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Abstract
Software maintenance requires a significant amount of time and effort. One of the tasks involved in this process
is to replace outdated frameworks with newer, state-of-the-art alternatives. For such a replacement, static and
dynamic techniques can be utilized. Using a static technique, such as metaprogramming, the source code can
be inspected in a whitebox manner to gain insight in its functionality. By means of a dynamic technique, such
as Active Model Learning (AML), the behavior of the code can be extracted in a blackbox manner. Since both
techniques have their advantages and disadvantages, we propose a novel combination of static and dynamic
analysis techniques that complements each other. Model checking is used to check the equivalence of the models
obtained by the different techniques. The approach has been applied at Philips to upgrade a legacy framework
written in C++ to describe Finite State Machines (FSMs). This framework has been replaced by a more modern
tool called Dezyne. By means of our new approach, we were able to semi-automatically replace 14 FSMs with
high confidence in the preserved behavior.
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1. Introduction

High-tech systems have numerous components that serve various purposes, and they are often old
or custom-made. Maintaining these legacy components can be a significant burden on developers [1].
Modern software engineering practices offer alternatives to rudimentary coding methods for complex
systems like supervisory control software. These alternative approaches include Domain Specific
Languages (DSLs) that allow intuitive expression of state machines, improving the overall quality and
maintainability of high-tech systems [2].

Working with both a legacy and a new framework for components can make maintaining a large code
base more difficult. Replacing an old framework with a newer one enhances maintenance efficiency.
The majority of effort is in refactoring existing components to use the new framework instead of the
obsolete one, but ensuring behavior preservation after changes requires additional effort.

The challenge lies in replacing only outdated framework calls without altering other components’
code. Regression test suites usually do not provide sufficient confidence that behavior has been preserved
because of limited code coverage. Hence, the challenge is to ensure that changes have been implemented
correctly and preserve the original behavior.

Static techniques like metaprogramming can analyze software internals but cannot extract meaning;
dynamic techniques observe semantics but lose internal information. The Rascal metaprogramming
language [3] is an example of a static technique that considers source code as data, allowing it to
identify, for instance, the names of internal functions. It achieves this by parsing the source code into an
Abstract Syntax Tree (AST), which can be used to construct a model like a Finite State Machine (FSM)
representing the behavior of a piece of source code. Static techniques, however, cannot extract the
execution semantics from the source code [4]. Hence, the use of metaprogramming for transformations
faces challenges in determining the precise FSM semantics [5].
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Dynamic techniques can execute the source code and generate a behavioral model that can be used
to check if a new implementation has the same behavior as the legacy implementation. Active Model
Learning (AML) [6] is an example of a dynamic technique that can be applied to construct behavioral
models from existing software. Figure 1 shows how a learner application interacts with the software
for which a model has to be made, the so-called System Under Learning (SUL).

Figure 1: Active Model Learning

The learner is provided with the set of possible input events that it can send to the SUL. When
learning starts, the learner calls sequences of input events called Membership Queries (MQ) to the SUL.
For every sequence of input events, the SUL replies with a sequence of output events. Before a new
input events sequence is called, the learner resets the SUL to its initial state. After a number of MQs, the
learner constructs a hypothesis which is a state machine model of the SUL behavior. This hypothesis is
tested for conformance with the SUL by means of Equivalence Queries (EQ). EQs can either confirm the
hypothesis –in this case the hypothesis is the final model– or otherwise it will return a counterexample.
The learner uses the counterexample to continue learning and create a new hypothesis. The resulting
model is a deterministic finite state machine [7]. There are different learning algorithms available such
as L* [7], TTT [8] and L# [9] for MQs and, i.e., Wp [10] and I-ADS [11] for EQs.

In Table 1, we compare static and dynamic techniques. It indicates that a combination of both
techniques offers additional benefits over the use of each of them individually.

Technique Advantage Disadvantage
Static Internal structure of software can be inspected. Execution behavior might be different.

Dynamic Behavior during execution. Cannot inspect the internals of software.

Table 1
Comparing static and dynamic techniques

Figure 2: Overview of the combined approach

Figure 2 shows how we integrate the two approaches to acquire models of legacy code. We use the
mCRL2 model checker to check the equivalence of the two models [12]. Note that when two finite
state machines do not contain any unobservable internal transitions, trace equivalence and branch
bisimulation equivalence coincide, and there is no difference between weak and strong equivalences [13].



Our approach is suitable for applications that meet the restrictions of AML which can be applied
on data-independent control components, i.e., components where control decisions do not depend on
input data. For a successful application of metaprogramming, the legacy code should contain a pattern
that can be captured in a metaprogram. To justify the effort in creating such a metaprogram and have a
good return of investment, there should be sufficient instances of the pattern.

Industrial application

Our refactoring approach has been applied to an industrial case that has the characteristics described
above. It addresses a part of the code of an interventional X-ray system at Philips Image Guided
Therapy (IGT). A legacy CppFSM framework is replaced with a new model-based FSM framework called
Dezyne [14]. Observe that static and dynamic techniques cover different aspects when refactoring state
machines:

• With metaprogramming, we can preserve state names, but ensuring a semantics-preserving
behavior is impossible.

• With AML, we can extract the execution semantics, but we lose the state names.

We applied our approach, which combines both techniques, to replace more than a dozen CppFSMs.
The combination and an equivalence check increase the confidence that the behavior is preserved after
refactoring.

To our knowledge, this paper presents the first instance of combining static and dynamic techniques
to refactor industrial C++ code

Structure of the paper

The paper is organized as follows. Background on the used technologies is described in Section 2. In
Section 3, we introduce the industrial application. Our approach is highlighted in Section 4. In Section 5,
the results of applying our approach to the industrial case are presented. Concluding remarks can be
found in Section 6.

