FERRARI: FailurE RepRoduction through automatic
test cAse generation and stack tRace analysls

Valeria Pontillo*, Maarten Vandercammen, Sarah Verbelen and Coen De Roover

Software Languages (SOFT) Lab — Vrije Universiteit Brussel, Belgium

Abstract

As cloud services grow increasingly complex, their REST APIs become more susceptible to failures caused
by unforeseen interactions between API calls or bugs in service implementations. Debugging these
failures involves two key steps: reproducing the failure and identifying the root cause. In distributed
environments, reproducing failures is particularly challenging due to the need to reconstruct the intricate
sequence of API calls that lead to the issue. Identifying the defect then requires analyzing stack traces,
which can be difficult and time-consuming due to the volume of logs and the variability of interactions
across the system. While tools like RESTLER can automate testing and uncover bugs, the manual analysis
of stack traces to pinpoint the root cause of failures remains challenging and time-consuming. To
streamline this process, we propose FERRARI, an extension of RESTLER that automates the mapping
of stack traces to generate targeted test cases for failure reproduction. FERRARI introduces a novel
similarity scoring mechanism to quantify how closely the behavior of generated test cases matches the
conditions of the initial failure, enabling efficient reproduction and diagnosis. By filtering irrelevant test
cases and focusing on high-similarity candidates, FERRARI reduces the number of requests sent while
preserving precision. In this way, FERRARI helps developers by reducing the number of stack traces that
need to be manually analyzed. Our evaluation demonstrates that FERRARI achieves the same level of
failure reproduction as baseline fuzzing strategies but with significantly fewer requests and error logs,
offering a scalable and effective solution for developers.

Keywords
REST API, Software Testing, Failure Reproduction.

1. Introduction

In modern software development, cloud services are commonly accessed through REST APIs,
which offer flexible and scalable interactions between clients and servers. These expose various
endpoints that facilitate communication and data exchange, making them a critical component
of distributed systems and microservice architectures [1]. However, due to their complexity,
REST APIs are prone to failures, often resulting from unforeseen interactions between API
calls, invalid input sequences, or bugs in the service implementation. When such failures occur,
developers must engage in the challenging task of detecting and fixing the cause [2, 3].

BENEVOL24: The 23rd Belgium-Netherlands Software Evolution Workshop, November 21-22, Namur, Belgium
*Corresponding author.
& Valeria. Pontillo@vub.be (V. Pontillo); Maarten.Vandercammen@vub.be (M. Vandercammen);
Sarah.Verbelen@vub.be (S. Verbelen); Coen.De.Roover@vub.be (C. De Roover)
® 0000-0001-6012-9947 (V. Pontillo); 0000-0001-7192-5666 (M. Vandercammen); 0009-0006-7036-4311 (S. Verbelen);
0000-0002-1710-1268 (C. De Roover)
© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

== CEUR Workshop Proceedings (CEUR-WS.org)

mailto:Valeria.Pontillo@vub.be
mailto:Maarten.Vandercammen@vub.be
mailto:Sarah.Verbelen@vub.be
mailto:Coen.De.Roover@vub.be
https://orcid.org/0000-0001-6012-9947
https://orcid.org/0000-0001-7192-5666
https://orcid.org/0009-0006-7036-4311
https://orcid.org/0000-0002-1710-1268
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

Debugging REST APIs consists of two essential steps. The first crucial step is reproducing the
failure. This is particularly important in REST API environments, as the distributed nature of
cloud services and the stateful interactions between multiple API endpoints can make it difficult
to recreate the exact conditions that triggered the failure [4, 5]. REST APIs are designed to
handle stateless transactions, yet the interactions between sequential API calls can introduce
dependencies that create stateful behaviors. As a result, reproducing failures in such systems
often requires reconstructing the sequence of requests that led to the issue. Unfortunately, if the
request sequence or the service’s internal state is unclear, reproduction becomes a significant
challenge, delaying both diagnosis and fixing.

The second step is identifying the defect. Once the failure has been reproduced, the developer
needs to trace the cause of the failure through the system’s internal state and execution logs. This
step can be extremely complex in distributed cloud environments, as it involves correlating API
calls with backend service states and navigating through the vast number of possible program
states. Additionally, the asynchronous nature of cloud services and the diverse behavior of API
interactions, such as cross-service communication, versioning issues, and stateful versus stateless
design, can obscure the root cause, further complicating the debugging process. Identifying the
defect typically involves analyzing stack traces, which provide a snapshot of the function calls
leading to the failure [6]. However, the amount of data and the various API interactions make
this process labor-intensive.

