tan, Efficient pattern-based static analysis approach via regular-expression

rules, in: 2023 IEEE International Conference on Software Analysis, Evolution and Reengineering
(SANER), 2023, pp. 132–143. doi:10.1109/SANER56733.2023.00022.

[3] N. Ayewah, W. Pugh, D. Hovemeyer, J. D. Morgenthaler, J. Penix, Using static analysis to find bugs,
IEEE Software 25 (2008) 22–29. doi:10.1109/MS.2008.130.

[4] Spotbugs website, 2006. URL: https://spotbugs.github.io/.
[5] Spotbugs rules, 2006. URL: https://spotbugs.readthedocs.io/en/stable/bugDescriptions.html.
[6] S. C. Johnson, Lint, a C program checker, Bell Telephone Laboratories Murray Hill, 1977.
[7] R. Wuyts, Declarative reasoning about the structure of object-oriented systems, in: Proceedings.

Technology of Object-Oriented Languages. TOOLS 26 (Cat. No. 98EX176), IEEE, 1998, pp. 112–124.
[8] K. Mens, I. Michiels, R. Wuyts, Supporting software development through declaratively

codified programming patterns, Expert Systems with Applications 23 (2002) 405–413. URL:
https://www.sciencedirect.com/science/article/pii/S0957417402000763. doi:https://doi.org/
10.1016/S0957-4174(02)00076-3.

[9] C. De Roover, T. D’Hondt, J. Brichau, C. Noguera, L. Duchien, Behavioral similarity matching
using concrete source code templates in logic queries, in: Proceedings of the 2007 ACM SIGPLAN
symposium on Partial evaluation and semantics-based program manipulation, 2007, pp. 92–101.

[10] E. Hajiyev, M. Verbaere, O. De Moor, Codequest: Scalable source code queries with datalog, in:
ECOOP 2006–Object-Oriented Programming: 20th European Conference, Nantes, France, July 3-7,
2006. Proceedings 20, Springer, 2006, pp. 2–27.

[11] K. De Volder, Jquery: A generic code browser with a declarative configuration language, in:
Practical Aspects of Declarative Languages: 8th International Symposium, PADL 2006, Charleston,
SC, USA, January 9-10, 2006. Proceedings 8, Springer, 2006, pp. 88–102.

[12] K. Kim, D. Kim, T. F. Bissyandé, E. Choi, L. Li, J. Klein, Y. L. Traon, Facoy: a code-to-code search
engine, in: Proceedings of the 40th International Conference on Software Engineering, 2018, pp.
946–957.

[13] S. Zhou, H. Zhong, B. Shen, Slampa: Recommending code snippets with statistical language model,
in: 2018 25th Asia-Pacific Software Engineering Conference (APSEC), IEEE, 2018, pp. 79–88.

[14] S. Zhou, B. Shen, H. Zhong, Lancer: Your code tell me what you need, in: 2019 34th IEEE/ACM
International Conference on Automated Software Engineering (ASE), IEEE, 2019, pp. 1202–1205.

[15] S. Paul, A. Prakash, A framework for source code search using program patterns, IEEE Transactions
on Software Engineering 20 (1994) 463–475.

[16] A. Mishne, S. Shoham, E. Yahav, Typestate-based semantic code search over partial programs,
in: Proceedings of the ACM international conference on Object oriented programming systems
languages and applications, 2012, pp. 997–1016.

[17] R. Mukherjee, S. Chaudhuri, C. Jermaine, Searching a database of source codes using contextualized
code search, arXiv preprint arXiv:2001.03277 (2020).

[18] K. Inoue, Y. Miyamoto, D. M. German, T. Ishio, Code clone matching: A practical and effective
approach to find code snippets, arXiv preprint arXiv:2003.05615 (2020).

[19] J. Lawall, G. Muller, Coccinelle: 10 years of automated evolution in the linux kernel, in: 2018
USENIX Annual Technical Conference (USENIX ATC 18), 2018, pp. 601–614.

[20] T. Parr, The Definitive ANTLR 4 Reference, 2nd ed., Pragmatic Bookshelf, 2013.
[21] L. Chiodini, I. Moreno Santos, A. Gallidabino, A. Tafliovich, A. L. Santos, M. Hauswirth, A curated

inventory of programming language misconceptions, in: Proceedings of the 26th ACM Conference
on Innovation and Technology in Computer Science Education V. 1, 2021, pp. 380–386.

http://dx.doi.org/10.1109/SANER56733.2023.00022
http://dx.doi.org/10.1109/MS.2008.130
https://spotbugs.github.io/
https://spotbugs.readthedocs.io/en/stable/bugDescriptions.html
https://www.sciencedirect.com/science/article/pii/S0957417402000763
http://dx.doi.org/https://doi.org/10.1016/S0957-4174(02)00076-3
http://dx.doi.org/https://doi.org/10.1016/S0957-4174(02)00076-3

	1 Introduction
	2 Related Work
	3 The Pyttern language
	4 Comparing Program Query Languages
	5 Conclusion and Future Work

