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Abstract

We introduce aran, a novel approach for developing heavyweight dynamic analyses of JavaScript programs.
Our approach is broadly applicable, relying solely on source code instrumentation. It also supports complex
customization through an intuitive aspect-oriented API, which consists of 31 entry points. With about 300 lines of
code, our API can express an analysis that computes the symbolic execution tree of run-time values. Importantly,
our approach preserves the semantics of the program under analysis. We implemented this approach in a tool
and validated it using Test262, the official JavaScript conformance test suite, achieving a 99.7% success rate and
observing performance slowdowns rarely exceeding 10x.
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1. Introduction

JavaScript is a popular and versatile programming language that is the de facto standard for web
development. It is also infamously known to be hard to analyze statically due to its dynamic nature.
And so, insights into the behavior of JavaScript programs must often be gathered dynamically. In
practice, only so-called "lightweight" dynamic program analyses, such as code coverage and profiling,
are commonly deployed. Nonetheless, there exists another class of so-called "heavyweight" dynamic
analyses. Examples include: taint analysis which is capable of detecting violations of security policies,
and concolic testing which is capable of automatically generating test cases. These analyses share the
need to track values at run-time especially primitive values – e.g., tracking strings such as password data
is crucial for taint analysis. This is commonly achieved through a technique called shadow execution,
which involves mirroring part of the program state with meta information. Although these heavyweight
dynamic analyses have their merits, they are rarely used in practice. We hypothesize three main reasons
for this lack of adoption:

Narrow Applicability: Academic approaches are often unsuitable for real-world deployment because
they depend on a modified JavaScript runtime. While this may be effective for controlled ex-
periments on a specific corpus of programs, it is typically impractical for real-world scenarios.
JavaScript is deployed across a diverse and rapidly evolving ecosystem of runtimes, both on the
client and server sides. For broader adoption, analyses must be applicable across a wide range
of use cases.

Complex Customization: Heavyweight dynamic analyses are inherently complex and demand a high
level of customization to yield meaningful results. For example, taint analysis involves specifying
sources and sinks, while concolic testing requires mechanisms to generate new inputs. To
encourage adoption, such analyses must offer an expressive interface that supports extensive
customization while remaining concise and easy to understand.
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Compromised Correctness: It is crucial for developers to trust the results of the analysis. Commonly,
errors arise when the meta layer of the analysis interferes with the base layer of the program
under analysis. In other words, the analysis must remain invisible to the program and preserve
its original semantics – a property we refer to as transparency.

In this paper, we present aran, a generic approach for building heavyweight dynamic analyses.
Our approach is broadly applicable by design, as it avoids relying on a modified JavaScript engine
and instead uses source code instrumentation. Additionally, it addresses the inherent complexity of
heavyweight dynamic analyses by offering an aspect-oriented API. We argue that the necessary level of
customization for such analyses can only be achieved through programmable logic, rather than relying
on simple configuration data.

The primary contribution of this paper lies in its demonstration that aspect-oriented programming,
implemented through source code transformation, is well-suited for building heavyweight dynamic
analyses of JavaScript programs. First, it offers expressiveness: our API enables shadow execution of
complex JavaScript code with 31 entry points which is manageable. Notably, it supports expressing an
analysis that computes the symbolic execution tree of run-time values in just 300 lines of code. Second,
it achieves transparency: we implemented our approach in a tool and validated it against Test262, the
official JavaScript conformance test suite, achieving a 99.7% success rate with performance slowdowns
rarely exceeding 10x.

The rest of this paper is organized as follows. In Section 2 we provide an overview of the approach
and discuss its applicability. In Section 3, we present an intermediate language for protecting the API
of our approach from the complexity of JavaScript. In Section 4, we present an aspect-oriented API
suitable for building shadow execution and discuss the expressiveness of our approach. In Section 5, we
evaluate the transparency of our approach by validating it against Test262.

2. aran’s Overview

The main idea behind aran is to express analysis as logic. So during analysis, two layers will coexist
inside the same JavaScript program: the layer of the program under analysis, which we call the base

layer and the layer of the analysis, which we call the meta layer. A natural way to weave the logic of the
analysis into the target program is to rely on aspect-oriented programming [1] which entails expressing
the logic of the analysis in JavaScript as well. In this paradigm, behaviors which are collectively called
advice are inserted at execution points called join points according to a specification called pointcut.
This action is called weaving. The combination of an advice and a pointcut is called an aspect. Hence, in
our approach, an analysis is expressed as an aspect. In Listing 1, we present a simple aspect that logs
the call stack of a program by inserting logic around every function application of the target program.
aran focuses on weaving the user analysis into the target program by performing source code

transformation while the actual deployment is left to the user. This is a design choice that we made
to ensure that the approach remains broadly applicable. Indeed, integrating an analysis into a build
system or a CI/CD pipeline is a non-trivial task and goes beyond the scope of this paper. We envision
two main architectures for deploying aran.

First is offline deployment, which is depicted in Figure 1. In this architecture, the analysis happens in
two separate processes that run sequentially. In the first process, the target program is instrumented
based on the pointcut of the analysis, and the setup code is generated. Then, these two parts are bundled
with the advice of the analysis, which creates a standalone JavaScript program. The analysis will be
performed once this program is executed as it would have been originally. This architecture is useful to
reduce the memory footprint and performance overhead of the analysis.