To streamline this process, many tools have been developed to automate parts of the de-
bugging process. One such tool is RESTLER [7], a stateful REST API fuzzing tool designed for
automatically testing cloud services through their REST APIs. This tool systematically explores
the API space by generating and executing test cases that consist of various input sequences to
expose potential bugs, including security vulnerabilities and reliability issues.

Despite the powerful fuzzing capabilities of RESTLER, identifying specific causes of failures
based on stack traces—log outputs that reveal the sequence of function calls leading up to an
error—remains a challenge. Manually analyzing stack traces is a time-consuming process, as
developers must often sift through numerous test cases to find ones that yield similar errors or
bugs. Moreover, the complexity of cloud services, with their distributed nature and numerous
points of interaction, makes this task even more difficult.

To overcome these limitations, we propose FERRARI, a RESTLER extension that automates the
process of mapping stack traces to potential causes by generating targeted test cases. FERRARI
takes as input the stack trace to reproduce as well as a trace of all methods invoked during the
computation. The stack trace provides information on the methods involved at the moment an
error occurs, capturing the sequence of method calls that led to the failure. In contrast, a method
trace offers a complete record of all methods executed during the program’s runtime, enabling
a comprehensive view of the system’s behavior, including interactions and state changes that
may not be evident in the stack trace alone. These inputs are necessary to understand the flow
of events that generated the failure and allow us to reproduce this error. Then, FERRARI is able
to create and execute a series of test cases that aim to replicate the failure encountered. By
comparing the input stack trace to the results of these test cases, FERRARI narrows down the
possible causes of failure, allowing developers to identify the defect more quickly and accurately.
This approach leverages the fuzzing capabilities of RESTLER but tailors them to enable the
reproduction of failure and the discovery of new bugs based on stack traces. The contribution

of FERRARI is automating the mapping and analysis of stack traces to generate new test cases
focused on specific bugs. In this way, developers are able to reproduce the failure as well as
reduce the manual effort.

Structure of the paper. Section 2 explains the main functionalities of RESTLER and the
most closely related works. Section 3 presents the architecture of FERRARI. Section 4 reports a
running example to show how FERRARI works, while Section 5 shows a preliminary evaluation
of our adaptation. Finally, Section 6 concludes the paper and outlines our future research agenda.

2. Background and Related Work

This section provides an overview of RESTLER and the literature related to our proposal.

2.1. RESTLER: A Stateful REST API Fuzzing Tool

RESTLER [7] is an automatic REST API fuzzing tool designed to test stateful cloud services
through their APIs. The tool analyzes the API specification (typically in Swagger/OpenAPI
format) and generates sequences of requests that are tested against the service. The primary
functionalities of the tool include:

Dependency Inference: RESTLER automatically infers dependencies between request types.
For example, if one request (A) produces an output needed by another request (B), it under-
stands that B should only be executed after A. This dynamic learning process helps optimize
test coverage by exploring valid service states while minimizing redundant or invalid requests.

Dynamic Feedback Analysis: During testing, RESTLER collects and analyzes responses from
the service to learn from previous test executions. It uses this information to adjust its test
generation, avoiding request sequences that the service has already rejected, thus optimizing
the test coverage and improving the efficiency of the fuzzing process.

Test Sequence Generation: RESTLER generates test cases that consist of sequences of multi-
ple API requests. By considering both the inferred dependencies and dynamic feedback from
earlier test runs, RESTLER explores deeper states of the service, increasing the probability of
uncovering bugs that simpler stateless fuzzing tools might miss.

Handling Complex Service Dependencies: RESTLER supports custom annotations to re-
solve complex dependencies that might not be fully described in the API specification. This
functionality is particularly useful in large, production-level cloud services that may require
specific request sequences.

Search Strategies: RESTLER employs different search strategies to more efficiently explore
the sequences of requests. These strategies include a breadth-first search (BFS) [8] approach,
a faster variant (BFS-Fast) that aims to cover all request types with fewer sequences [9], and a
random walk strategy [10] to explore deeper, less common service states. These strategies
allow RESTLER to scale its exploration based on the complexity of the service being tested.

The empirical evaluation of RESTLER shows that it is particularly useful in cloud environments,
where services expose a wide range of functionalities through REST APIs. In addition, RESTLER
supports production-level services with complex API interactions, making it a valuable tool for
identifying security vulnerabilities and ensuring service robustness.

2.2. Literature on Failure Reproduction

Fault reproduction is fundamental for software testing, especially in complex systems where
reproducing a reported failure can aid in debugging and providing patches. Many approaches
and tools have been proposed to address this challenge, ranging from test case generation to
more sophisticated methods like fuzzing and symbolic execution [11, 12].