2. Background

Related to our work is the book of Fowler on domain-specific languages [15]. Fowler defines refactoring
as changing the internals of source code without changing its usage while preserving its behavior. The
manual creation of test cases is advocated before the start of the refactoring when the current test cases
provide insufficient code coverage. After an improvement of the tests to get better code coverage, the
source code can be manually refactored.

As an alternative to manually refactoring code, metaprogramming is a static technique used to
analyze and transform source code. A metaprogram accesses source code as whitebox; all internals of
the source code can be inspected. Such a static technique cannot acquire the behavior of the source
when it is executed [4]. Ivers et al. [16] have also identified that preserving the semantics is a challenge.
Especially when dealing with, for instance, function pointers it is difficult to extract the operational
semantics [17].

Examples of metaprogramming languages are Rascal [3], Algebraic Specification Formalism + Syntax
Definition Formalism (ASF+SDF) [18], Stratego [19] and Turing eXtender Language (TXL) [20]. The
following metaprogramming languages are specialized for C++: CodeBoost [21], Design Maintenance
System (DMS) [22] and Proteus [23].

These metaprogramming languages have been applied in industry. At Google, the ClangMR [24]
has been used to refactor large C++ codebases. They refactored callers of deprecated APIs. The tool is
based on the Clang compiler in combination with the MapReduce parallel processor. Mooij et al. [25]
refactored C++ code using small iterative steps. After the small code refactoring steps, a model was
extracted from the source code before generating a new implementation. Schuts et al. [26] used Rascal



to refactor more than 150 test suites written in C++. They changed API calls to a legacy framework
into a new test framework.

The Rascal’s library C/C++ Language Analysis In Rascal (ClaiR) can be used to analyze C/C++
code [27]. The conversions written in this paper were all implemented in Rascal. For some we also
used ClaiR.

Active Model Learning (AML) has been applied in several non-trivial cases. For instance, to learn
models of network protocol implementations, such as SSH, SIP, TCP, TLS, and models of smart cards
for banking and bio-metric passports [28]. Model learning is also used in industry, e.g., at Canon to
learn a controller of a high-end printing copier of 410 states and 77 stimuli was learned [29].

AML has also been applied in the context of manual refactoring. In [30], we describe a case at Philips
where we learned a legacy implementation and a manually refactored implementation. Next we applied
an equivalence checker to test if both implementations were equivalent. With this approach, we found
issues in both implementations. After solving the issues, the models were equivalent. We also applied
model learning and equivalence checking to test a model-to-model transformation from IBM Rhapsody
to Dezyne [31].

3. Industrial Application

Because of confidentiality we cannot share models from the interventional X-ray system and instead we
explain the techniques using a vending machine example which is introduced in Section 3.1. Section 3.2
presents the CppFSM framework which is the legacy framework we want to remove from the code base.
The target Dezyne framework of our transformation is described in Section 3.3.

3.1. Vending Machine Case

Table 2 provides the state machine of the vending machine. The initial state is idle. From this state, a
two Euro coin can be inserted. When this happens, the vending machine displays select beverage and
transitions to the paid state. In the paid state there are two transitions: one for choosing coffee and
yet another self transition for inserting a two Euro coin. On the other hand, coffee can be made black,
or with sugar, milk or both. In all states –except from the idle state– a cancel event shall return the
two Euro coin and go back to the idle state. For the readability of Table 2, we omitted the cancel event
transitions.

Current state Input event Output event Next state
idle insertTwoEuroCoin displaySelectBeverage paid
paid coffee displayCoffeeSelected coffee
coffee confirmSelection MakeCoffee idle
paid insertTwoEuroCoin returnCoin paid
coffee selectSugar displaySugarSelected coffeeWithSugar
coffee selectMilk displayMilkSelected coffeeWithMilk
coffeeWithSugar confirmSelection MakeCoffee idle
coffeeWithSugar selectMilk displayMilkSelected coffeeWithMilkAndSugar
coffeeWithMilk confirmSelection MakeCoffee idle
coffeeWithMilk selectSugar displaySugarSelected coffeeWithMilkAndSugar
coffeeWithMilkAndSugar confirmSelection MakeCoffee idle

Table 2
State machine of the vending machine example

3.2. CppFSM

For creating finite state machines in C++, Philips IGT used the CppFSM framework. Listing 1 shows
how to create a FSM in the CppFSM framework. It is a fragment of the state machine in Table 2. The



“addTransition” method adds transitions to the FSM in the following way:

1. First parameter is the current state. A state enumeration is used, but not shown in the listing.
2. Second parameter is the next state. The same state enumeration is used.
3. Third parameter is the input event. An input enumeration is used, but not shown in the listing.
4. Fourth parameter is the output event. This is a reference to a method.

Observe that a transition can only trigger one output event. The resulting state machine is input enabled
which means that any event is accepted in any state; when no transition specified for a certain input
event in a certain state, then there will be no output event, but also no assert will be called. Note that a
CppFSM program can be seen as a component which has a provided interface with the input events
and a required interface with the output events.

