
Towards an Empirical Analysis of Code Cloning and Code
Reuse in CI/CD Ecosystems
Guillaume Cardoen1

1Software Engineering Lab, University of Mons, Belgium

Abstract
Large open source projects are engaged in collaborative software development through social coding platforms,
and use CI/CD practices to automate numerous repetitive tasks through workflows. Most CI/CD tools follow the
configuration-as-code paradigm, specifying their workflow configurations as runnable workflow files. We posit
that, just as is the case when maintaining regular source code, workflow configuration files are subject to the
good and bad practices of reusability and cloning.

This paper provides the plan of my doctoral research, explaining the objectives and research questions, and
outlining the research method to reach these objectives. My research focuses on the empirical analysis of how
code reuse and code cloning practices emerge and evolve in workflow files. The initial focus is on GitHub, taking
GitHub Actions as a case study, given that it is by far the most popular CI/CD used in GitHub.

Keywords
configuration as code, empirical analysis, code cloning, code reuse, collaborative software development, GitHub

1. Introduction

Contemporary collaborative software development relies on a plethora of tools that support or stream-
line the development process such as version control systems, issue trackers, CI/CD and workflow
automation tools, quality checkers, security scanners and many more. Such tools tend to be integrated
into collaborative social coding platforms. GitHub [1] is the largest social coding platform today with
100M+ users and hosting 284M+ public projects in 2023 [2]. GitLab [3] is another very popular social
coding platform with an estimation of over 30 millions registered users [4].

Continuous integration and delivery (CI/CD) is a pillar for collaborative software development [5],
allowing to automate the numerous repetitive tasks being performed by development teams (such as
license agreements, automatic answers, code reviewing, quality analysis, test coverage, automatic issue
triaging, ...). Many CI/CD services have emerged throughout the years (e.g., Travis, Jenkins, CircleCI,
AppVeyor), and other CI/CD services have been directly integrated into social coding platforms (e.g.
GitLab CI/CD since September 2015 [3] and GitHub Actions since November 2019 [6]).

Most of today’s CI/CD tools rely on configuration files (called workflows in GitHub Actions and
pipelines in GitLab CI/CD) to specify automated jobs. These jobs can be executed on runners provided
by the social coding platform (or through dedicated user-provided runners), based on triggers that are
either manual or event-based (such as a pull request, commit, release, recurrent schedule, signal from
an external service, and many more).

Given that CI/CD configuration files can be “executed”, they can be seen as an instance of the so-
called configuration-as-code practice [7]. Considering configuration files as code opens up an entire new
spectrum of research opportunities, since it allows to empirically observe and study the same coding
practices as those that have been studied for several decades for traditional programming languages.

One of these is the study of good and bad code quality practices, and more in particular the study
of code reuse and code cloning practices. Indeed, many of the reported “code smells” in the research
literature on software quality are related to code duplication [8, 9]. Previous research has already
demonstrated the existence of code duplication in Dockerfiles [10, 11], as well as higher maintenance

BENEVOL24: The 23rd Belgium-Netherlands Software Evolution Workshop, November 21-22, Namur, Belgium
$ Guillaume.CARDOEN@umons.ac.be (G. Cardoen)
� 0009-0005-2008-3565 (G. Cardoen)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:Guillaume.CARDOEN@umons.ac.be
https://orcid.org/0009-0005-2008-3565
https://creativecommons.org/licenses/by/4.0/deed.en


effort, prolonged fixes and inconsistent changes due to clones in build configuration files for Java
systems [12]. I thus posit that cloning and reuse practices are also likely to be used in CI/CD configuration
files. This makes it relevant to empirically study the prevalence and impact of such practices in project
repositories hosted on social coding platforms like GitHub and GitLab.

I hypothesise that project maintainers often tend to create new CI/CD configurations by copy-pasting
existing configurations from elsewhere, either from other repositories they own or know about, or
by relying on starter template configurations that are freely provided by the social coding platform.
It remains an open question whether such copy-and-paste reuse is actually beneficial in the specific
case of CI/CD, how duplicated code evolves, and whether it leads to maintainability problems in the
long run. Building further on the preliminary findings of my master’s thesis [13], the goal of my PhD
research is therefore to evaluate the code cloning and code reuse practices in CI/CD ecosystems, with
an initial focus on GitHub Actions, and extending the scope of the study to other CI/CD ecosystems
such as GitLab CI/CD in later phases.

The remainder of this article is structured as follows. Section 2 presents the research context, focusing
on related research on code reuse and code cloning, and presenting the GitHub Actions CI/CD ecosystem
that will be used as the first case study. Section 3 presents the research goals, subdivided into nine
research questions. Section 4 presents my current progress.

2. Context and Related Research

2.1. Code Reuse and Code Cloning

According to Krueger [14], software reuse consists of building new software based on existing software
artifacts (such as code fragments or design structures). Such reuse is a means to reduce development
time and maintenance effort needed to build large and complex programs, as well as to enhance their
general software quality posture [14]. Similarly, code reuse is the use of code snippets from existing
systems or components developed especially for being reused [15]. Many studies relating to code reuse
can be found in the literature [16]. Such code reuse can be typically classified into multiple strategies:
copy-paste, clone-and-own and platform orientation [16].