Second is online deployment, which is depicted in Figure 2. In this architecture, everything happens in
a single JavaScript process. That is, the runtime must be parameterized to preload aran and instrument
the target program at load-time. This architecture is more likely to impact the behavior of the target
program and requires engine parameterization, but it enables instrumentation of dynamically generated
code. While global code does not necessarily need to be instrumented, code evaluated by a direct eval
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1 export const initialState = { depth: 0 };
2 export const aspect = {
3 pointcut: ["apply@around"],
4 advice: {
5 "apply@around": (state, callee, thisArgument, argumentList, path) => {
6 state.depth += 1;
7 try {
8 console.log(".".repeat(state.depth) + " >> " + callee.name + " at " + path);
9 const result = Reflect.apply(callee, thisArgument, argumentList);

10 console.log(".".repeat(state.depth) + " << " + callee.name + " at " + path);
11 return result;
12 } catch (error) {
13 console.log(".".repeat(state.depth) + " !! " + callee.name + " at " + path);
14 throw error;
15 } finally {
16 state.depth -= 1;
17 }
18 },
19 },
20 };

Listing 1: A simple analysis that records the call stack of programs.

Figure 1: Offline architecture for deploying aran.

Figure 2: Online architecture for deploying aran.

call imperatively does. Otherwise, the base layer of the target program will be able to access the meta
layer of the analysis. It follows that direct eval calls are only supported in this architecture.

We are aware that these architectures are work-intensive for the user. In the future, we plan to
investigate how relevant functionalities could be provided for common workflows. For instance, offline
architecture could benefit from a CLI that would expect a selection of files to instrument and would
bundle the standalone JavaScript program. And the online architecture could benefit from a tool able to
parameterize various JavaScript runtimes to instrument the target program at load-time.
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3. aran’s Intermediate Language

Instead of directly weaving the analysis logic in JavaScript, our approach performs weaving in an
intermediate language instead. If weaving were to be performed directly in JavaScript, the aspect-
oriented API would require such a high number of different join points that it would make the approach
hard to customize. This is due to the fact that JavaScript has become quite a complex language over the
years. Indeed, since 2015, the TC39 committee, which is in charge of maintaining ECMAScript – i.e.,
the de facto standard specification of JavaScript – has accelerated the rate at which new features are
introduced and switched to a yearly release cycle. While this has kept JavaScript fresh and relevant, it
has also rendered it more difficult to analyze. Our intermediate language is called aran-lang and was
designed with the following three criteria in mind:

Minimal: aran-lang should be as simple as possible to enable the user to express complex analyses
that require shadow execution in a clear and concise manner. The ultimate goal of aran-lang is
to restore the core simplicity of JavaScript, but it is constrained by the other two criteria.

JavaScript Subset: aran-lang should be reasonably close to a subset of JavaScript so that aran’s API
remains understandable to JavaScript developers. We do not want developers to have to study
this intermediate language to be able to properly use our approach.

Expressive: aran-lang should be sufficiently expressive to support the full ECMAScript specification
without requiring excessive additional logic. Indeed, while additional logic is necessary to express
complex features using simpler ones, it should be kept to a minimum to reduce code bloat and
performance overhead. Also, this additional logic will look unfamiliar to the end user of the
analysis and could make the results of the analysis hard to interpret.

Being an intermediate compilation language, aran-lang does not require an actual syntax. Instead,
in Appendix B, we present the AST format of aran-lang as a TypeScript type definition. In the
remainder of this section, we discuss several points of interest regarding the language.

Strict Mode Only JavaScript can be executed in two modes: strict mode and sloppy mode. In strict
mode, some errors are thrown instead of being ignored, and some features, such as the with statement
are disabled. These features are often considered legacy and preclude JavaScript runtimes from carrying
out important optimizations. We made the design decision to always output instrumented code in strict
mode. While this completely hides the complexity of dealing with two modes from the user, it forces us
to remove all the sloppy-only features of JavaScript from aran-lang.

Intrinsic Record Often, logic added by aran involves accessing pre-existing values from the global
object. These values are usually referred to as intrinsic values. For instance, the regexp literal /pattern/u
can be expressed as new ·RegExp("pattern","u"). In doing so, we have to ensure that the variable RegExp

still refers to the intrinsic %RegExp%. In aran-lang, intrinsic values can be retrieved by name with
IntrinsicExpression. This requires executing some setup code to load all the intrinsic values of interest
to aran in a safe location. Additionally, aran defines some custom values in that location – e.g.,
%aran.binary% for representing binary operations.

Effect Node In JavaScript, writing to a variable is an expression whose result is the new value of the
variable. However, this value is often not used and is simply removed from the value stack – e.g., writing
to a variable in a statement context. Hence, two join points are required to implement shadow execution:
one for updating the environment and another for removing the value from the stack. Instead, we
decided to introduce effect nodes, which are similar to expression nodes but do not produce a value.
This way, write operations can be represented by a single join point that always consumes the new
value from the value stack. Writes in an expression context are handled with a compilation variable
that holds the new value of the variable.

4
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No Imported Variable In a JavaScript module, values from external modules are imported as local
variables. These variables are one-way bound to the external value – i.e., they are locally immutable,
but mutations from within their source module are reflected. Hence, they can be viewed as syntactic
sugar for their external location and be removed from the local scope. In aran-lang, this is made
explicit by ImportExpression, which contains a Source and a Specifier.

No Exported Variable In a JavaScript module, local variables can be exported, and any modification
to those variables will be visible from other modules. In aran-lang, this coupling is made explicit
through an ExportEffect which contains a Specifier for the name of the export and an Expression for
the new value of the export. Note that export operations are made into effects for the same reason as
write operations.