Listing 1: Vending machine FSM in C++
1 void createVendingFsm()
2 {
3 mFsm.addTransition(idle,paid,insertTwoEuroCoin,&Fsm::displaySelectBeverage);
4 mFsm.addTransition(paid,paid,insertTwoEuroCoin,&Fsm::returnCoin);
5 mFsm.addTransition(paid,idle,cancel,&Fsm::returnCoin);
6 mFsm.addTransition(paid,coffee,selectCoffee,&Fsm::displayCoffeeSelected);
7 ...
8 mFsm.addTransition(coffee,coffee,insertTwoEuroCoin,&Fsm::returnCoin);
9 mFsm.addTransition(coffee,idle,cancel,&Fsm::returnCoin);

10 mFsm.addTransition(coffee,coffeeWithMilk,selectMilk,&Fsm::displayMilkSelected);
11 mFsm.addTransition(coffee,coffeeWithSugar,selectSugar,&Fsm::displaySugarSelected);
12

13 ...
14 }

Listing 2 shows how the FSM is used. Transitions can be triggered by calling the “makeTransition”
method. The current state can be queried for with the “getState” method. It returns the state enumeration
value. An example of an output event is “displaySelectBeverage”. This method is registered as a function
pointer in Listing 1. On a transition, the CppFSM framework can invoke this method.

Listing 2: Usage of FSM in C++
1 mFsm.makeTransition(FsmEvent::insertTwoEuroCoin);
2 mFsm.getState();
3

4 void Fsm::displaySelectBeverage() {
5 // Implementation to display select beverage.
6 }

3.3. Dezyne

Dezyne1 takes a component-based perspective on software. Every component typically has a provided
interface and one or more required interfaces. There are two types of models:

• Interface model containing the signature and a behavioral protocol. The behavior protocol is
written as a FSM which describes the allowed sequences of method calls.

• Component model describing component behavior, including usage of interface models. This
behavior is also written as a FSM which describes what needs to be done when method calls
happen on the provided and required interfaces.

Dezyne implements a run-to-completion semantics. This means that a component does not accept
new method calls on its provided interface until the current method call has returned. In addition a

1https://gitlab.com/dezyne
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component that uses the provided interface is blocked until the method call on the required interface
returns [32].

With the Dezyne tool, interface and component models can be formally verified. This verification
uses the mCRL2 model checker [12] which checks:

• Whether deadlock and livelock states are absent in interface and component models.
• Whether component models are deterministic. For interface models it is allowed to describe

non-deterministic behavior.
• Whether a component is a refinement –using the failures divergence relation [33]– of its provided

interface.
• Whether a component does not violate the behavioral protocol of its required interfaces.

From a Dezyne model, a mCRL2 model and C++ code can be generated [34]. Verum2, the company
that implements the Dezyne tooling, guarantees that then the C++ code and the mCRL2 model are
semantically equivalent [14].

Typically, one first verifies a Dezyne model and if all checks pass, C++ code can be generated. With
bindings the generated C++ code can easily be integrated into handwritten C++ code.
mCRL2 is used in the background and is hidden from the typical user. However, the tool can also

store the mCRL2 model for the user to allow inspection or advanced checks.

4. Approach Applied to Industrial Case

In this section, we describe how we refine our general approach to a number of steps that transform
CppFSM code to Dezyne. This also include a refactoring of the manually written code that interfaces
with CppFSM to code that interfaces with Dezyne generated code.

Figure 3 depicts our detailed transformation approach for the Philips IGT case. The left code file
depicts the original situation before transformation. We distinguish three types of code in a single code
file:

• At the bottom, CppFSM code that implements a finite state machine.
• In the middle, code interfacing with the CppFSM code; it either calls FSM code or is called by the

CppFSM code.
• At the top, all other code. This code interacts with the interfacing code.

On the right, we depict the situation after the transformation where the CppFSM code is removed.
There is a new code file which includes the code that is generated from a Dezyne model.

We have automated the refactoring using the following eight steps:

1. We use a static technique to parse the code file and extract the Abstract Syntax Tree (AST).
2. From the AST, the CppFSM part is used to generate a Dezyne model.
3. Generate a mCRL2 model from the Dezyne model.
4. Use a dynamic technique to learn the behavior of the CppFSM code. The output is a Dot file.

Dot is a language to describe nodes, edges and graphs3.
5. Convert the Dot file to a mCRL2 model.
6. Compare both mCRL2 models using an equivalence checker.

When both models are different, fix the issue. Otherwise, continue with:

7. The Dezyne model is used to generate a new code file that contains the FSM.
8. We use the AST to refactor the code that interface with CppFSM to interface with the newly

Dezyne generated code.

2https://www.verum.com/DiscoverDezyne
3https://graphviz.org/doc/info/lang.html
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Figure 3: Combining static and dynamic techniques for refactoring CppFSMs

All steps are fully automated except for Step 8 where some manual code changes might be required.
For the conversions in Steps 1, 2, 5 & 8, we use the Rascal metaprogramming language. We use

Rascal in Step 1 to generate the Dezyne model because if we would use a dynamic technique we would
loose the state names. Hence with Rascal we can generate a Dezyne model with the state names
defined in the CppFSM code. We use a state of art model learning algorithm L# [9] in Step 4 to execute
the legacy CppFSM code and observe its behavior as a black box. Next we compare the model extracted
with the static technique with the model build by the dynamic technique.

The steps of our approach are explained in more detail in the subsequent sections. Section 4.1
describes the transformation from CppFSM to Dezyne. The learning setup of Steps 4 & 5 is described
in Section 4.2. The conversion of a learned model to a model that we can compare for equivalence is
described in Section 4.3. Given two mCRL2 models, we describe Step 6 in which we compare the two
models in Section 4.4. The last step to refactor the code that interfaces with CppFSM to make it use of
the newly generated Dezyne C++ code is explained in Section 4.5.

4.1. From CppFSM to Dezyne

Figure 3 Steps 1, 2 & 7 depict the workflow that we follow to get from a CppFSM in C++ to a new C++
implementation generated by Dezyne. We use ClaiR, the C++ front end of Rascal to parse the C++
file with CppFSM.