Copy-paste or clone-and-own reuse can lead to similar or identical code fragments, commonly
referred to as code clones [9]. They could arise accidentally, but are typically introduced due to code
duplication, forking, merging of similar systems, automated code generation tools, or due to changes
made by developers during maintenance [17, 18]. Code clones are a heavily studied field in software
engineering [19, 20, 21].

Code clones can have beneficial effects such as easier understanding of the code, reduced development
time, or ensuring robustness [22, 9, 18]. On the other hand, code clones are also considered as bad
smells [8] as they tend to increase the code base size, may lead to bug propagation, have a negative
impact on code readability, hide the originality of the code, increase maintenance cost or result in
inconsistent and repetitive bug fixes [23, 9]. Due to both positive and negative effects of code clones,
researchers propose that code clones should at least be detected, even in the absence of refactoring
them [17].

Code clones are often categorized into four types [24]: Type I clones represents code fragments that
are identical, ignoring differences in comments or whitespace; Type II clones extends Type I by allowing
different identifiers, literals, methods names and types; Type III clones includes Type II by allowing
added, removed or modified code lines; Type IV clones are so-called semantic clones that have the same
functional goal and behaviour even if they may look different syntactically.

Many general-purpose code clone detection tools exist [19, 17]. To name but a few: NiCad [25],
CCFinder [26], CCFinderSW [27], SourcererCC [28], Deckard [29], and CCSharp [30]. They can be
classified into multiple categories, including text-based, token-based, tree-based, graph-based, metric-
based, and learning-based. Hybrid clone detection approaches may belong to multiple categories [19].
Some tools also offer automatic refactoring of code clones. Arcelli Fontana et al. [31] developed such a
tool for Java project, using NiCad [25] as clone detector.



Code fragment similarity and code fingerprinting are closely related fields to code clone detection.
Similarity Preserving Hashing Functions (SPHF) are functions mapping two similar inputs to two similar
outputs [32]. Fingerprinting approaches divide documents in multiple term sequences and derive one
or multiple fingerprints from these sequences. Documents sharing one or more equivalent fingerprints
are susceptible to contain reused code fragments [33]. Both SPHF and fingerprinting approaches have
been proposed for code clone detection [34, 33, 32].

Many empirical studies on code clones have been carried out in the past. To name but a few, Pate
et al. [35] presented a systematic literature review related to code clone evolution. Mondal et al. [36]
analysed the propagation of bugs through code clones, concluding that 18.42% of code fragments where
a bug fix occurred are due to propagated bugs. Estefó et al. [37] studied code duplication in Robot
Operating System and found that almost half of the analysed launch configuration files contained at
least one code clone. Oumaziz et al. [10] analysed duplicated code in Dockerfiles via an index-based
duplicate detection, finding that new instructions are frequent and issues experienced by developers
explains a majority of modifications. Oumaziz [11] studied code clones in API documentation and
Dockerfiles, finding that a majority of instructions in Dockerfiles are duplicated. McIntosh et al. [12]
collected and analysed 3,872 open source build system configuration files. Considering only Type
I clones, they concluded that half of build logic lines are cloned at least once in Java build systems.
However, they noticed some build systems with a limited number of clones, suggesting cloning is not a
necessity in build system configuration files. They observed that inconsistent changes and prolonged
fixes, known to be clone-related problems in general-purpose code [23], are also affecting build system
files.

2.2. GitHub Actions

GitHub is the most prominent social coding platform [38]. GitHub Actions, being the most popular
CI/CD system used in GitHub projects [39], is arguably one of the most popular CI/CD ecosystem. This
section presents its concepts and existing empirical research that has been conducted on this quite
recent ecosystem.

GitHub has started to provide support for CI/CD within GitHub itself since November 2019 through
GitHub Actions, which quickly became the most frequently employed CI/CD solution for GitHub
projects [39]. Listing 1 shows a workflow configuration file, given by GitHub,1 for building a Python
package and releasing it on PyPI. The workflow is stored in a YAML file respecting a given syntax
specified by the GitHub documentation.2

A workflow file has at least two main parts describing when it is triggered (on: key) and what should
be performed (jobs: key). The on: key describes the list of events upon which the workflow should
run. Lines 3-5 of Listing 1 declare that the workflow should run each time a new release is published.
The jobs: key declares one or more jobs, each composed of one or more steps. A step can use (uses:
key) a reusable component, called Action, or run (run: key) a sequence of shell commands. Actions
will be described in Section 2.3.1.

Line 14 in Listing 1 declares a call to the actions/checkout Action (version 4) to clone the reposi-
tory, while line 16 calls version 3 of another Action actions/setup-python to install and configure
Python in the environment. Lines 17-18 are declaring a variable python-version used by the Action in
order to specify the python version to install. Lines 20-22 declare the execution of two shell commands,
the first one installing pip and the second one installing the Python package build with pip. Line 24
launches the python build system. Finally, line 26 calls the Action pypa/gh-action-pypi-publish
uploading the built Python package to PyPI. Lines 27-29 declare two parameters that will be passed to
the Action.