A well-known approach in this area is automated test case generation, which aims to repro-
duce faults by leveraging a set of inputs to reach erroneous states. Tools like AFL (American
Fuzzy Lop)' [13] and its improvements [14, 15, 16] use genetic algorithms to mutate inputs and
observe how programs respond, aiming to crash the system or expose vulnerabilities.

Symbolic execution [17] is another technique used to discover faults by systematically ex-
ploring the execution paths of a program. Tools such as KLEE [18] and SAGE [19] employ
symbolic execution to generate inputs that explore different paths in the program. STAR [20]
uses backward symbolic execution to reproduce a failure. Starting at the code location specified
at the top of the stack trace, STAR symbolically executes the application backward until reaching
the entry point of the topmost function in the trace. Upon reaching that point, STAR attempts
to find and jump to the call-site of this function. Although generally effective at reproducing
failures, STAR, like other symbolic execution tools, suffers from path explosion, especially
in large systems with complex branching. Furthermore, symbolic execution tools generally
require the source code of the application under test to be fully instrumented so that the tool
can construct precise path conditions.

Search-Based Software Engineering (SBSE) has also made significant contributions to auto-
mated test case generation, with the aim to optimize test suites for various objectives, such as
coverage, fault detection, or failure reproduction [21, 22, 23]. Tools like EVOSUITE [24] generate
entire test suites for Java applications by employing genetic algorithms to maximize coverage
criteria. Although EvoSUITE excels in generating comprehensive test suites, its primary goal
is often focused on achieving high coverage rather than reproducing specific failures. Some
extensions and adaptations of search-based approaches [25] have shown promising results in
tailoring test case generation to reproduce specific behaviors. However, these are often limited
by challenges such as stateful dependencies or complex environmental setups.

Recently, fuzzing techniques have evolved to address some of these limitations. Stateful
fuzzing tools like RESTLER [7] focus on testing APIs by understanding dependencies between
multiple APIrequests. This approach is particularly valuable when bugs occur due to interactions
between different components or states. Similarly, Corradini et al. [26] presented RESTATS, a
test coverage tool for REST APIs that supports eight state-of-the-art test coverage metrics in
a black-box manner. While RESTLER and REsTATs excel in finding bugs in API-driven cloud
services, their focus is on discovering bugs rather than reproducing already-reported failures.

'https://lcamtuf.coredump.cx/afl/

https://lcamtuf.coredump.cx/afl/

A different research angle in the domain of fault reproduction is represented by test case
minimization, which plays a key role in reducing the size of test cases that can recreate a fault [27].
Techniques such as delta debugging [28] or hierarchical delta debugging [29] systematically
reduce the input size of test cases while preserving the failure-inducing behavior. These
approaches are widely adopted in reproducing simpler bugs but may struggle with stateful or
environment-dependent failures.

The concept of replay-based fault reproduction has also been explored, where systems such as
RECrasH [30] or ExECUTION RECONSTRUCTION [31] capture and replay execution traces leading
to the fault. This method guarantees faithful reproduction but often incurs high overhead and
may be limited to specific types of bugs.

In conclusion, while many tools and techniques exist to either discover or reproduce faults,
there remains a gap in tools that automatically generate test cases that faithfully reproduce
reported failures in diverse, stateful systems. Our tool builds on these prior works by focusing
specifically on this gap, aiming to reduce the manual effort involved in reproducing complex
bugs in real-world environments.

3. Architecture

An overview of FERRARI is shown in Figure 1. Specifically, the computation begins with three
input files, each generated through the analysis of a REST API. The first input, i.e., the method
trace, is created by a trace agent” that captures all methods called during the execution of the
APL The trace agent monitors the API calls and logs all method invocations leading up to the
failure, providing a complete view of the interactions between the client and the REST APIL.

The second input is the stack trace, which represents the exception thrown during a failure.
The stack trace captures information about the type and cause of the error. Alongside it, the
method trace logs the sequence of method calls that were executed prior to the failure, giving
detailed insights into the program’s execution flow that led to the error.

The last input is the REST API definition file (referred to as the OpenAPI specification) that
describes how to access a cloud service through its REST APIL including what requests the
service can handle, what responses may be received, and the response format.

To generate meaningful test cases, we use FERRARI with these three inputs. FERRARI is
built on top of RESTLER and uses it to systematically explore the API space by generating and
executing test cases with varying input sequences. These test cases are designed to simulate
conditions similar to the original failure (reported in the stack trace input), potentially uncover-
ing new bugs related to the error. After executing each test case, FERRARI allows us to compare
the stack trace given as input and the stack traces generated to identify potential new bugs.
Specifically, we implemented a similarity score mechanism to compare the sequence of method
invocations with the input stack trace—more details on the computation are reported later in
Section 4. This similarity score quantifies how closely the behavior observed in the test case
matches the conditions of the initial failure. A high similarity score suggests that the test case
has likely reproduced the failure, giving the developer a starting point for further investigation.