Listing 1 from the case description in Section 3 is the input for the Rascal script. The output is
Listing 3 which shows the resulting Dezyne model of the vending machine’s state machine. As explained
in Section 2, the component model imports two interface models: one is the provided interface and the
other one the required interface. The states are defined in the “State” enumeration. The “state” variable
of type “State” is initialized to the “idle” state. Next we see blocks between curly brackets with a state
guard. The model should be read as follows:

• If in the “idle” state “insertTwoEuroCoin” is called, then “displaySelectBeverage” is shown and
the next state is “paid”.

• If in the “idle” state “cancel” is called, then it is accepted and the state remains “idle”.

Note that the method “getState” returns the current state, but the method is not always needed. For
this reason, we made the generation of this method optional. For this transformation, we used the
Rascal code from Appendix A.



Listing 3: Component model of vending machine in Dezyne
1 import IVendingProvided.dzn;
2 import IVendingRequired.dzn;
3 component ExampleFSM {
4 provides IVendingProvided iProvided;
5 requires IVendingRequired iRequired;
6 behaviour {
7 enum State {idle,paid,coffee,coffeeWithSugar, coffeeWithMilk,coffeeWithMilkAndSugar};
8 State state = State.idle;
9 [state.idle] {

10 on iProvided.insertTwoEuroCoin():{iRequired.displaySelectBeverage(); state = State.paid;}
11 on iProvided.cancel(): ;
12 on iProvided.selectCoffee(): ;
13 on iProvided.selectMilk(): ;
14 on iProvided.selectSugar(): ;
15 on iProvided.confirmSelection(): ;
16 on iProvided.getState(): reply(IProvided.State.idle);
17 }
18 ...
19 [state.coffee] {
20 on iProvided.insertTwoEuroCoin():{iRequired.returnCoin(); state = State.coffee;}
21 ...
22 on iProvided.getState(): reply(IProvided.State.coffee);
23 }
24 ...
25 }
26 }

4.2. From CppFSM to Model Learning Setup

Figure 3 Steps 4 & 5 depict the workflow that we follow to get from a CppFSM in C++ to a new mCRL2
model. Rascal is used to automatically generate a setup such that the behavior of the SUL can be
learned. AML is utilized to acquire a Dot model and Rascal is used to transform the Dot model into
a mCRL2 model. In Appenix B Listing 10, we show the generated learning setup in C++ code. When
compiled, this code results in a console application. Standard input and output are used to connect the
console application to the learner. The Rascal code in Appendix C Listing 11 prints the contents of the
console application. This includes the SUL and the adapter. Listing 12 is used to generate the batch file
to call the model learner with the right SUL and its input events (i.e. the input alphabet).

4.3. From Dot to mCRL2

Model learning results in a model in the Dot language. To allow equivalence checking –as described in
Section 2– we need an mCRL2 model. Hence, we need to convert the Dot model to an mCRL2 model,
according to Figure 3 Step 5. Listing 4 is an example of a Dot model as produced by the learner when
learning the vending machine. Observe that the states are numbered from “s0” to “s7”. For example,
line 5 of Listing 4 is a transition from state “s0” to state “s1”. In the learning process, the state names
are lost because they are not externally visible.

Listing 4: Vending machine in Dot
1 digraph g {
2 s0 [shape = "circle" label="s0"];
3 ...
4 s7 [shape = "circle" label="s0"];
5 s0 -> s1 [label="insertTwoEuroCoin / displaySelectBeverage"];
6 s0 -> s0 [label="cancel / self"];
7 s0 -> s0 [label="selectCoffee / self"];
8 s0 -> s0 [label="selectMilk / self"];
9 s0 -> s0 [label="selectSugar / self"];



10 s0 -> s0 [label="confirmSelection / self"];
11 ...
12 s4 -> s4 [label="insertTwoEuroCoin / returnCoin"];
13 s4 -> s0 [label="cancel / returnCoin"];
14 s4 -> s4 [label="selectCoffee / self"];
15 s4 -> s6 [label="selectMilk / diplayMilkSelected"];
16 s4 -> s5 [label="selectSugar / diplaySugarSelected"];
17 s4 -> s0 [label="confirmSelection / makeCoffee"];
18 ...
19 __start0 [label="" shape="none" width="0" height="0"];
20 __start0 -> s0;
21 }

Appendix D Listing 13 presents the result of translating a Dot model into an mCRL2 model. Listing 14
shows the Rascal script that performs the translation. Listing 15 also shows the Dot grammar in
Rascal used by the script.

4.4. Equivalence Checking

In Figure 3 Step 6, there are two mCRL2 models; one acquired by a dynamic technique (AML) and
one generated by a static technique (metaprogramming). In this step, we compare the behavior of
the two models using mCRL2. If the equivalence check fails, the checker provides a counter example
that leads to a discrepancy in the models. To resolve the issue, several aspects have to be investigated.
One possibility is that the dynamic technique learned an incomplete model; then the counter example
can be used to continue the learning process. An alternative is that one of the generators in the static
approach is incorrect, for instance, because of a mismatch in the understanding of the semantics of the
programming language. After resolving the discrepancy, the equivalence checker needs to be rerun on
the updated model because there can be more than one discrepancy to resolve. If the equivalence check
passes, the Dezyne tool can be utilized to generate new C++ code (Step 7 ).