Prior research on GitHub Actions has focused on the adoption and usage of GitHub Actions. Kinsman
et al. [40] studied how developers use GitHub Actions in open-source projects after its adoption.
Golzadeh et al. [39] quantitatively studied the usage of different CI/CD tools used in GitHub and

1https://github.com/actions/starter-workflows/blob/main/ci/python-publish.yml
2https://docs.github.com/en/actions/using-workflows/workflow-syntax-for-github-actions

https://github.com/actions/starter-workflows/blob/main/ci/python-publish.yml
https://docs.github.com/en/actions/using-workflows/workflow-syntax-for-github-actions


Listing 1: GitHub Actions workflow file for building a Python package
1 name: Upload Python Package
2
3 on:
4 release:
5 types: [published]
6
7 permissions:
8 contents: read
9

10 jobs:
11 deploy:
12 runs-on: ubuntu-latest
13 steps:
14 - uses: actions/checkout@v4
15 - name: Set up Python
16 uses: actions/setup-python@v3
17 with:
18 python-version: ’3.12’
19 - name: Install dependencies
20 run: |
21 python -m pip install --upgrade pip
22 pip install build
23 - name: Build package
24 run: python -m build
25 - name: Publish package
26 uses: pypa/gh-action-pypi-publish@27b31702a0e7fc50959f5ad993c78deac1bdfc29
27 with:
28 user: __token__
29 password: ${{ secrets.PYPI_API_TOKEN }}

Rostami Mazrae et al. [41] qualitatively analysed the usage, co-usage and migration among CI/CD
tools, noticing a migration towards GitHub Actions. Valenzuela-Toledo and Bergel [42] studied the
evolution of GitHub Actions workflow files. Mazrae et al. [43] studied the main changes in workflow
files, concluding that files are subject to frequent modifications. Decan et al. [6] analysed the reuse of
Actions and automation practices for GitHub Actions workflows, concluding nearly all jobs make use
of them. Saroar and Nayebi [44] qualitatively surveyed Actions developers in the goal of understanding
how they use, create and search for Actions and identifying possible challenges they face while doing
so. Khatami et al. [45] analysed 10,012 commits from the 83 most populars repositories using GitHub
Actions looking for different kind of smells. They proposed an automatic smell detectors for each
identified smell, and gave insights on how developers reacted to those smells, concluding 7 out of 22
smells are revelant to developers whereas 9 out of 22 had mixed reactions.

2.3. GitHub Actions Code Reusability Mechanisms

The integrated CI/CD mechanisms offered by GitHub provide a variety of methods for facilitating
code reuse in workflows. This section describes the principal means of code reuse available in GitHub
Actions.

2.3.1. Reusable Actions

GitHub Actions supports different type of reusable components directly referenceable inside its work-
flows. In the GitHub Actions ecosystem, reusable components are called Actions. An Action represents
an individual task, combinable with others to create a job. They can either consist of a single Javascript



Listing 2: GitHub Action workflow file for building a Python package via a reusable workflow
1 # previous keys (on, permissions, etc.)
2
3 jobs:
4 deploy:
5 uses: ./.github/workflows/pypi-reusable.yaml
6 with:
7 python-version: 3.12
8 username: __token__
9 secrets:

10 password: ${{ secrets.PYPI_API_TOKEN }}

file being executed, be composed themselves of Actions or shell commands, or refer to a Docker con-
tainer. In the latter case, the container is then used as environment for the job, thus allowing specific
version and dependency management. The objective of Actions is thus to replace frequent sequences of
commands following the principle of "don’t repeat youself" (DRY).

The GitHub Marketplace3 enables maintainers to search for and share Actions. Alternatively, an
Action can be referenced by the repository hosting its code.

2.3.2. Reusable Workflows

Reusable workflows4 represent another possibility for code reuse. As its name suggests, reusable
workflows enables the maintainer to declare a workflow reusable by others. Such a reusable workflow is
declared in a very similar manner as done in Listing 1. Once declared, this workflow can be referenced
elsewhere, possibly in workflow files located in different repositories. Unlike Actions, a reusable
workflow can contain multiple jobs, each composed of multiple steps.

By using this reusability mechanism, the workflow presented at the Listing 1 can be transformed to
reference a reusable workflow. The resulting workflow, shown at the Listing 2, is a shorter workflow
file, where the steps of the deploy job are replaced by a reference to a reusable workflow (located in
the same repository in our example), which describes these steps.

2.3.3. Composite Actions

Composite Actions are a type of reusable Actions. A composite Action bundles a list of Actions or shell
commands as a single Action, thus appearing as a single step in a workflow file.

Assuming a composite Action example/build-publish-python@v1 is declared and bundles the
last four steps of the workflow presented at the Listing 1, we could simplify our workflow by replacing
these steps with a reference to example/build-publish-python@v1. An example of resulting
workflow is presented at the Listing 3. Line 8 calls a composite Action, while lines 9-12 are giving
needed variables to the Action (such as username and password).

2.3.4. Starter Workflows

GitHub freely provides examples and templates of GitHub Actions workflows, called starter workflows.
Such starter workflows can be found freely in a GitHub repository5 or can also be integrated automati-
cally via the GitHub web interface. Maintainers can copy-paste the content into their own workflows
and adapt them to their own use-case. Such reuse allows for a different starting point when creating a
new workflow file, offering an alternative to a blank workflow file. Nevertheless, such reuse can also
result in the creation of a significant amount of code clones across workflow files.