*https://github.com/attilapiros/trace-agent

https://github.com/attilapiros/trace-agent

AN U W N

N N

Open API =
specification | == Stack trace | =
Trace agent CERRAR]
B v
@ [—> Methods trace :-: > @ Similarity score
under test .
A

Final report with test
5 cases that successfully
g RESTler reproduced the failure

Figure 1: Overview of FERRARI architecture. The Figure shows an overview of the entire process,
starting from the REST API that a developer aims to investigate.

Finally, FERRARI generates a final report for the developer, highlighting which test case
successfully reproduced the error. This report includes the details of the API request that led to
the error being reproduced, enabling the developer to examine the inputs that triggered the
failure and identify the bugs.

4. Running Example

As an example of how FERRARI reproduces failures, we demonstrate how it recreates a stack
trace in the open-source Petstore REST APL°® This API consists of 20 HTTP endpoints for
interacting with an eponymous pet store by allowing users to post, update, delete, or fetch
information about customers, orders, and registered pets. An OpenAPI specification for this
API has also been made available.*

The API itself is implemented as a monolithic Java application. We have introduced a
synthetic error into the application, with the aim of having FERRARI actively reproduce this
failure. Listing 1 depicts the Java handler for POST /pet/ requests, through which users can
save a new pet in the application. This handler accepts a JSON representation of a Pet model as
input, featuring, e.g., a name and an id of the pet. We have added a check on the posted pet’s id
(lines 15 — 18) so that, if the id equals a specific, arbitrary value, an uncaught arithmetic error is
thrown (line 3), resulting in a stack trace being produced. For the sake of the example, the handler
calls two additional methods petIdIsSmallerThan50 and petIdIsSmallerThan25 that
check whether the id falls within a specific range before raising the error.
protected void petIdIsSmallerThan25(Long petld) {

if (petld == 10)
1/ 0; // INJECTED ERROR
}

protected void petIdIsSmallerThan50(Long petld) {
if (petld < 25)

*https://petstore.swagger.io/
*https://github.com/swagger-api/swagger-petstore/commits/master/src/main/resources/openapi.yaml

https://petstore.swagger.io/
https://github.com/swagger-api/swagger-petstore/commits/master/src/main/resources/openapi.yaml

O o0

10

12
13
14
15
16
17
18
19
20

petldIsSmallerThan25 (petld);
else
petldIsSGreaterThan25 (petld);

}
// Request handler for POST /pet/ requests

public ResponseContext addPet(RequestContext req, Pet pet) {
[...]
PetData.addPet(pet);
// START INJECTED ERROR
if (pet.getld() < 50)
petldIsSmallerThan50 (pet. getld());
// END INJECTED ERROR

[...]

}

Listing 1: Synthetically introduced error in the addpet HTTP handler for a POST /pet/
request.

4.1. Setting up Failure Reproduction

Listing 2 depicts parts of the stack trace that is produced when the arithmetic error at line 3 in
Listing 1 is reached.

In order to reproduce this stack trace, a trace agent (cf. Section 3) must be attached to
the Petstore application when the latter is launched, as the agent performs the necessary
instrumentation to enable logging method invocations and uncaught exceptions. The trace
agent is furthermore configured to recognize the request handlers for each of the 20 HTTP
endpoints listed in Petstore’s OpenAPI specification. This enables the agent to record the names
of all Java methods that were invoked directly or indirectly as a result of an incoming request.
To filter out irrelevant method invocations, the agent only records the invocations of methods
defined in packages of the application itself. Invocations to third-party library or framework
methods or methods defined in the standard Java libraries are hence not recorded. If further
investigation into the third-party dependency is required, developers can reconfigure the trace
agent to enable the logging of external method calls selectively.

Each incoming request results in the creation of a new method trace that lists the methods that
were called while processing this request. Furthermore, if at any point an uncaught exception
is thrown, the agent will also ensure that the stack trace for this exception is recorded in a new
error log, separate from the recorded method traces.

Once the application has been set up, FERRARI can be configured to reproduce, e.g., the stack
trace depicted in Listing 2. At first, RESTLER sends several requests to each of the 20 HTTP
endpoints listed in Petstore’s OpenAPI specification. After each request that it sends to the API,
FERRARI reads the method trace that was produced as a result of the request and compares this
to the user-specified stack trace.