Explicit Variable Hoisting In JavaScript, variables are actually declared earlier than where their
declaration appears. This process is referred to as hoisting and is a common source of confusion. In
aran-lang, variables are always declared at the beginning of the block where they are hoisted. This
translates in aran-lang by the absence of declaration statements and the presence of a list of bindings
in RoutineBlock and ControlBlock. An important behavior that we had to recreate is the temporal
deadzone. This timing window spans the moment from where a variable is hoisted to where the
declaration statement actually resides. Accessing variables in this temporal deadzone should result in a
run-time error, which we implemented through run-time checks. Note that variables in aran-lang
have no kind, and that their immutability is also enforced with run-time checks.

Static Variable Access In JavaScript, different types of dynamic frames can reside in a scope. The
global object which is at the root every scope and the global declarative record which sits just after the
global object are both important instances of dynamic frame. However, the with construct and direct
calls to %eval% can also introduce dynamic frames. In aran-lang, we decided to make the scope static
by reifying dynamic frames. Combined with immutability checks and deadzone checks, this means
that read and write operations cannot throw exceptions and cannot trigger arbitrary code. This is an
important property of aran-lang because it enables the analysis to not check for the result of these
operations.

Hard-Coded Parameter Set For the sake of simplicity, aran-lang does not allow for parameter
renaming. Instead, all parameters have a fixed name. Some of these parameters already exist in
JavaScript – e.g., this, new.target, and import.meta. Some other parameters had to be introduced – e.g.,
function.callee, function.arguments, and catch.error. We introduced function.arguments to replace
the traditional arguments parameter for two reasons: it is sometimes missing, and it is plagued by legacy
features – e.g., ‘arguments.callee‘ and index binding with parameters. Finally, some parameters are
functions that are introduced to simplify the language and its associated weaving API – e.g., import for
representing dynamic import expressions. However, this is not a silver bullet because the analysis must
still reason about the meaning of these functions.

Explicit this Argument JavaScript implements object-oriented programming by passing a hidden
argument that is assigned to the this parameter. In aran-lang, the this argument is explicitly provided
to ApplyExpression. Thus, xs.map(f) becomes something like apply((_this_=xs).map,_this_,[f]) 1.

Mandatory Result Value In JavaScript, programs complete with a value based on their last value
statement, and functions return a value provided by an optional return statement. Because this behavior
is hard to reason about, aran-lang represents the body of these two constructs as a RoutineBlock,
which is parameterized by an expression that is evaluated last and provides the result value of the
program or the function. break statements are used to model the control flow of return statements.

1To eliminate the compilation variable, we explored the idea of introducing a dedicated invoke expression into the language.
That would have translated into something like invoke(xs,"map",[f]). Unfortunately, this does not work in the presence
of side effects because the method must be fetched from the object before evaluating the arguments.
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Preserved Generator Head In JavaScript, the code in the parameters of functions can be arbitrarily
complex. Our parameter system allowed us to move that logic into the body of functions, which
simplifies analysis. Unfortunately, we were not able to apply this simplification for generator functions.
This is because the code in the parameters of generator functions is not executed at the same time as
the code in its body 2. Consequently, we had to add an array of Effect nodes into RoutineBlock to store
the head of generator functions.

4. aran’s Aspect-Oriented API

The main parameter of the weaving process is the pointcut, which can be seen as a predicate for deciding
which join points should be intercepted. There is another important option that dictates whether the
instrumented code should access the built-in original global declarative record or use a plain object
that reifies it. To preserve the safety of variable access, if the built-in global declarative record is used,
global variables will be accessed with custom intrinsic functions such as %aran.readGlobal%. These
functions become unnecessary if the global declarative record is emulated. This is an advantage because
the advice will not have to reason about these aran-specific intrinsic functions. However, emulating
the global declarative record requires instrumenting every single bit of code from the target program
to ensure the emulation is not bypassed. As selective instrumentation is an important feature, we
envisioned both options.

Interestingly, the logic of the analysis is not directly woven into the target program. Instead, the
advice is called by the instrumented code and is expected to adhere to the advice interface presented in
Appendix A. Because aran-lang was designed to enable shadow execution, this interface is almost a
one-to-one mapping with the aran-lang AST format. The only weaving that is not straightforward is
related to blocks:

• First, analyses should be able to reason about the scope and should receive a reified frame upon
entering each block. This is provided as a mapping from local variables and parameters to
initial values. Variables declared with the var and function keywords are initialized with the
%undefined% intrinsic while variables declared through the let and const keywords are initialized
with the %aran.deadzone% intrinsic. Reified block frames are provided to both block@declaration

and block@declaration-overwrite. These two join points are similar, but the latter enables the
analysis to overwrite the initial value of a variable which is useful for analysis based on wrappers.

• Second, analyses should be able to reason about control flow. To that end, we provide the
block@throwing join point which is triggered when the block throws an exception. And, we
provide the block@teardown join point which is triggered upon exiting the block regardless of
how it terminated. If either of these join points is intercepted, the block will have to be wrapped
inside a try statement.

To facilitate state management, every single advice receives a local state as the first argument. This
local state can be updated upon entering a block with the block@setup advice. This makes it easy to
implement list-like data structures and mirror the scope of the program. Local states are also useful
for restoring the context of the analysis after a hiatus in the control flow caused by yield and await

expressions.
To locate the AST node that triggered the advice, every single advice receives the path of its triggering

node as the last argument. More precisely, this argument is a string that represents the chain of properties
leading to the triggering node – e.g., "$.body.0.expression". Other approaches, such as Jalangi [2],
use indices instead. While indices should be faster in theory, they also make the overall interface more
complex. We decided this was not worth the performance improvement which is likely to be minor
thanks to optimizations such as string interning.