3https://github.com/marketplace?type=actions
4https://docs.github.com/en/actions/sharing-automations/reusing-workflows
5https://github.com/actions/starter-workflows

https://github.com/marketplace?type=actions
https://docs.github.com/en/actions/sharing-automations/reusing-workflows
https://github.com/actions/starter-workflows


Listing 3: GitHub Action workflow file for building a Python package via a composite action
1 # previous keys (on, permissions, etc.)
2
3 jobs:
4 deploy:
5 runs-on: ubuntu-latest
6 steps:
7 - uses: actions/checkout@v4
8 - uses: example/build-publish-python@v1
9 with:

10 python-version: 3.12
11 username: __token__
12 password: ${{ secrets.PYPI_API_TOKEN }}

As an example, the previously presented workflow in Listing 1 is one of the available starter workflow,
where only the python version was changed from 3.x to 3.12.

3. Research Goals

Since configuration-as-code files essentially contain code, I hypothesise that they are affected by
the majority of issues encountered in general-purpose code, even though the syntax for expressing
configuration files can be quite different from the one of traditional programming languages.

In the specific case of GitHub Actions, Saroar and Nayebi [44] qualitatively concluded that writing a
workflow based on a previously written workflow file and using a starter workflow as a basis are the
two most popular methods used by consulted GitHub Actions maintainers when writing a workflow
file. The majority of consulted maintainers thus appear to be basing themselves on other workflows,
which may be indicative of the popularity of copy-paste or clone-and-own reuse across workflow files.
Such reuse might lead to a substantial number of code clones in GitHub Actions workflow files.

I thus hypothesise that CI/CD configuration files also suffer from code cloning, due to copy-paste
or clone-and-own reuse and the many observed reasons for code duplication in general purpose code
(such as automatic code generation [17]). My doctoral research therefore aims to empirically study
code clones in configuration as code files of CI/CD tools. As a first step (G1-3), I will study the GitHub
Actions ecosystem, and in a final step (G4), I will extend this research to a wider range of tools, and
also compare the practices and impact of code cloning across these tools.

To achieve these different goals, I plan on using a mixed-method empirical analysis as advocated
by Creswell [46]. Such mixed-method empirical analysis entails two primary research methodologies:
qualitative and quantitative. Quantitative studies and mining of software repositories are typically
sufficient to inform decision-making. However, a qualitative approach may be necessary to better
understand the underlying causes behind specific phenomena, which might prove difficult to study via
a quantitative approach.

3.1. G1: Assessing Code Cloning Practices in the GitHub Actions Ecosystem

G1 will mainly focus on GitHub Actions workflow files. After a careful review of the literature, I found
no previous research analysing code clones for GitHub Actions.

In the goal of quantifying and describing code clones in GitHub Actions, we will proceed to address
the following research questions:

RQ1: What are code clones in workflows and how to identify them?
This question will study how code clones can be detected in GitHub Actions workflow files. The order

and structure of the syntactic keys used in workflow files (such as ‘on:’, ‘jobs:’, ‘uses:’ or ‘run:’) lead to



quite some repetition and syntactic similarity across workflow files. We therefore expect current clone
detection algorithms to yield many false positives and lose precision when applied on configuration
code, which can be syntactically quite different from general-purpose code. We plan to devise an
algorithm taking these syntactic specificities into account in order to precisely detect code clones in
workflow files. We will exclude Type IV clones from the analysis as they do not depend on the syntax.

RQ2: How prevalent are code clones in workflow files?
This question aims to quantify code clones across workflow files. We plan to empirically analyse

code clone presence in GitHub Actions workflow files, thus confirming the presence of code clones as
well as the extent of duplicated code in such files.

RQ3: What are the characteristics of code clones?
Clone characteristics such as length or position will be studied as well as social characteristics such

as the author and maintainer of code clones. This question will also analyse the code clone contents,
e.g., whether they are complete jobs, sequence of steps or events. How code clones differ or resemble
one another will also be studied in this question. Such analysis will provide insights on which parts of
workflow configurations maintainers tend to clone and why.

3.2. G2: Understanding code cloning practices

In order to gain a deeper comprehension of code clones in GitHub Actions workflow files, this second
goal aims to further analyse code cloning practices of workflow files by studying clones provenance,
evolution and impacts. More specifically, we will address the following three research questions:

RQ4: Where do code clones come from?
Assuming code cloning is a popular practice among GitHub Actions workflows maintainers, such

code cloning could come from several sources. Maintainers could use their own workflows, their
organisation workflows or GitHub starter workflows as a basis.

Based on the results of G1, we will construct and study the code clone evolution history, also known
as clone genealogy, inspired by existing research [47, 48]. By leveraging an existing differencing tool for
GitHub Actions workflow files developed at our lab [49], we will quantitatively study the origin of code
clones.

Such a study will provide insights in how code clones are introduced in workflow files and knowledge
in how workflow files are created.

In addition, we will also qualitatively study how developers tend to reuse code. The process of
choosing what code to reuse and the practice chosen by developers to do so will also be a part of this
study.