4.2. Computing a Similarity Score

We hypothesize that, the larger the overlap between the method trace of a request and the stack
trace that should be reproduced, the higher the likelihood that this request can be tweaked

QN U R W DN

java.lang.ArithmeticException: / by zero

at io.swagger.petstore.controller.PetController.
petIdIsSmallerThan25$original$uYjjoSww(PetController.java:167)

[...]

at io.swagger.petstore.controller.PetController.
petIdIisSmallerThan50$original$uyYjjoSww(PetController.java:178)

[...]
at
io.swagger.petstore.controller.PetController.addPet (PetController. java)

[...]

at org.eclipse.jetty.util.thread.QueuedThreadPool$Runner.run(
QueuedThreadPool.java:1034)

at java.base/java.lang.Thread.run(Thread.java:842)

Listing 2: An example of an error log that is produced when the synthetic error in the POST /pet/
handler is reached.

further in order to exactly reproduce the failure. The overlap between both traces is quantified
in the form of a similarity score, which expresses how many method invocations from the
method trace also appear, in their correct order, in the stack trace.

For instance, suppose that RESTLER sends a request to the POST /pet/ endpoint, with a
JSON representation of a Pet model with an id of 0 as input. Once this request has been received
and processed by the application, the trace agent creates the method trace depicted in Listing 3
and communicates it to FERRARI. At this point, FERRARI compares the method trace to the
stack trace and finds that the three method invocations highlighted in blue correspond with
the three method invocations highlighted in the user-specified stack trace (Listing 2). These
invocations, in turn, correspond to the method definitions highlighted in Listing 1.

When comparing both traces, FERRARI finds that these three methods overlap and
computes a similarity score of 3. In contrast, if RESTLER sends a POST /pet/
request with a pet id of 100, the similarity score would be only 1, as only the
io.swagger.petstore.controller.PetController.addPet method would appear in
both traces. If RESTLER sends a request to one of the 19 other endpoints, the similarity score
might be 0, as there could be no overlap between both traces. Requests that result in a similarity
score of 0 are discarded at this point, as they provide no relevant information for reproducing the
failure. By filtering out such requests early, FERRARI focuses only on requests with meaningful
overlap, thereby reducing unnecessary computational overhead.

The similarity score hence indicates how “close” a request came to reaching the specified
failure. However, the similarity score cannot be computed before sending a request, as it requires
the generated method trace produced by the trace agent during runtime. This approach ensures
that the score reflects the dynamic execution behavior of the system.

io.swagger.petstore.model.Pet.setld
io.swagger.petstore.model.Pet.setName

[...]

io.swagger.petstore.data.PetData.addPet
io.swagger.petstore.controller.PetController.addPet

[...]

7
8

io.swagger.petstore.controller.PetController.petIdIsSmallerThan50
io.swagger.petstore.controller.PetController.petIdIsSmallerThan25

Listing 3: An example of a method trace for an invocation of the POST /pet/ handler.

Note that a method trace generally includes method invocations that are not listed in the
stack trace. For example, the PetData.addPet method is called at line 14 in Listing 1 and
appears in the method trace at line 4. Since the function frame for this method invocation was
no longer active when the arithmetic error was reached, it does not appear in the stack trace.
Hence, the similarity scoring algorithm must take into account that method invocations that
appear right after another in the stack trace do not necessarily appear consecutively in the
method trace. Although our FERRARI prototype currently, by default, does not intervene in the
generation and sending of requests, we aim to modify RESTLER’s fuzzing algorithm to prioritize
sending requests that have previously resulted in a high similarity score.

4.3. Comparing Stack Traces

In parallel to parsing method traces and comparing them to the user-specified stack trace,
FERRARI also checks whether the previous request created a new error log, for example,
because an uncaught exception was raised. If so, FERRARI parses this error log as well and
compares it with the specified stack trace. In contrast with the comparison between method
traces and the stack trace, this comparison considers both methods defined in third-party
libraries and frameworks, as well as methods defined in the application’s packages.

However, it should be noted that reaching the same error twice in separate execution scenarios
does not necessarily result in producing two stack traces that are exactly identical. For one,
there may be some non-determinism in parts of the application. As an example, the Petstore
application employs a third-party library to route HTTP requests to their corresponding Java
handlers. Non-determinism in the routing may result in different library methods being called
before the same failure is eventually reached. Furthermore, if the application relies on run-time
reflection, the fully-qualified names of several methods in the stack trace may be partially auto-
generated, and may hence change whenever the application is restarted. This is demonstrated
in Listing 2, where several method calls feature the auto-generated uyjjosww identifier.