2We explored the idea of also moving the head of generator functions into their body, but decided against it as we observed
too many failures during validation against Test262.
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1 type Variable = string; type Parameter = string;
2 type Intrinsic = string; type Path = string;
3 type Primitive = number | string | boolean | null | { bigint: string };
4 type TreeLeaf =
5 | { type: "primitive"; primitive: Primitive; path: Path; }
6 | { type: "closure", kind: string, path: Path }
7 | { type: "intrinsic", name: Intrinsic, path: Path }
8 | { type: "initial", variable: Variable | Parameter, path: Path }
9 | { type: "import", source: string, specifier: string | null, path: Path }

10 | { type: "resume", path: Path };
11 type TreeNode =
12 | { type: "apply", function: Tree, this: Tree; arguments: Tree[]; path: Path }
13 | { type: "construct", function: Tree, this: Tree[], arguments: Path }
14 | { type: "arguments", members: Tree[], path: Path; }
15 type Tree = TreeLeaf | TreeNode;
16 type ShadowState = {
17 parent: ShadowState | null;
18 frame: { [key in Variable | Parameter]?: Tree };
19 stack: Tree[];
20 };

Listing 2: The shadow state of our track-origin analysis.

To evaluate the expressiveness of our approach, we implemented an analysis called track-origin
that records the execution tree of run-time values 3. This analysis can be leveraged to carry out analyses
based on symbolic execution such as concolic testing. Our analysis consists of approximately 300 LoC
and can handle all the corner cases of JavaScript. Listing 2 defines the state of the analysis as a TypeScript
type definition that mirrors both the value stack and the scope. The code of the analysis is clear and
concise; the only logic that we needed to implement involved the transient tracking of shadow values
before and after calls to instrumented functions.

It remains an open question whether our API is suitable for implementing analyses truly on a
per-project basis. In the negative, we could introduce a domain-specific language for defining the
analyses. Alternatively, we could provide a suite of JavaScript APIs, each designed for a specific class of
heavyweight dynamic analysis.

5. Evaluating aran Against Test262

To evaluate the reliability of our approach, we implemented it in a tool 4 5 and tested it against Test262 6,
which is the official conformance test suite of ECMAScript. It contains about 50, 000 test cases that
cover the entire ECMAScript specification and even upcoming proposals. We conducted our experiment
on the setup described in Table 1. It consists of applying increasingly complex instrumentation to
Test262 cases. At every stage, we excluded the test cases that failed in the previous stages. This helped
us to triage failures and diagnose bugs. We describe below our six instrumentation stages 7; each based
on the online architecture depicted in Figure 2.

1. engine: Leaves test cases intact. This stage is intended to uncover the technical limitations of
either the underlying node runtime or our custom test runner. It also provides a basis to compute
the slowdown factors for subsequent stages.

3https://github.com/lachrist/aran/blob/664f0a30/test/aspects/track-origin.mjs
4https://github.com/lachrist/aran
5https://www.npmjs.com/package/aran
6https://github.com/tc39/test262
7https://github.com/lachrist/aran/tree/664f0a30/test/262/stages
8https://github.com/tc39/test262/tree/18ebac8122117bdc55a0d4bba972ba80c0194b41
9https://github.com/lachrist/aran/tree/664f0a304b555bcb106f24e72734ad8c88dac429
10https://github.com/acornjs/acorn/releases/tag/8.12.1
11https://github.com/davidbonnet/astring/releases/tag/v1.9.0
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Hardware Apple Air M2, 2022

node Version v22.3.0

Test262 Commit SHA: 18ebac81
8

aran Commit SHA: 664f0a30
9

acorn Version 8.12.1
10

astring Version 1.9.0
11

Table 1

Setup for testing aran against Test262

Figure 3: Overview of testing aran against Test262 in 6 stages.

2. parsing: Parses and directly re-generates static code without manipulating syntactic nodes. This
stage is intended to encover the technical limitations either the acorn parser or the astring
generator which are relied upon in the subsequent stages. It also provides insight into the
composition of the instrumentation overhead.

3. main-min: Applies minimal aran instrumentation to the main file of each test case. Test fixtures,
module dependencies, and dynamic global code are not instrumented. However, dynamic local
code must be instrumented at the eval@before join point which is the only pointcut of this
stage. Note that even though weaving is minimal, the source code undergoes many during its
transformation from JavaScript to aran-lang.

4. full-min: Still applies minimal aran instrumentation, but on every single bit of the code of each
test case. This provides us with the opportunity to test the emulation of the global declarative
record. This requires advising not only eval@before but also apply@around and construct@around

to intercept and instrument dynamic global code provided to the %eval% intrinsic and %Function%

intrinsic. Note that this simple access control system does not intercept indirect applications of
intrinsic functions – e.g., eval.call("code").

5. part-max: Applies maximal aran instrumentation to the main file of each test case. In this stage,
every join point is advised by a function that contains no logic. – e.g., apply@around is advised by
(ste,fct,ths,args)=>Reflect.apply(fct,ths,args).

6. track-origin: Our analysis for recording the execution tree of run-time values as presented in
Section 4. It is applied to the main file of each test case.