RQ5: How do code clones co-evolve?
By further studying the clone genealogy constructed in RQ2, this question aims to understand the

co-evolution of code clones. Code clones can follow multiple evolution patterns such as consistent
evolution (i.e., code fragments stays similar to a given similarity metric), independent evolution (i.e.,
code fragments become different to a given similarity metric), delayed or late propagation (i.e., code
fragments changes consistently at different times) [50]. Which evolution pattern do code clones follow
in the specific case of GitHub Action is still unknown.

RQ6: What is the impact of code clones?
This question seeks to understand how code clones affect workflow files and their creation or usage.

In general purpose code, code clones can be beneficial in certain instances, yet exert a detrimental
effect in others [22, 9, 18, 23, 8]. However, it is still unknown whether code clones impact positively
or negatively workflow files. This question will thus study the different impacts of code clones in
workflows, basing its answer on the previously studied aspects of clones (studied in RQ4 and RQ5).



3.3. G3: Improving code reuse practices

The objective of this goal is to improve code reuse practices in GitHub Actions workflow files by
assisting maintainers in the avoidance of code clones considered detrimental.

This goal is highly dependent on the conclusions of G1 and G2. It is our expectations that previous
goals will enable us to improve code reuse practices in GitHub Actions workflows. However, this goal
will be adapted or removed depending on the conclusions of G1 and G2.

RQ7: Are reusable components introduced in workflows?
This question seeks to understand whether code clones transform into reusable components in the

context of GitHub Actions workflow files, and whether this change impacts their code clones. GitHub
introduced multiple code reusability mechanisms (such as reusable workflows or composite Actions)
that could limit code cloning. However, whether maintainers refactor their workflow files in order to
use these mechanisms and thus, reduce code duplication, is still unknown. Similarly, the reasons to
use (or avoid) such mechanisms and the difficulties encountered by maintainers in doing so are still
unknown and will be qualitatively studied as part of this research question.

RQ8: How to help maintainers avoid code clones?
As it is already the case with general purpose code [9], we expect code clones in GitHub Actions

workflow files to have positive and negative effects. (The veracity of these expectations will be es-
tablished in RQ6). Though some workflows may not need nor benefit from code clones removal, we
expect that refactoring often encountered code fragments will mitigate or remove adverse effects of
code clones, thus helping maintainers. The objective of this research question is thus to identify and
implement strategies in order to help maintainers avoid code clones, or at least mitigate the adverse
effects of such clones.

Such strategies could include refactoring code clones into reusable components (such as Actions or
reusable workflows). Such refactoring could use code clones in order to create reusable components
and provide an automatic patch introducing such components. This automatic refactoring may be a
response to possible difficulties encountered by maintainers as will be studied in RQ4.

Due to limitations of reusability mechanisms GitHub or specific needs in workflows, we expect to be
unable to refactor some code clones. Another strategy thus involves automatically propagating changes
of code clones in order to support their co-evolution studied in RQ5. Such a strategy will mitigate or
remove bug propagation while also reducing maintenance costs, which are two of the adverse effects of
code clones [9].

This research question will be divided into multiple research questions as my doctoral research
progresses. As my doctoral research has only recently begun, I currently do not have enough hindsight
related to this question to provide a detailed description.

3.4. G4: Generalisation to Other CI/CD Tools and Social Coding Platforms

Other CI/CD tools (such as Jenkins6, CircleCI7, Travis8 or AppVeyor9) or social coding platforms (such
as GitLab10 or Gitea11) uses configuration-as-code practice in the scope of CI/CD configuration. The
second goal aims to expand the scope of the study to other CI/CD ecosystems, allowing us to compare
how code cloning and reuse varies between different CI/CD ecosystems using configuration-as-code
practice.

The methods of this second goal is based on the same fundamental concepts of G1-3 methods. A
large-scale and representative dataset of configuration files will be required for each considered CI/CD.

6https://www.jenkins.io/
7https://circleci.com/
8https://www.travis-ci.com
9https://www.appveyor.com/
10https://docs.gitlab.com/ee/ci/
11https://about.gitea.com/

https://www.jenkins.io/
https://circleci.com/
https://www.travis-ci.com
https://www.appveyor.com/
https://docs.gitlab.com/ee/ci/
https://about.gitea.com/


Large-scale archiving system (such as Software Heritage [51]) could be a first step in retrieving enough
data for different CI/CD. Moreover, in the particular case of GitLab, such archiving system could also
preserve self-hosted GitLab instances, allowing us to consider such instances. Concerning the detection
of code clones, I plan to adapt the algorithm developed in Goal 1 to other configurations files, beginning
with those based on YAML for simplicity. The depth of this goal and its feasibility will be dependent on
the time left in my thesis.

The following research question will be addressed by this goal:

RQ9: What are the similarities between code clones of different CI/CD ecosystems?
This question aims to compare the different code clones between different CI/CD ecosystems providing

knowledge about whether practices related to code clones differ per ecosystem or whether they are
common. This question will also provide insights into how maintainers deal with code clones on
different ecosystems.

One part of this question will focus on the code reusability practices used in different CI/CD tools.
Understanding and comparing the practices used in different platforms will allow us to understand why
a given practice is used in a single CI/CD, or to the contrary, common to all. In doing so, we expect
to identify how code reusability systems are used in different CI/CD tools, and to formulate various
advices helping developers of different platforms.