The stack trace comparison mechanism takes both issues into account by parsing the trace to
remove auto-generated identifiers and by performing a weak matching of traces. Auto-generated
identifiers are removed by simply discarding all characters that appear after a “$” in the method’s
fully-qualified name. Weak matching considers two stack traces to be identical if both the error
message (e.g., java.lang.ArithmeticException: / by zero) and the top five method
calls® are the same. FERRARI saves all requests that result in the creation of an error log that
weakly matches the specified stack trace. Once RESTLER has finished fuzzing, FERRARI outputs
a report that lists these requests so that users can examine with which inputs the failure can be
reproduced.

5The restriction to the top five method calls strikes a balance between computational efficiency and ensuring that
enough contextual information is preserved to meaningfully compare traces. However, this threshold is configurable
and can be adjusted by the user depending on the needs of the analysis.

5. Evaluation and Discussion

We have performed a limited evaluation of FERRARI on the Petstore REST API to gauge how
effective our similarity scoring mechanism is at steering the tester to send those requests
through which it can reproduce a specified failure. As mentioned in Section 2, RESTLER, by
default, employs a sophisticated strategy for iteratively modifying requests and arranging them
into various sequences to thoroughly test a REST API. We compare the default RESTLER with
FERRARI that discards requests that result in a low similarity score rather than iterating over
these requests. The discarding of requests with a similarity score of 0 occurs immediately after
computing the score once the method trace for the request has been compared to the user-
specified stack trace. By filtering out these requests early, FERRARI avoids wasting resources
on paths that are unlikely to reproduce the failure.

Table 1 compares how often RESTLER reproduces the arithmetic error depicted in Listing 2
with and without discarding low-scoring requests. In both cases, we let our FERRARI prototype
check for error logs that are created while fuzzing the API and compare these with the specified
stack trace.

Requests sent | # error logs produced | # failure reproductions

RESTLER 5,809 3,346 405

FERRARI 737 476 405

Table 1
Comparison of the effectiveness at reproducing the arithmetic error in Listing 2 with and without
discarding of low-scoring requests.

If we do not discard any requests, RESTLER sends a total of 5,809 requests before terminating
the fuzzing, and 3,346 error logs are produced. The vast majority of these error logs are the result
of RESTLER intentionally generating malformed requests, resulting in uncaught exceptions
being thrown by the application. Such errors are unrelated to the arithmetic error that we wish
to reproduce. RESTLER also manages to reproduce the arithmetic error in analysis 405 times.

However, if we let FERRARI discard any requests that result in a similarity score of 0, then
RESTLER only sends 737 requests. These requests result in 476 error logs, 405 of which match
the stack trace with the arithmetic error that we want to reproduce. While the number of failure
reproductions (405) remains constant, FERRARI achieves this with significantly fewer requests
sent and error logs produced. This highlights the efficiency of the filtering mechanism: it enables
FERRARI to focus on promising requests, minimizing redundant error logs and resource usage
while consistently reproducing the desired failure.

We can conclude that our adaptation was, hence, comparatively more efficient at reproducing
the arithmetic failure in the Petstore application than the baseline RESTLER fuzzing strategy.
By discarding low-similarity requests, FERRARI significantly reduces the number of requests
sent and error logs analyzed, which in turn reduces the overall time required to reproduce the
failure. While this evaluation did not focus on execution time explicitly, initial observations
suggest that FERRARI can reproduce a failure more quickly compared to RESTLER.

While our preliminary evaluation focuses on demonstrating FERRARTI’s efficiency compared
to RESTLER, we believe its design and initial results highlight its potential to achieve the broader
goals of helping developers identify defects more efficiently and improving the precision of
failure reproduction. In particular, by filtering out requests with a low similarity score and
focusing on requests that are more likely to reproduce the target failure, FERRARI minimizes
the noise generated during debugging. This reduction in irrelevant error logs and test cases
significantly narrows the search space for developers, allowing them to pinpoint the conditions
leading to a failure more quickly. For instance, developers can immediately focus on the 476
error logs relevant to the target failure instead of also having to analyze those that are not
relevant to the error they want to reproduce and that are contained in the 3,346 logs produced
by RESTLER. This prioritization lays the foundation for reducing manual debugging effort and
accelerates the identification of defects.

Moreover, the similarity score mechanism in FERRARI ensures that test cases are tailored to
reproduce specific stack traces accurately. This mechanism not only increases the likelihood of
reproducing a failure but also provides developers with high-confidence test cases that closely
match the original conditions. This precision allows developers to investigate the failure in a
controlled environment, iterating over a smaller, more focused set of scenarios.