4.5. Refactor Interfacing C++ Code

Figure 3 Step 8 depicts the workflow for refactoring a code file. The code that interfaces with the
CppFSM framework needs to be replaced by code that interfaces with Dezyne generated C++ code.
Calls to the CppFSM framework need to be replaced by calls to Dezyne generated C++ code. Moreover,
we have to create the bindings such that Dezyne generated code can invoke the manually written
output event methods. In addition, the CppFSM itself is no longer needed, because we use Dezyne
generated code, and needs to be removed from the code file.

Section 3 explained how CppFSM code needs to be used. In Listing 1 a vending machine FSM is
shown. This code is no longer required. We replace it with bindings to output events (i.e. actions)
which is required for connecting Dezyne generated code to manually written action methods. The new
bindings are shown in Listing 5.

Listing 5: Vending machine bindings for Dezyne in C++
1 void createVendingFsm()
2 {
3 mDezyneComposition.iRequired.in.displaySelectBeverage =
4 std::bind(&Fsm::displaySelectBeverage, this);
5 mDezyneComposition.iRequired.in.returnCoin =
6 std::bind(&Fsm::returnCoin, this);
7 ...
8 mDezyneComposition.iRequired.in.displaySugarSelected =
9 std::bind(&Fsm::displaySugarSelected, this);

10 }

In Listing 2, the “makeTransition” method and “insertTwoEuroCoin” input event is used to initiate a
transition. This is replaced by “insertTwoEuroCoin” on the “iProvided” interface, see Listing 6. The
Rascal script for the described refactoring is provided in Appendix E Listing 16.



Listing 6: Usage of Dezyne generated code in C++
1 mDezyneComposition.iProvided.in.insertTwoEuroCoin();

5. Results

We applied the described approach to CppFSM code from Philips IGT. To our surprise, we observed
that in Step 6 the mCRL2 models were not equivalent. When inspecting the learned model with a
Dot viewer, we immediately realized that there was a semantic difference between the learned model
and the generated Dezyne model. The learned model was input enabled, i.e., in all states all input
events are allowed while the generated Dezyne model was not input enabled. We discovered that
there were two versions of CppFSM: one for testing and one for in-product code. The testing flavor
asserts on input events in states that do not have an explicit transition defined by “makeTransition”.
The product flavor, which was used in the Philips code, is input-enabled and accepts all inputs in all
states. Hence, we had to make the generated Dezyne model also input enabled. We did this by creating
the “makeStateMachineInputEnabled” method, see Listing 8 in Appendix A. After adding this method
in the Dezyne model generator, the equivalence check holds.

After resolving this issue, we have applied the described approach to 14 Philips IGT cases. Table 3
depicts per case the number of states and transitions in both Dezyne generated and model learned
mCRL2 models. In the table, we compare the mCRL2 models as introduced in Section 4. Using other
models than the mCRL2 models, i.e., the Dezyne or Dot models would give different numbers for states
and transitions. For comparison, we transform the mCRL2 models to Labelled Transition Systems (LTSs).
In this way, the comparison only checks input/output relations.

Statically obtained models Dynamically acquired models

Case # States # Transitions # States # Transitions
1 63 153 63 153
2 88 376 88 376
3 42 70 6 10
4 84 182 79 170
5 27 47 27 47
6 56 147 56 147
7 32 62 32 62
8 69 219 69 219
9 13 17 13 17
10 67 166 67 166
11 43 85 43 85
12 19 28 19 28
13 25 37 25 37
14 24 36 24 36

Table 3
Comparison of statically and dynamically acquired mCRL2 models

For all the refactored CppFSMs, the equivalence check holds which gave us a lot of confidence that
refactoring was successful. Intuitively, one would expect that the equivalence check only holds when
the number of states and transitions of the two models are equal. But in cases 3 and 4, we observed
that the number of states and transitions is much lower in the dynamically learned model than in the
statically obtained Dezyne model while the equivalence check holds. The reason is that the CppFSM
did not have output events in these cases. This raises the question whether the Dezyne model can be
simplified to fewer states and some transitions. When we investigated this further, we found out that in
these two cases other code polls the “getState” method from Listing 2 to check the state of the FSM and
makes different choices based on the returned state. To not break the manually written code, we added



the possibility to generate a “getState” in the Dezyne model and we manually refactored the usage of
the “getState” from CppFSM to the new Dezyne model variant in the interfacing code.

In some cases, “makeTransition” from Listing 2 was embedded in another method. This method got
the event enumeration as a parameter value. Our automated refactoring presented in Section 4.5 did
not work in this case. Also in this case, we manually made the required changes.

6. Concluding Remarks

In this paper, we propose an approach to refactor Finite State Machines (FSMs) using a combination
of static and dynamic techniques. This involves utilizing metaprogramming to generate a new FSM
implementation from a source file containing a legacy FSM implementation. To increase confidence
in the preserved semantics, we employ learning methods and equivalence checking. In this section,
we describe limitations of our approach such as pitfalls and scalability in Section 6.1. Next we discuss
alternative approaches in Section 6.2. Finally, in Section 6.3 we describe some ideas for future work.

6.1. Limitations

We refactored the C++ code that interfaces with CppFSM to interface with the code generated by
Dezyne, but it is not included in the learned model. Consequently, this weakness requires reliance
on existing regression test suites for verification of correctness. However, since we have automated
the refactoring process for the interfacing code, our confidence in its correctness is higher than with
manual alternatives.

6.1.1. Pitfalls

The main pitfalls concern the application of AML in an industrial setting. For instance, Omar et al. [35]
have identified pitfalls while performing AML at Philips. Aslam [36] applied AML at ASML. In their
setup, the adapter and the SUL are placed in separate executables and the adapter connects to the SUL
using a TCP/IP socket connection. This setup is suboptimal because it is very slow to send and receive
messages over a TCP/IP stack, to let the Operating System (OS) stop and start an executable for a reset,
and to reestablish the TCP/IP connection. To mitigate this performance issue, we run the adapter and
SUL in a single process, as shown in Appendix B Listing 10.