Figure 3 depicts an overview of the results of our experiment. (i) Stage engine introduces about 15k
failures, which corresponds to a failure rate of about 12%; by far the highest. Most of these failures
were due to features that have not yet been implemented in node such as the new Temporal API, which
accounts for more than 4k failures. Other failures were due to our test runner not entirely adhering to
the interface prescribed by Test262 12. For instance, some parts of this interface relate to inter-realm
12https://github.com/tc39/test262/blob/main/INTERPRETING.md
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communication which occurs via built-in function calls. Whereas, we are interested in preserving the
semantics of syntactic constructs. We also discovered actual bugs in node, and we reported some of
them 13 14 15. (ii) Stage parsing introduces 198 failures, which were mostly due to acorn not correctly
handling corner cases. (iii) The failures introduced by subsequent stages which actually deploy aran
are limited in number (143). They provide a good overview of the limitations of our tool as they
highlight the semantics that we were not able to preserve. We discuss these discrepancies below and
their incidence on the observed failure count.

• Missing iterable return in pattern (42 ⇒ 29%): Array destructuring assignments – e.g., [x0,x1]=xs
– are carried out via the iterable protocol 16. It prescribes calling the return method of the iterator
when exiting the destructuring assignment; regardless of its outcome. However, after aran
instrumentation, this method will not be called if an exception is thrown during the iteration.
This semantics is challenging to restore because destructuring assignments occur in an expression
context and cannot be directly wrapped in a try statement.e

• Corrupt code reification (34 ⇒ 24%): There exist two ways for JavaScript programs to in-
spect their own source code: the stack property of Error instances and the toString method
of %Function.prototype%. After instrumentation by aran, these two mechanisms will provide a
representation of the instrumentation code instead of the original code. This semantics could be
restored with some engineering effort. However, we decided against it because the ECMAScript
specification does not actually specify the output format of these two mechanisms. As a result,
code reification is not guaranteed to be stable across different JavaScript engines and is primarily
used for debugging purposes. One might wonder how this discrepancy accounted for 34 failures
since it is not part of the specification. The reason is that two functions with the same source
code should cause %Function.prototype.toString% to produce the same string. Unfortunately,
this is not guaranteed after instrumentation because of the compilation variables introduced by
aran.

• No two-way bindings for arguments (32 ⇒ 22%): In sloppy mode, functions with a simple list of
parameters will have them two-way bound with the arguments object. This means that changes
to the arguments object are reflected in the values of the parameters and vice versa. In a previous
version of our tool, we preserved this behavior by leveraging the Proxy API [3]. However, we
decided to remove this feature because it caused performance overhead and because dynamic
argument binding is considered legacy.

• Hoisted root declarations (20 ⇒ 14%): To simplify its API, aran hoists export declarations and
variable declarations to the beginning of the sources. Although the temporal deadzone is enforced
inside the source, other sources will be able to bypass it. For modules, this is only an issue in
the case of circular dependencies. For scripts, this is only an issue if the script synchronously
executes another script that uses its own declared global variables. Additionally, because the
value of global const declarations is not available, aran has to turn global const declarations
into let declarations. Although the immutability of the variables will be enforced in the current
source, other sources will be able to bypass it.

• No dynamic function properties (2 ⇒ 1%): Functions created in sloppy mode contain two
properties that change dynamically as the function is being called: arguments and caller. We
decided not to preserve this feature because it is technically challenging and because these
properties have been deprecated (although they are still part of the ECMAScript 2024 specification).

13https://github.com/nodejs/node/issues/52720
14https://github.com/nodejs/node/issues/53575
15https://github.com/nodejs/node/issues/52737
16https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols#the_iterable_protocol
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Figure 4: Distribution of the slowdown factor of each stage compared to the calibrating engine stage.

• Other Discrepancies (13 ⇒ 9%): We observe other discrepancies that require code that is so
convoluted that it is unlikely to cause issues in practice. For instance, after aran instrumentation
of a derived class, the prototype property of the parent class is accessed twice instead of once.
This could be observed with a getter or with the Proxy API. A detailed list of the discrepancies
can be found in the repository of our tool 17.

To prevent flakiness, Test262 was designed to be independent of performance. However, performance
overhead is the discrepancy most likely to cause issues in practice. Indeed, as the performance overhead
of the analysis increases, so does the chance that time-sensitive applications will be affected. For
instance, some event interleaving might be observed by the analysis, whereas such interleaving may
never occur without it. To provide insight into the performance overhead of our approach, we recorded
the time required to execute each test case in each stage. Figure 4 depicts the distribution of slowdown
factors that were observed in each stage compared to the initial engine stage. It appears that slowdown
factors rarely exceed 10x, which is corroborated by the total time of each stage shown in Figure 3.

Although not depicted in Figure 3, outliers can reach a slowdown factor of up to 800x. They were
removed from the graph because they made it hard to read. We selected the set of pathological test
cases that made the slowdown factor of stage part-min exceed 100x. This selection contains 32 test
cases, among which 31 were large and probably generated files of several thousands lines of code
– e.g.,18. This made us suspect that the overhead was largely due to the instrumentation. Figure 5
depicts the distribution of the time spent instrumenting code compared to the total time required to
execute each test case. It appears that instrumentation accounts for about half of the time required
to execute a typical test case. However, Figure 6 depicts the same data but only for the pathological
selection. It appears that instrumentation accounts for almost all the time required to run a pathological
test case. This is a positive outcome because instrumentation overhead can be lifted by performing
instrumentation statically via the offline architecture depicted in Figure 1.

We are aware that Test262 is not tailored to benchmark performance. Hence, the 10x slowdown
factor we observed is a crude approximation of how our approach could perform in practice. Further
work is required to establish the transparency of our approach for real-world time-sensitive applications.