6. Conclusion and Future Agenda

In this paper, we presented FERRARI, an extension to RESTLER with the aim of reproducing
failures in cloud services by focusing on REST API stack traces. Our tool integrates the analysis
of specific stack traces with the capabilities of RESTLER to generate test cases, helping developers
identify bugs more efficiently. By comparing the stack traces, we automate part of the debugging
process, reducing manual effort and enhancing accuracy in locating the cause of failures.

The preliminary results and evaluation from our experiments on the Petstore API demonstrate
the potential of our approach. By computing a similarity score, we were able to reproduce
failures more efficiently and with fewer requests. Furthermore, the integration of fuzzing and
stack trace analysis allows us to efficiently filter out irrelevant error logs and focus on those
that are more likely to reproduce the targeted failure.

Our work provides several opportunities for future research. One of the main directions
involves extending the applicability of our tool to microservice architectures, where distributed
and stateful interactions between components can lead to even more challenging debugging
scenarios. Another area of improvement is refining the similarity metrics used to compare stack
traces, potentially incorporating more sophisticated techniques to improve the accuracy of the
comparison. In that sense, following the work of Fortz et al. [32], we plan to use deep learning
models to learn which messages or combinations are important for reproducing failure.

Finally, we plan to conduct a large-scale empirical study across various real-world cloud
services and systems to provide more insights into the effectiveness of our tool in different
environments. This study would allow us to assess the robustness and generalizability of our
tool and optimize it for practical use in large-scale cloud systems.

Acknowledgments

The authors are partially funded by the FWO SBO BaseCamp Zero project (Code: S000323N).

References

(1]
(2]

(3]

[7]

(8]
(9]
[10]
[11]
[12]
[13]

[14]

[15]

[16]

A. Neumann, N. Laranjeiro, J. Bernardino, An analysis of public rest web service apis,
IEEE Transactions on Services Computing 14 (2018) 957-970.

R. A. DeMillo, H. Pan, E. H. Spafford, Failure and fault analysis for software debugging,
in: Proceedings Twenty-First Annual International Computer Software and Applications
Conference (COMPSAC’97), IEEE, 1997, pp. 515-521.

J. A. Whittaker, What is software testing? and why is it so hard?, IEEE software 17 (2000)
70-79.

G. Canfora, M. Di Penta, Service-oriented architectures testing: A survey, in: International
Summer School on Software Engineering, Springer, 2006, pp. 78-105.

M. Bozkurt, M. Harman, Y. Hassoun, Testing and verification in service-oriented architec-
ture: a survey, Software Testing, Verification and Reliability 23 (2013) 261-313.

M. Burger, A. Zeller, Minimizing reproduction of software failures, in: Proceedings of the
2011 International Symposium on Software Testing and Analysis, 2011, pp. 221-231.

V. Atlidakis, P. Godefroid, M. Polishchuk, Restler: Stateful rest api fuzzing, in: 2019
IEEE/ACM 41st International Conference on Software Engineering (ICSE), IEEE, 2019, pp.
748-758.

R. Zhou, E. A. Hansen, Breadth-first heuristic search, Artificial Intelligence 170 (2006)
385-408.

M. Utting, A. Pretschner, B. Legeard, A taxonomy of model-based testing approaches,
Software testing, verification and reliability 22 (2012) 297-312.

Z. B. Zabinsky, et al., Random search algorithms, Department of Industrial and Systems
Engineering, University of Washington, USA (2009).

X. Zhu, S. Wen, S. Camtepe, Y. Xiang, Fuzzing: a survey for roadmap, ACM Computing
Surveys (CSUR) 54 (2022) 1-36.

R. Baldoni, E. Coppa, D. C. D’elia, C. Demetrescu, 1. Finocchi, A survey of symbolic
execution techniques, ACM Computing Surveys (CSUR) 51 (2018) 1-39.

A. Fioraldi, A. Mantovani, D. Maier, D. Balzarotti, Dissecting american fuzzy lop: A
fuzzbench evaluation, ACM Trans. Softw. Eng. Methodol. 32 (2023). URL: https://doi.org/
10.1145/3580596. doi:10.1145/3580596.

C. Wang, S. Kang, Adfl: an improved algorithm for american fuzzy lop in fuzz testing, in:
Cloud Computing and Security: 4th International Conference, ICCCS 2018, Haikou, China,
June 8-10, 2018, Revised Selected Papers, Part V 4, Springer, 2018, pp. 27-36.