Omar et al. have identified that adapters could be generated. By generating the adapter, there are
fewer opportunities to learn faulty models due to issues with the learning setup compared to the manual
creation of adapters. Aslam et al. created a generator for the learning setup and we have also automated
this process as described in Section 4.2.

Both identified issues with scalability, which we address in the next section.

6.1.2. Scalability

State space explosion is a valid concern for both model learning and model checking [37]. Because of the
time required to query and reset the SUL, AML will suffer from state space explosion before equivalence
checking runs into the state space explosion problem. Hence, as shown by Aslam, it might be the case
that complex models cannot be learned in a reasonable amount of time due to the limited ability to
capture far-output-distinction behavior. To find far-output-distinction behavior, long EQs are required
that distinguish the hypothesized model from the SUL’s behavior. For instance, if “input1” produces
an “output1”. However, after calling “input1” one hundred times it no longer produces “output1”, but
“output2” [36]. By manual inspections of our CppFSMs before refactoring we know that such a pattern
was not present in our industrial case.

In addition, we do not expect scalability issues with metaprogramming because creating an AST and
perform functions using the AST is done in just a few seconds.



6.2. Alternative Approaches

In this paper, we employed metaprogramming as a static technique and AML as a dynamic technique.
However, other alternatives are possible.

Instead of using metaprogramming, we could have utilized a Language WorkBench (LWB) to create a
Domain Specific Language (DSL) [2]. The DSL should be capable of parsing the "addTransition" method
lines of Listing 1. The DSL can be employed to generate mCRL2 models. In fact, for this approach and
the one used in the paper, the same mCRL2 model code generator could be reused. The only difference
is in Step 8, as a DSL cannot refactor the C++ code file to use the generated C++ code with the Dezyne
tool. Alternatively, manual refactoring can be performed.

An alternative dynamic approach is to execute the code using test cases. Typically, testing such FSMs
will be done using unit testing. However, legacy code is characterized by limited code coverage of the
tests [38]. To mitigate this issue, techniques can be employed to improve existing unit test suites by
applying, e.g., mutation testing [39] or test amplification [40]. Downside of these techniques is that
most implementations only support Java and not C++ which is our target language. The benefit of
using AML is that it is programming language agnostic.

6.3. Future Work

For this case, we manually checked that far-output-distinction behavior did not occur. Alternatively,
we could have automated this check using a small metaprogram with, i.e., Rascal. Or we could have
used a code coverage tool to check if all code is executed by AML.

There is a limitation where the refactored interfacing code is not learned due to its separation from
the FSM implementation. For the correctness of this refactoring, we relied on the existing regression
test suites. In the future, we want to investigate if we could include this code in the learned model.
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A. From CppFSM To Dezyne

Listing 7: Parse C++
1 private lrel[str, str, str, str] parseCppFsmTable(f) {
2 ast = parseCpp(f);
3 lrel[str, str, str, str] sm = [];
4 visit (ast) {
5 case \functionCall(\fieldReference(_, \name("addTransition")),
6 [\idExpression(\name(curState)), \idExpression(\name(nextState))
7 \idExpression(\name(event)), actionField, *_]): {
8 action = "nullPointer";
9 visit (actionField) {

10 case /idExpression(\qualifiedName(_, \name(a))):
11 action = a;
12 }
13 sm += <curState, nextState, event, action>;
14 }
15 }
16 return sm;
17 }

Listing 8: Make FSM input enabled
1 private lrel[str, str, str, str] makeInputEnabled(sm) {
2 lrel[str, str, str, str] rVal = sm;



3 allEvents = { e | <c, n, e, a> <- sm };
4 allStates = { c | <c, n, e, a> <- sm } + { n | <c, n, e, a> <- sm};
5 for (state <- allStates) {
6 transForEvents = { e | <c, n, e, a> <- sm, c == state };
7 noTransForEvents = allEvents - transForEvents;
8 for (noTransForEvent <- noTransForEvents) {
9 rVal += <state, state, noTransForEvent, "nullptr">; // add self−transition

10 }
11 }
12 return rVal;
13 }

Listing 9: Generate Dezyne component model
1 private str printDezyneComponent(sm,generateGetState) {
2 rVal = "";
3 states = { c | <c, n, e, a> <- sm } + { n | <c, n, e, a> <- sm };
4 rVal += "import IProvided.dzn;
5 'import IRequired.dzn;
6 'component genFSM {
7 ' provides IProvided iProvided;
8 ' requires IRequired iRequired;
9 ' behaviour {

10 '";
11 strippedStates = replaceAll("<states>", "\"", "");
12 rVal += " enum State <strippedStates>;
13 ' State state = State.<head(toList(states))>;
14 '";
15 for (s <- states) {
16 rVal += " [state.<s>] {\n";
17 trans = { <n, e, a> | <c, n, e, a> <- sm, c == s };
18 for (<n, e, a> <- trans) {
19 rVal += " on iProvided.<e>(): {
20 ' state = State.<n>;
21 ' }
22 '";
23 }
24 if (generateGetState) {
25 rVal += " on iProvided.getState(): {
26 ' reply(IProvided.eState.<s>);
27 ' }
28 '";
29 }
30 rVal += " }\n";
31 }
32 rVal += " }
33 '}
34 '";
35 return rVal;
36 }