17https://github.com/lachrist/aran/blob/664f0a30/doc/issues/missing-iterable-return-call-in-pattern.md
18https://github.com/tc39/test262/blob/867ca540/test/language/identifiers/start-unicode-10.0.0-class-escaped.js
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Figure 5: Distribution of instrumentation time

ratio of the entire test suite.

Figure 6: Distribution of instrumentation time

ratio of pathological test cases.

6. Related Work

Driven by the popularity and dynamic nature of JavaScript, the research community has proposed a
wealth of approaches for dynamically analyzing JavaScript programs. By far, the most successful class
of dynamic program analysis for JavaScript is the so-called "lightweight" dynamic analyses such as:
code coverage 19, profiling [4, 5] 20, and dynamic linting [6, 7, 8]. In this section, we briefly review
the state-of-the-art approaches that are capable of supporting shadow execution of JavaScript and
implementing so-called "heavyweight" dynamic analyses.

Linvail Most importantly, the work we presented in this paper iterates on previous work presented
in [9]. While this earlier work also relies on source code instrumentation to carry out shadow execution,
it focuses on an interesting technique called membrane, which involves using the Proxy JavaScript
API [3] to enforce an access control system between instrumented and non-instrumented code areas.
This membrane was leveraged to track primitive values for longer periods of time. This approach was
implemented in a library 21 which can still be integrated into our approach. This paper proposes several
novelties. First, we came up with an aspect-oriented API to define the logic of the analysis which
is more flexible than our previous API. Second, we crafted an intermediate language that strikes an
interesting balance between expressiveness and simplicity. Third, we confronted our approach against
the complexity of the ECMAScript specification.

Jalangi Apart from our own work, the closest related work is Jalangi [2]. It is another approach
for building heavyweight dynamic analyses through JavaScript source code instrumentation. It is
however unclear how Jalangi can handle the current complexity of JavaScript. While the first version
of Jalangi 22 has been archived, the second version of Jalangi 23 is still maintained. However, is has
not kept pace with ECMAScript’s fast release cycle as it only supports ECMAScript 5.1 24 which dates
back to June 2011.

19https://github.com/bcoe/c8
20https://www.dynatrace.com
21https://github.com/lachrist/linvail
22https://github.com/SRA-SiliconValley/jalangi
23https://github.com/Samsung/jalangi2
24https://github.com/Samsung/jalangi2#supported-ecmascript-versions
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Dynamic Taint Analysis A prime application of shadow execution is dynamic taint analysis which
enforces security policies at run-time by propagating security-related labels along with run-time values.
As security is an important concern for JavaScript programs, multiple taint analysis approaches have
been proposed [10, 11, 12]. Most of these approaches rely on a modified runtime to carry out the
analysis. While runtime instrumentation is attractive for conducting experiments, we believe it is not
suitable for wide adoption. In contrast, our tool is based on source code instrumentation and is designed
to be deployed on any JavaScript runtime. To the best of our knowledge only Ichnaea [12] is based
on source code instrumentation. There are two major differences between their work and ours. First,
they provide an API that forces the user into a specific shadow execution model optimized for taint
analysis, whereas we provide a flexible aspect-oriented API. Second, similarly to Jalangi, Ichnaea only
supports ECMAScript 5.1.

Dynamic Symbolic Execution Another prominent application of shadow execution is dynamic

symbolic execution which attempts to provide inputs to a program that will lead it to a specific execution
path by labeling run-time values with symbols. It is often used to generate test inputs, an approach
known as concolic testing [13, 14]. Multiple dynamic symbolic execution frameworks have been proposed
for JavaScript [15, 16, 17]. Similar to dynamic taint analysis, these approaches often rely on a modified
runtime, whereas we explored source code instrumentation for applicability reasons. The only symbolic
execution framework based on source code instrumentation that we are aware of is Kudzu [15], which
relies on Jalangi instrumentation and suffers from its limitations.

Value Virtualization There has been some work on virtualizing values in JavaScript which could
provide the basis for shadow execution [18, 19, 20, 21]. However, these approaches require executing
JavaScript code in a virtual machine, which may limit their applicability and explain why they have not
been adopted in practice. Actually, ECMAScript provides its own standard virtualization API called
Proxy [3]. Unfortunately, this API focuses on object values and is cannot virtualize primitive values.
Despite shown interest 25, there is little chance that the Proxy API will be extended to primitive values
due to performance implications.

Low-Level Shadow Execution There is also an interesting body of work on performing shadow
execution on the lower-level representation of programs. For instance, Valgrind [22] is a popular
framework for instrumenting binaries for the purpose of dynamic analysis and is fully capable of
carrying out shadow execution. However, because JavaScript is primarily interpreted, and although it
is sometimes JIT-compiled, it is unclear how this approach could be applied to a wide range of rapidly
evolving runtimes.

7. Conclusion

We introduced aran, an approach for implementing heavyweight dynamic program analyses. Our
method is broadly applicable, relying exclusively on source code instrumentation. However, further
research is needed to explore deployment infrastructures that do not compromise this applicability.
Our approach is also expressive, featuring an aspect-oriented API that facilitates shadow execution
of complex JavaScript programs with just 31 entry points. Furthermore, it maintains transparency
by preserving the semantics of the analyzed program, achieving a 99.7% success rate on Test262.
Future work should also examine whether the performance overhead remains acceptable in real-world
applications.