C. Lemieux, K. Sen, Fairfuzz: A targeted mutation strategy for increasing greybox fuzz
testing coverage, in: Proceedings of the 33rd ACM/IEEE international conference on
automated software engineering, 2018, pp. 475-485.

S. Wei, S. Yang, P. Zou, Improvement of afl’s seed deterministic mutation algorithm,

https://doi.org/10.1145/3580596
https://doi.org/10.1145/3580596
http://dx.doi.org/10.1145/3580596

[17]
[18]
[19]

[20]

[21]

[22]

[23]

[24]

[27]
(28]
[29]

[30]

[31]

[32]

in: International Conference on Emerging Networking Architecture and Technologies,
Springer, 2022, pp. 347-357.

J. C. King, Symbolic execution and program testing, Communications of the ACM 19
(1976) 385-394.

C. Cadar, D. Dunbar, D. R. Engler, et al., Klee: unassisted and automatic generation of
high-coverage tests for complex systems programs., in: OSDI, volume 8, 2008, pp. 209-224.
P. Godefroid, M. Y. Levin, D. A. Molnar, et al., Automated whitebox fuzz testing., in: NDSS,
volume 8, 2008, pp. 151-166.

N. Chen, S. Kim, STAR: stack trace based automatic crash reproduction via symbolic
execution, IEEE Transactions on Software Engingeering 41 (2015) 198—220. URL: https:
//doi.org/10.1109/TSE.2014.2363469. doi:10. 1109 /TSE. 2014 . 2363469.

M. Harman, B. F. Jones, Search-based software engineering, Information and software
Technology 43 (2001) 833-839.

A. Arcuri, G. Fraser, On parameter tuning in search based software engineering, in:
Search Based Software Engineering: Third International Symposium, SSBSE 2011, Szeged,
Hungary, September 10-12, 2011. Proceedings 3, Springer, 2011, pp. 33-47.

M. Harman, S. A. Mansouri, Y. Zhang, Search-based software engineering: Trends, tech-
niques and applications, ACM Computing Surveys (CSUR) 45 (2012) 1-61.

G. Fraser, A. Arcuri, Evosuite: automatic test suite generation for object-oriented software,
in: Proceedings of the 19th ACM SIGSOFT symposium and the 13th European conference
on Foundations of software engineering, 2011, pp. 416—419.

A.Panichella, F. M. Kifetew, P. Tonella, Automated test case generation as a many-objective
optimisation problem with dynamic selection of the targets, IEEE Transactions on Software
Engineering 44 (2017) 122-158.

D. Corradini, A. Zampieri, M. Pasqua, M. Ceccato, Restats: A test coverage tool for restful
apis, in: 2021 IEEE International Conference on Software Maintenance and Evolution
(ICSME), IEEE, 2021, pp. 594-598.

S. Yoo, M. Harman, Regression testing minimization, selection and prioritization: a survey,
Software testing, verification and reliability 22 (2012) 67-120.

A. Zeller, R. Hildebrandt, Simplifying and isolating failure-inducing input, IEEE Transac-
tions on Software Engineering 28 (2002) 183-200.

G. Misherghi, Z. Su, Hdd: hierarchical delta debugging, in: Proceedings of the 28th
international conference on Software engineering, 2006, pp. 142-151.

S. Artzi, S. Kim, M. D. Ernst, Recrash: Making software failures reproducible by preserving
object states, in: ECOOP 2008—Object-Oriented Programming: 22nd European Conference
Paphos, Cyprus, July 7-11, 2008 Proceedings 22, Springer, 2008, pp. 542-565.

G. Zuo, J. Ma, A. Quinn, P. Bhatotia, P. Fonseca, B. Kasikci, Execution reconstruction:
Harnessing failure reoccurrences for failure reproduction, in: Proceedings of the 42nd
ACM SIGPLAN International Conference on Programming Language Design and Imple-
mentation, 2021, pp. 1155-1170.

S. Fortz, P. Temple, X. Devroey, P. Heymans, G. Perrouin, Varyminions: leveraging rnns to
identify variants in variability-intensive systems’ logs, Empirical Software Engineering 29
(2024) 99.

https://doi.org/10.1109/TSE.2014.2363469
https://doi.org/10.1109/TSE.2014.2363469
http://dx.doi.org/10.1109/TSE.2014.2363469

	1 Introduction
	2 Background and Related Work
	2.1 RESTler: A Stateful REST API Fuzzing Tool
	2.2 Literature on Failure Reproduction

	3 Architecture
	4 Running Example
	4.1 Setting up Failure Reproduction
	4.2 Computing a Similarity Score
	4.3 Comparing Stack Traces

	5 Evaluation and Discussion
	6 Conclusion and Future Agenda