Moreover, the content and semantic behind detected clones will be analysed and compared. Such an
analysis may result in recommendations, easing the task of creating and maintaining CI/CD configura-
tion files.

As a first step, this question will focus on GitLab CI/CD. Similarly to GitHub Actions, GitLab CI/CD
is directly integrated into GitLab via a YAML configuration files located inside the repository. Whereas
the main ideas are the same, they are structured differently in a GitLab configuration file. Gitea is
another social coding platform integrating a CI/CD. It is of particular interest in this question as its
configuration files follow the same syntax of GitHub Actions, though some differences may occur.12

Other CI/CD will be included in this research questions depending on the time left in my thesis.
This last research question will later be divided into multiple research questions. As my doctoral

research has only just begun, I currently do not have enough hindsight related to provide details related
to this question.

4. Progress and Future Work

This section explains my current progress for the different goals.

4.1. Dataset

A preliminary goal of my thesis is to gather a large historical dataset of GitHub workflow files, allowing
us to quantitatively study the code duplication and reuse in the context of workflow files. To this end, I
developed and published gigawork (which is an acronym for “Give me GitHub Actions Workflows”),
an open-source extraction tool for extracting workflow files from a git repository.13 gigawork traverses
the git history tree beginning from a given git reference, git HEAD by default, following the first-parent
rule.14 For each commit touching a workflow file, it extracts the workflow file version as well as
other metadata (such as the commit date, the author, ...) [52]. gigawork was applied on a list of 43K+
repositories, obtained via a query to SEART search engine [53] (where we excluded repositories not
using GitHub Actions). In an updated version of the dataset [52], 2.5M+ workflow files, representing
219K+ workflow histories, are present. In addition, boolean flags indicating which workflow files of
the dataset are valid YAML files and which respect the current GitHub Actions syntax were added by
gigawork.
12https://docs.gitea.com/next/usage/actions/comparison
13https://github.com/cardoeng/gigawork
14This rule dictates that git only follows the first parent of each commit.

https://docs.gitea.com/next/usage/actions/comparison
https://github.com/cardoeng/gigawork


Figure 1: A visual diff of two workflows found in GitHub repositories.

Although the dataset does not contain any information about code clones, we can use it to detect
such code clones. For instance, two very similar workflow files, extracted from the dataset, can be
found at Figure 1.15 Both workflows are very similar to the one presented at Listing 1, though they are
coming from different repositories. Moreover, they also have the same goal. As seen on Figure 1, the
main changes between these two workflows are comments and version changes. We can also note the
addition of a new python dependency (virtualenv). Finally, a limit of depth for fetching the repository
was added via fetch-depth variable.

4.2. Code clones detection

In the goal of answering RQ1, multiple ways of detecting code clones in GitHub Actions workflow files
were already studied and experimented. However, no definitive algorithm was found yet. I am thus
currently focussing on RQ1, continuing experimenting different approaches in the goal of efficiently
detecting code clones, while keeping in mind this algorithm might be extended to other YAML files.

References

[1] GitHub, Github actions now supports ci/cd, free for public repositories, https://github.blog/
2019-08-08-github-actions-now-supports-ci-cd/, 2019. [Online; accessed 21 June 2024].

[2] GitHub, Octoverse: The state of open source and rise of ai in 2023, https://github.blog/
2023-11-08-the-state-of-open-source-and-ai/, 2023. [Online; accessed 13 May 2024].

[3] GitLab, Gitlab 8.0 released with new looks and integrated ci!, https://about.gitlab.com/releases/
2015/09/22/gitlab-8-0-released/, 2015. [Online; accessed 21 June 2024].

[4] GitLab, The most-comprehensive ai-powered devsecops platform, https://about.gitlab.com/, 2024.
[Online; accessed 22 June 2024].

[5] M. L. Gupta, R. Puppala, V. V. Vadapalli, H. Gundu, C. Karthikeyan, Continuous integration,

15Left side corresponds to https://github.com/instrumentkit/InstrumentKit/blob/main/.github/workflows/deploy.yml, right
side corresponds to https://github.com/ASUS-AICS/LibMultiLabel/blob/master/.github/workflows/python-publish.yml. Both
represents the latest version available in the dataset.

https://github.blog/2019-08-08-github-actions-now-supports-ci-cd/
https://github.blog/2019-08-08-github-actions-now-supports-ci-cd/
https://github.blog/2023-11-08-the-state-of-open-source-and-ai/
https://github.blog/2023-11-08-the-state-of-open-source-and-ai/
https://about.gitlab.com/releases/2015/09/22/gitlab-8-0-released/
https://about.gitlab.com/releases/2015/09/22/gitlab-8-0-released/
https://about.gitlab.com/
https://github.com/instrumentkit/InstrumentKit/blob/main/.github/workflows/deploy.yml
https://github.com/ASUS-AICS/LibMultiLabel/blob/master/.github/workflows/python-publish.yml


delivery and deployment: A systematic review of approaches, tools, challenges and practices, in:
International Conference on Recent Trends in AI Enabled Technologies, Springer, 2024, pp. 76–89.