25https://github.com/hugoattal/tc39-proposal-primitive-proxy
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A. aran’s Advice API

1 import type { Header } from "./lang";
2 import type { DeepLocalSitu } from "./situ";
3

4 type StackValue = unknown; type ScopeValue = unknown; type OtherValue = unknown;
5 type Source = string; type Specifier = string; type Delegate = boolean;
6 type Intrinsic = string; type Label = string; type Path = string;
7 type Variable = string; type Parameter = string;
8

9 type ProgramKind = "module" | "script" | "global-eval" | "root-local-eval" | "deep-local-eval";
10 type ArrowKind = "arrow" | "async-arrow";
11 type FunctionKind = "function" | "async-function";
12 type GeneratorKind = "generator" | "async-generator";
13 type MethodKind = "method" | "async-method";
14 type ClosureKind = ArrowKind | FunctionKind | GeneratorKind | MethodKind;
15 type ControlKind = "try" | "catch" | "finally" | "then" | "else" | "while" | "bare";
16 type BlockKind = ProgramKind | ClosureKind | ControlKind;
17 type TestKind = "if" | "while" | "conditional";
18

19 type Key = Parameter | Variable;
20 type Frame = { [key in Key]?: ScopeValue };
21 type Primitive = string | number | bigint | null | boolean;
22

23 type Advice<S> = {
24 "block@setup": (s:S, k:BlockKind, p:Path) => S;
25 "program-block@before": (s:S, k:ProgramKind, hs:Header[], p:Path) => void;
26 "closure-block@before": (s:S, k:ClosureKind, p:Path) => void;
27 "control-block@before": (s:S, k:ControlKind, ls:Label[], p:Path) => void;
28 "block@declaration": (s:S, k:BlockKind, f:Frame, p:Path) => void;
29 "block@declaration-overwrite": (s:S, k:BlockKind, f:Frame, p:Path) => Frame;
30 "generator-block@suspension": (s:S, k:GeneratorKind, p:Path) => void;
31 "generator-block@resumption": (s:S, k:GeneratorKind, p:Path) => void;
32 "program-block@after": (s:S, k:ProgramKind, v:StackValue, p:Path) => OtherValue;
33 "closure-block@after": (s:S, k:ClosureKind, v:StackValue, p:Path) => OtherValue;
34 "control-block@after": (s:S, k:ControlKind, p:Path) => void;
35 "block@throwing": (s:S, k:BlockKind, v:OtherValue, p:Path) => void;
36 "block@teardown": (s:S, k:BlockKind, p:Path) => void;
37 "break@before": (s:S, l:Label, p:Path) => void;
38 "test@before": (s:S, k:TestKind, v:StackValue, p:Path) => boolean;
39 "intrinsic@after": (s:S, i:Intrinsic, v:OtherValue, p:Path) => StackValue;
40 "primitive@after": (s:S, v:Primitive, p:Path) => StackValue;
41 "import@after": (s:S, r:Source, k:Specifier|null, v:OtherValue, p:Path) => StackValue;
42 "closure@after": (s:S, k:ClosureKind, f:Function, p:Path) => StackValue;
43 "read@after": (s:S, k:Key, v:ScopeValue, p:Path) => StackValue;
44 "eval@before": (s:S, c:DeepLocalSitu, v:StackValue, p:Path) => StackValue|OtherValue;
45 "eval@after": (s:S, v:OtherValue, p:Path) => StackValue;
46 "await@before": (s:S, v:StackValue, p:Path) => OtherValue;
47 "await@after": (s:S, v:OtherValue, p:Path) => StackValue;
48 "yield@before": (s:S, d:Delegate, v:StackValue, p:Path) => OtherValue;
49 "yield@after": (s:S, d:Delegate, v:OtherValue, p:Path) => StackValue;
50 "drop@before": (s:S, v:StackValue, p:Path) => OtherValue;
51 "export@before": (s:S, k:Specifier, v:StackValue, p:Path) => OtherValue;
52 "write@before": (s:S, k:Key, v:StackValue, p:Path) => ScopeValue;
53 "apply@around": (s:S, f:StackValue, t:StackValue, xs:StackValue[], p:Path) => StackValue;
54 "construct@around": (s:S, f:StackValue, xs:StackValue[], p:Path) =>StackValue;
55 };
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B. aran’s Intermediate Language

1 // Brand //
2

3 type Source = string;
4 type Specifier = string;
5 type Variable = string;
6 type Label = string;
7

8 // Header //
9

10 type DeclareHeader = {
11 type: "declare";
12 kind: "let" | "var";
13 variable: Variable;
14 };
15

16 type ImportHeader = {
17 type: "import";
18 source: Source;
19 import: Specifier | null;
20 };
21

22 type ExportHeader = {
23 type: "export";
24 export: Specifier;
25 };
26

27 type AggregateHeader = {
28 type: "aggregate";
29 source: Source;
30 import: Specifier | null;
31 export: Specifier;
32 } | {
33 type: "aggregate";
34 source: Source;
35 import: null;
36 export: null;
37 };
38

39 type ModuleHeader = ImportHeader | ExportHeader | AggregateHeader;
40

41 // Intrinsic //
42

43 // For brevity, we only list a couple of regular intrinsics.
44 type RegularIntrinsic =
45 | "undefined"
46 | "eval"
47 | "String"
48 | "RegExp"
49 | "TypeError"
50 | "ReferenceError"
51 | "SyntaxError"
52 | "Symbol.unscopables"
53 | "Symbol.asyncIterator"
54 | "Symbol.iterator"
55 | "Reflect.get"
56 | "Reflect.has"
57 | "Reflect.set";
58

59 type AccessorIntrinsic =
60 | "Symbol.prototype.description@get"
61 | "Function.prototype.arguments@get"
62 | "Function.prototype.arguments@set";
63