B. Model Learning Setup

Listing 10: SUL and Adapter in C++
1 class SulFsmClient {
2 private:
3 typedef Fsm<SulFsmClient, SulFsmEvent, SulFsmState> SulFsm;
4 public:
5 ...
6 SulFsmClient() :mSulFsm(*this, idle, card, nullptr) {
7 createFsm();



8 }
9 void displaySelectBeverage() {

10 mOutput = "displaySelectBeverage";
11 }
12 ...
13 void selectSugar() {
14 mOutput = "selectSugar";
15 }
16 void step(string symb) {
17 mOutput = "self";
18 if (symb == "insertTwoEuroCoin") {
19 mSulFsm.makeTransition(SulFsmClient::insertTwoEuroCoin);
20 }
21 ...
22 if (symb == "selectSugar") {
23 mSulFsm.makeTransition(SulFsmClient::selectSugar);
24 }
25 cout << mOutput << endl;
26 }
27 private:
28 void createFsm()
29 {
30 mFsm.addTransition(idle,paid,insertTwoEuroCoin,&Fsm::displaySelectBeverage);
31 ...
32 mFsm.addTransition(coffee,coffeeWithSugar,selectSugar,&Fsm::displaySugarSelected);
33 ...
34 }
35 SulFsm mSulFsm;
36 string mOutput;
37 };
38 int main(void) {
39 SulFsmClient* mFsmClient = new SulFsmClient();
40 while (true) {
41 string symb = "";
42 getline(cin >> ws, symb);
43 if (symb.length() == 0) {
44 getline(cin >> ws, symb);
45 }
46 if (symb.compare("RESET") == 0) {
47 delete mFsmClient;
48 mFsmClient = new SulFsmClient();
49 } else {
50 mFsmClient->step(symb);
51 }
52 }
53 return 0;
54 }

C. From CppFSM To Model Learning Setup

Listing 11: Parse C++ and generate learning setup
1 private str printLearnSetup(sm) {
2 rVal = "";
3 rVal += "#include \<string\>
4 '#include \<iostream\>
5 '#include \"GenFsm.hpp\"
6 'using namespace std;
7 'namespace gen {
8 ' class SulFsmClient {
9 ' public:

10 ' enum SulFsmEvent {\n";



11 events = { e | <c, n, e, a> <- sm };
12 for (event <- events) { rVal += " <event>,\n"; }
13 rVal += " card };
14 ' enum SulFsmState {\n";
15 states = { c | <c, n, e, a> <- sm } + { n | <c, n, e, a> <- sm };
16 for (state <- states) { rVal += " <state>,\n"; }
17 rVal += " };
18 ' private:
19 ' typedef Fsm\<SulFsmClient, SulFsmEvent, SulFsmState\> SulFsm;
20 ' public:
21 ' SulFsmClient() :mSulFsm(*this, <head(toList(states))>, card, nullptr) {
22 ' createFsm();
23 ' }\n";
24 calls = { a | <c, n, e, a> <- sm };
25 for (call <- calls) {
26 rVal += " void <call>() { mOutput = \"<call>\"; }\n";
27 }
28 rVal += " void step(string symb) { mOutput = \"self\";\n";
29 for (event <- events) {
30 rVal += " if (symb == \"<event>\") {
31 ' mSulFsm.makeTransition(SulFsmClient::<event>);
32 ' }\n";
33 }
34 rVal += " cout \<\< mOutput \<\< endl;
35 ' }
36 ' private:
37 ' void createFsm() {\n";
38 for (<c, n, e, a> <- sm) {
39 rVal += " mSulFsm.addTransition(<c>, <n>, <e>, &SulFsmClient::<a>);\n";
40 }
41 rVal += " }
42 ' private:
43 ' SulFsm mSulFsm;
44 ' string mOutput;
45 '};
46 '} // namespace
47 'using namespace gen;
48 'int main(void) {
49 ' SulFsmClient* mFsmClient = new SulFsmClient();
50 ' while (true) {
51 ' string symb = \"\";
52 ' getline(cin \>\> ws, symb);
53 ' if (symb.length() == 0) {
54 ' getline(cin \>\> ws, symb);
55 ' }
56 ' if (symb.compare(\"RESET\") == 0) {
57 ' delete mFsmClient;
58 ' mFsmClient = new SulFsmClient();
59 ' } else {
60 ' mFsmClient-\>step(symb);
61 ' }
62 ' }
63 ' return 0;
64 '}\n";
65 return rVal;
66 }

Listing 12: Parse C++ and generate learning batch file
1 private str printBatch(sm, oFile) {
2 rVal = "";
3 splitted = split("/", "<oFile>");
4 bat = last(splitted);
5 exe = replaceAll(bat, "bat|", "exe");



6 rVal += "cargo run --";
7 events = { e | <c, n, e, a> <- sm };
8 for (event <- events) {
9 rVal += " -I <event>";

10 }
11 rVal += " -M experiments\\<exe>\n";
12 return rVal;
13 }

D. From Dot To mCRL2

Listing 13: Vending machine in mCRL2
1 proc
2 genFSM'behavior (state': genFSM'State'enum) = genFSM's_ ();
3 genFSM's_(state': genFSM'State'enum) =
4 genFSM'insertTwoEuroCoin_s0 () + ... + genFSM'insertTwoEuroCoin_s7 ()
5 + genFSM'cancel_s0 () + ... + genFSM'cancel_s7 ()
6 ...
7 ;
8 genFSM'insertTwoEuroCoin_s0(state': genFSM'State'enum) = (state' == genFSM'State's0) ->
9 iProvided'in (IProvided'action (IProvided'in'insertTwoEuroCoin)) .