[6] A. Decan, T. Mens, P. R. Mazrae, M. Golzadeh, On the use of GitHub Actions in software develop-
ment repositories, in: International Conference on Software Maintenance and Evolution (ICSME),
IEEE, 2022.

[7] C. Parnin, E. Helms, C. Atlee, H. Boughton, M. Ghattas, A. Glover, J. Holman, J. Micco, B. Murphy,
T. Savor, et al., The top 10 adages in continuous deployment, IEEE Software 34 (2017) 86–95.

[8] M. Fowler, Refactoring: improving the design of existing code, Addison-Wesley Professional, 2018.
[9] N. Saini, S. Singh, et al., Code clones: Detection and management, Procedia computer science 132

(2018) 718–727.
[10] M. A. Oumaziz, J.-R. Falleri, X. Blanc, T. F. Bissyandé, J. Klein, Handling duplicates in dockerfiles

families: Learning from experts, in: International Conference on Software Maintenance and
Evolution (ICSME), IEEE, 2019, pp. 524–535.

[11] M. A. Oumaziz, Cloning beyond source code: a study of the practices in API documentation and
infrastructure as code., Ph.D. thesis, Bordeaux, 2020.

[12] S. McIntosh, M. Poehlmann, E. Juergens, A. Mockus, B. Adams, A. E. Hassan, B. Haupt, C. Wagner,
Collecting and leveraging a benchmark of build system clones to aid in quality assessments, in:
International Conference on Software Engineering, 2014, pp. 145–154.

[13] G. Cardoen, Une analyse empirique de la duplication de code dans les CI/CD workflows sur GitHub,
Master’s thesis, University of Mons, 2023.

[14] C. W. Krueger, Software reuse, ACM Computing Surveys (CSUR) 24 (1992) 131–183.
[15] S. Haefliger, G. Von Krogh, S. Spaeth, Code reuse in open source software, Management science

54 (2008) 180–193.
[16] J. Krüger, T. Berger, An empirical analysis of the costs of clone-and platform-oriented software

reuse, in: ACM joint meeting on european software engineering conference and symposium on
the foundations of software engineering, 2020, pp. 432–444.

[17] M. Zakeri-Nasrabadi, S. Parsa, M. Ramezani, C. Roy, M. Ekhtiarzadeh, A systematic literature
review on source code similarity measurement and clone detection: Techniques, applications, and
challenges, Journal of Systems and Software (2023) 111796.

[18] C. K. Roy, J. R. Cordy, A survey on software clone detection research, Queen’s School of computing
TR 541 (2007) 64–68.

[19] Q. U. Ain, W. H. Butt, M. W. Anwar, F. Azam, B. Maqbool, A systematic review on code clone
detection 7 (2019) 86121–86144.

[20] M. Lei, H. Li, J. Li, N. Aundhkar, D.-K. Kim, Deep learning application on code clone detection: A
review of current knowledge, Journal of Systems and Software 184 (2022) 111141.

[21] A. Sheneamer, J. Kalita, A survey of software clone detection techniques, International Journal of
Computer Applications 137 (2016) 1–21.

[22] C. J. Kapser, M. W. Godfrey, “cloning considered harmful” considered harmful: patterns of cloning
in software, Empirical Software Engineering 13 (2008) 645–692.

[23] E. Juergens, F. Deissenboeck, B. Hummel, S. Wagner, Do code clones matter?, in: International
Conference on Software Engineering, IEEE, 2009, pp. 485–495.

[24] C. K. Roy, M. F. Zibran, R. Koschke, The vision of software clone management: Past, present, and
future (keynote paper), in: Conference on Software Maintenance, Reengineering, and Reverse
Engineering (CSMR-WCRE), IEEE, 2014, pp. 18–33.

[25] C. K. Roy, J. R. Cordy, Nicad: Accurate detection of near-miss intentional clones using flexible
pretty-printing and code normalization, in: International Conference on Program Comprehension,
IEEE, 2008, pp. 172–181.

[26] T. Kamiya, S. Kusumoto, K. Inoue, CCFinder: A multilinguistic token-based code clone detection
system for large scale source code, IEEE Transactions on Software Engineering 28 (2002) 654–670.

[27] Y. Semura, N. Yoshida, E. Choi, K. Inoue, CCFinderSW: Clone detection tool with flexible multilin-
gual tokenization, in: 2017 24th Asia-Pacific Software Engineering Conference (APSEC), IEEE,
2017, pp. 654–659.



[28] H. Sajnani, V. Saini, J. Svajlenko, C. K. Roy, C. V. Lopes, SourcererCC: Scaling code clone detection
to big-code, in: Proceedings of the 38th international conference on software engineering, 2016,
pp. 1157–1168.

[29] L. Jiang, G. Misherghi, Z. Su, S. Glondu, Deckard: Scalable and accurate tree-based detection of
code clones, in: 29th International Conference on Software Engineering (ICSE’07), IEEE, 2007, pp.
96–105.

[30] M. Wang, P. Wang, Y. Xu, Ccsharp: An efficient three-phase code clone detector using modified
pdgs, in: 2017 24th Asia-Pacific Software Engineering Conference (APSEC), IEEE, 2017, pp.
100–109.

[31] F. Arcelli Fontana, M. Zanoni, F. Zanoni, A duplicated code refactoring advisor, in: Agile Processes
in Software Engineering and Extreme Programming, Springer, 2015, pp. 3–14.