64 type AranIntrinsic =
65 | "aran.global"
66 | "aran.declareGlobal"
67 | "aran.readGlobal"
68 | "aran.typeofGlobal"
69 | "aran.discardGlobal"
70 | "aran.writeGlobalStrict"
71 | "aran.writeGlobalSloppy"
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72 | "aran.record"
73 | "aran.unary"
74 | "aran.binary"
75 | "aran.throw"
76 | "aran.get"
77 | "aran.deadzone"
78 | "aran.toPropertyKey"
79 | "aran.isConstructor"
80 | "aran.toArgumentList"
81 | "aran.sliceObject"
82 | "aran.listForInKey"
83 | "aran.listRest"
84 | "aran.createObject"
85 | "aran.AsyncGeneratorFunction.prototype.prototype"
86 | "aran.GeneratorFunction.prototype.prototype";
87

88 type Intrinsic = RegularIntrinsic | AccessorIntrinsic | AranIntrinsic;
89

90 // Parameter //
91

92 type GlobalProgramParameter = "import" | "import.meta" | "this";
93

94 type LocalProgramParameter =
95 | "super.get"
96 | "super.set"
97 | "super.call"
98 | "private.check"
99 | "private.get"

100 | "private.has"
101 | "private.set"
102 | "scope.read"
103 | "scope.writeStrict"
104 | "scope.writeSloppy"
105 | "scope.typeof"
106 | "scope.discard";
107

108 type ProgramParameter = GlobalProgramParameter | LocalProgramParameter;
109

110 type ClosureParameter =
111 | "this"
112 | "new.target"
113 | "function.arguments"
114 | "function.callee";
115

116 type CatchParameter = "catch.error";
117

118 type Parameter = ProgramParameter | ClosureParameter | CatchParameter;
119

120 // Program //
121

122 type Program = {
123 type: "Program";
124 kind: "module";
125 situ: "global";
126 head: ModuleHeader[];
127 body: RoutineBlock & { head: null };
128 } | {
129 type: "Program";
130 kind: "script";
131 situ: "global";
132 head: DeclareHeader[];
133 body: RoutineBlock & { head: null };
134 } | {
135 type: "Program";
136 kind: "eval";
137 situ: "global";
138 head: DeclareHeader[];
139 body: RoutineBlock & { head: null };
140 } | {
141 type: "Program";
142 kind: "eval";
143 situ: "local.root";
144 head: DeclareHeader[];
145 body: RoutineBlock & { head: null };
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146 } | {
147 type: "Program";
148 kind: "eval";
149 situ: "local.deep";
150 head: [];
151 body: RoutineBlock & { head: null };
152 };
153

154 // Block //
155

156 type ControlBlock = {
157 type: "ControlBlock";
158 labels: Label;
159 bindings: [Variable, Intrinsic][];
160 body: Statement[];
161 };
162

163 type RoutineBlock = {
164 type: "RoutineBlock";
165 bindings: [Variable, Intrinsic][];
166 head: Effect[] | null;
167 body: Statement[];
168 tail: Expression;
169 };
170

171 // Statement //
172

173 type Statement = {
174 type: "EffectStatement";
175 inner: Effect;
176 } | {
177 type: "BreakStatement";
178 label: Label;
179 } | {
180 type: "DebuggerStatement";
181 } | {
182 type: "BlockStatement";
183 body: ControlBlock;
184 } | {
185 type: "IfStatement";
186 test: Expression;
187 then: ControlBlock;
188 else: ControlBlock;
189 } | {
190 type: "WhileStatement";
191 test: Expression;
192 body: ControlBlock;
193 } | {
194 type: "TryStatement";
195 try: ControlBlock;
196 catch: ControlBlock;
197 finally: ControlBlock;
198 };
199

200 // Effect //
201

202 type Effect = {
203 type: "ExpressionEffect";
204 discard: Expression;
205 } | {
206 type: "ConditionalEffect";
207 test: Expression;
208 positive: Effect[];
209 negative: Effect[];
210 } | {
211 type: "WriteEffect";
212 variable: Parameter | Variable;
213 value: Expression;
214 } | {
215 type: "ExportEffect";
216 export: Specifier;
217 value: Expression;
218 };
219
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220 // Expression //
221

222 type Expression = {
223 type: "PrimitiveExpression";
224 primitive: null | boolean | number | string | { bigint: string };
225 } | {
226 type: "IntrinsicExpression";
227 intrinsic: Intrinsic;
228 } | {
229 type: "ImportExpression";
230 source: Source;
231 import: Specifier | null;
232 } | {
233 type: "ReadExpression";
234 variable: Parameter | Variable;
235 } | {
236 type: "ClosureExpression";
237 kind: "arrow" | "function" | "method";
238 asynchronous: boolean;
239 body: RoutineBlock & { head: null };
240 } | {
241 type: "ClosureExpression";
242 kind: "generator";
243 asynchronous: boolean;
244 body: RoutineBlock & { head: Effect[] };
245 } | {
246 type: "AwaitExpression";
247 promise: Expression;
248 } | {
249 type: "YieldExpression";
250 delegate: boolean;
251 item: Expression;
252 } | {
253 type: "SequenceExpression";
254 head: Effect[];
255 tail: Expression;
256 } | {
257 type: "ConditionalExpression";
258 test: Expression;
259 consequent: Expression;
260 alternate: Expression;
261 } | {
262 type: "EvalExpression";
263 code: Expression;
264 } | {
265 type: "ApplyExpression";
266 callee: Expression;
267 this: Expression;
268 arguments: Expression[];
269 } | {
270 type: "ConstructExpression";
271 callee: Expression;
272 arguments: Expression[];
273 };
274
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