10 iRequired'in (IRequired'action (IRequired'in'displaySelectBeverage)) .
11 iRequired'reply(IRequired'Void(void)) .
12 genFSM'insertTwoEuroCoin_s0_(state' = genFSM'State's1);
13 genFSM'insertTwoEuroCoin_s0_(state': genFSM'State'enum) =
14 iProvided'reply (IProvided'Void(void)) .
15 hide1 . hide2 .
16 genFSM'behavior ();
17 genFSM'cancel_s0(state': genFSM'State'enum) = (state' == genFSM'State's0) ->
18 iProvided'in (IProvided'action (IProvided'in'cancel)) .
19 genFSM'cancel_s0_(state' = genFSM'State's0);
20 genFSM'insertTwoEuroCoin_s0_(state': genFSM'State'enum) =
21 iProvided'reply (IProvided'Void(void)) .
22 hide1 . hide2 .
23 genFSM'behavior ();
24 ...
25 init hide({hide1, hide2}, genFSM'behavior (genFSM'State's0));

Listing 14: Parse Dot and generate mCRL2
1 private str printmCRL2(sm) {
2 var rVal = "";
3 states = { c | <c, n, e, a> <- sm } + { n | <c, n, e, a> <- sm };
4 events = { e | <c, n, e, a> <- sm };
5 actions = { a | <c, n, e, a> <- sm };
6 rVal += "genFSM\'behavior (state\': genFSM\'State\'enum) = genFSM\'s_ ();
7 'genFSM\'s_(state\': genFSM\'State\'enum) =\n";
8 isFirst = true;
9 for (e <- events) {

10 for (s <- states) {
11 rVal += isFirst ? " " : " + ";
12 rVal += "genFSM\'<e>_<s> ()\n";
13 isFirst = false;
14 }
15 }
16 rVal += ";\n\n";
17 for (event <- events) {
18 for (<curState, nextState, event, action>
19 <- { <c, n, e, a> | <c, n, e, a> <- sm, event == e }) {
20 rVal += "genFSM\'<event>_<curState>(state\': genFSM\'State\'enum) =
21 (state\' == genFSM\'State\'<curState>) -\>



22 ' iProvided\'in (IProvided\'action (IProvided\'in\'<event>)) .\n";
23 if (action != "self") {
24 rVal += " iRequired\'in (IRequired\'action (IRequired\'in\'<action>)) .
25 ' iRequired\'reply(IRequired\'Void(void)) .\n";
26 }
27 rVal += " genFSM\'<event>_<curState>_(state\' = genFSM\'State\'<nextState>);
28 ' genFSM\'<event>_<curState>_(state\': genFSM\'State\'enum) =
29 ' iProvided\'reply (IProvided\'Void(void)) .
30 ' hide1 . hide2 .
31 ' genFSM\'behavior ();\n";
32 }
33 }
34 rVal += "\n\ninit hide({hide1, hide2}, genFSM\'behavior (genFSM\'State\'s0));\n\n";
35 return rVal;
36 }

Listing 15: Dot grammar
1 layout Layout = WhitespaceAndComment* !>> [\ \t\n\r#];
2 lexical WhitespaceAndComment = [\ \t\n\r] | @category="Comment" "#" ![\n]* $;
3

4 start syntax Build = build: "digraph" "g" "{" State+ states Transition+ transitions
5 Footer footer"}";
6 syntax State = state: Id name "[" "shape" "=" "\"circle\"" "label" "=" "\""
7 Id text "\"" "];";
8 syntax Transition = transition: Id curState "-\>" Id nextState "[" "label" "=" "\""
9 Id event "/" Id call "\"];";

10 syntax Footer = footer: "__start0" "[" "label" "=" "\"\"" "shape" "=" "\"none\""
11 "width" "=" "\"0\"" "height" "=" "\"0\"" "];" "__start0" "-\>" "s0;";
12 lexical Id = ([a-zA-Z/.\-][a-zA-Z0-9_/.]* !>> [a-zA-Z0-9_/.]) \ Reserved;
13 keyword Reserved = "digraph" | "g" | "State" | "," | ";" | "=" | "{" | "}" | "[" | "]"
14 | "on" | "state";

E. Replace Legacy C++ By Dezyne Generated C++

Listing 16: Replace CppFSM glue by Dezyne glue code
1 private lrel[int, int, str] refactorGenFSMTable(f) {
2 lrel[int, int, str] changes = [];
3 list[str] actions = [];
4 ast = parseCpp(f);
5 className = getClassName(ast);
6 visit (ast) {
7 case e:\expressionStatement(\functionCall(\fieldReference(_, \name("addTransition")),
8 [\idExpression(\name(curState)), \idExpression(\name(nextState))
9 \idExpression(\name(event)), actionField, *_])): {

10 action = "nullPointer";
11 visit (actionField) {
12 case /idExpression(\qualifiedName(_, \name(a))): {
13 action = a;
14 }
15 }
16 if (action != "nullPointer" && action notin actions) {
17 changes += <e.src.offset, e.src.offset + e.src.length,
18 "mDezyneComposition.iRequired.in.<action> = std::bind(&<className>::<action>, this

);">;
19 actions += action;
20 } else {
21 changes += <e.src.offset, e.src.offset + e.src.length, "">;
22 }
23 }
24 case e:\expressionStatement(\functionCall(\fieldReference(_, \name("makeTransition")),



25 [\idExpression(name(event))])): {
26 changes += <e.src.offset, e.src.offset + e.src.length,
27 "mDezyneComposition.iProvided.in.<camelCaseName(event)>();">;
28 }
29 }
30 return changes;
31 }
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