[32] V. Gayoso Martínez, F. Hernández Álvarez, L. Hernández Encinas, State of the art in similarity
preserving hashing functions (2014).

[33] L. Lulu, B. Belkhouche, S. Harous, Overview of fingerprinting methods for local text reuse detection,
in: 2016 12th International Conference on Innovations in Information Technology (IIT), IEEE,
2016, pp. 1–6.

[34] J. Martinez-Gil, Source code clone detection using unsupervised similarity measures, in: Interna-
tional Conference on Software Quality, Springer, 2024, pp. 21–37.

[35] J. R. Pate, R. Tairas, N. A. Kraft, Clone evolution: A systematic review, Journal of software:
Evolution and Process 25 (2013) 261–283.

[36] M. Mondal, B. Roy, C. K. Roy, K. A. Schneider, An empirical study on bug propagation through
code cloning, Journal of Systems and Software 158 (2019) 110407.

[37] P. Estefó, R. Robbes, J. Fabry, Code duplication in ROS launchfiles, in: International Conference of
the Chilean Computer Science Society (SCCC), IEEE, 2015, pp. 1–6.

[38] GitHub, Octoverse 2022: The state of open source software, https://octoverse.github.com/2022/
developer-community, 2022. [Online; accessed 13 May 2024].

[39] M. Golzadeh, A. Decan, T. Mens, On the rise and fall of CI services in GitHub, in: International
Conference on Software Analysis, Evolution and Reengineering (SANER), IEEE, 2022.

[40] T. Kinsman, M. Wessel, M. A. Gerosa, C. Treude, How do software developers use GitHub Actions
to automate their workflows?, in: International Conference on Mining Software Repositories
(MSR), IEEE, 2021, pp. 420–431.

[41] P. Rostami Mazrae, T. Mens, M. Golzadeh, A. Decan, On the usage, co-usage and migration of
CI/CD tools: A qualitative analysis, Empirical Software Engineering 28 (2023) 52.

[42] P. Valenzuela-Toledo, A. Bergel, Evolution of GitHub Action workflows, in: International Confer-
ence on Software Analysis, Evolution and Reengineering (SANER), IEEE, 2022.

[43] P. R. Mazrae, A. Decan, T. Mens, M. Wessel, A Preliminary Study of GitHub Actions Workflow
Changes, in: CEUR Workshop Proceedings, 2023.

[44] S. G. Saroar, M. Nayebi, Developers’ Perception of GitHub Actions: A Survey Analysis, in:
International Conference on Evaluation and Assessment in Software Engineering (EASE), ACM,
2023.

[45] A. Khatami, C. Willekens, A. Zaidman, Catching Smells in the Act: A GitHub Actions Workflow
Investigation, in: International Working Conference on Source Code Analysis and Manipulation
(SCAM). IEEE, 2024.

[46] J. W. Creswell, Mixed-method research: Introduction and application, in: Handbook of educational
policy, Elsevier, 1999, pp. 455–472.

[47] M. Kim, V. Sazawal, D. Notkin, G. Murphy, An empirical study of code clone genealogies, in:
European software engineering conference held jointly with 13th ACM SIGSOFT international
symposium on Foundations of software engineering, 2005, pp. 187–196.

[48] J. Krinke, A study of consistent and inconsistent changes to code clones, in: Working Conference
on Reverse Engineering (WCRE), IEEE, 2007, pp. 170–178.

[49] P. R. Mazrae, A. Decan, T. Mens, gawd: A differencing tool for GitHub Actions workflows, in:
International Conference on Mining Software Repositories, ACM, 2024.

https://octoverse.github.com/2022/developer-community
https://octoverse.github.com/2022/developer-community


[50] S. Thummalapenta, L. Cerulo, L. Aversano, M. Di Penta, An empirical study on the maintenance
of source code clones, Empirical Software Engineering 15 (2010) 1–34.

[51] R. Di Cosmo, S. Zacchiroli, Software heritage: Why and how to preserve software source code, in:
International Conference on Digital Preservation, 2017, pp. 1–10.

[52] G. Cardoen, T. Mens, A. Decan, A dataset of GitHub Actions workflow histories, in: International
Conference on Mining Software Repositories, ACM, 2024.

[53] O. Dabic, E. Aghajani, G. Bavota, Sampling projects in GitHub for MSR studies, in: International
Conference on Mining Software Repositories (MSR), IEEE, 2021, pp. 560–564.


	1 Introduction
	2 Context and Related Research
	2.1 Code Reuse and Code Cloning
	2.2 GitHub Actions
	2.3 GitHub Actions Code Reusability Mechanisms
	2.3.1 Reusable Actions
	2.3.2 Reusable Workflows
	2.3.3 Composite Actions
	2.3.4 Starter Workflows


	3 Research Goals
	3.1 G1: Assessing Code Cloning Practices in the GitHub Actions Ecosystem
	3.2 G2: Understanding code cloning practices
	3.3 G3: Improving code reuse practices
	3.4 G4: Generalisation to Other CI/CD Tools and Social Coding Platforms

	4 Progress and Future Work
	4.1 Dataset
	4.2 Code clones detection


