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Abstract  
The aim of the research is to improve the accuracy of crop yield forecasting by developing and applying 
data processing methods and neural network models. A yield forecasting technology is proposed that will 
include pattern recognition models for analyzing satellite images, data processing methods, and deep neural 
networks in combination with other artificial intelligence models. This technology is used to analyze the 
effectiveness and feasibility of agrotechnical measures, thereby supporting rational decision-making in 
agricultural production. 
 
Keywords  1 
Crops, yields, site-specific forecasting, forecasting models and methods.  

1. Introduction 

Digital agronomy is at the stage of active development, and farm owners are increasingly 
incorporating digital farm management into their strategies, which allows them to remotely monitor 
and control field work. Experts apply artificial intelligence and conduct research to deepen 
knowledge and develop effective digital agronomy technologies. In modern studies of the 
effectiveness of yield forecasting methods, a root mean square error (RMSE) of 10-15% of the average 
yield is achieved. Most models are used to predict the total yield of a field, without the ability to 
perform site-specific forecasting. The ones that allow to build detailed maps of predicted yields are 
generally tested on small samples, which makes it impossible to reliably assess their effectiveness. 

The current challenge is to develop a forecasting technology that provides predictions for 
individual field areas. To solve this problem, it is necessary to analyze the data features, relationships, 
and degrees of influence of various agronomic indicators on the yield. The scientific value of the 
results lies in simplifying and optimizing future research by providing insights into which agronomic 
data to use and why. Furthermore, detailing forecasts to individual plots will open up new avenues 
for future research. From a practical point of view, forecasting will enable budget planning, risk 
analysis, and appropriate agronomic measures. 

The expected results of the study will offer open-access innovative solutions, contributing to the 
development of digital agronomy. 

2. Analysis of preliminary results 

Numerous studies have been conducted to enhance the accuracy of crop yield forecasting. These 
efforts leverage a diverse array of information sources, such as plant genetic data, environmental 
data, and satellite imagery. To process and analyze this data, researchers employ a variety of models, 
ranging from traditional statistical approaches to advanced deep neural networks. 

                                                      
8th International Scientific and Practical Conference Applied Information Systems and Technologies in the Digital Society 
AISTDS’2024, October 01, 2024, Kyiv, Ukraine 
∗ Corresponding author. 
† These authors contributed equally. 

 hnatiienko.vladyslav@knu.ua (V. Hnatiienko); snytyuk@knu.ua (V. Snytyuk) 
 0009-0000-2678-5158 (V. Hnatiienko); 0000-0002-9954-8767 (V. Snytyuk) 

 
© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).  

 
CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:hnatiienko.vladyslav@knu.ua
mailto:snytyuk@knu.ua
https://orcid.org/0009-0000-2678-5158
https://orcid.org/0000-0002-9954-8767


In particular, in [1], data on plant genotype, weather conditions, and soil indicators were used to 
predict the yield. A deep neural network was used for forecasting, achieving an RMSE of 11-12% of 
the average yield. However, the study only considers forecasting the total yield of an entire field 
without detailing its individual plots, which is a limitation for possible applications of this approach. 
A similar drawback applies to the study [2], which used the Random forest model. The RMSE values 
were 11.9% for wheat, 16.7% for corn across the United States, 13.9% for potatoes, and 5.8% for corn 
in the Northeast coastal region of the United States. The authors note that the chosen model is often 
overfitted, which can lead to difficulties in generalization. Another problem is low reliability: the 
model is effective on average, which allows analyzing the general features of big data, but there is a 
high probability of significant errors in individual forecasts. 

Methods that use satellite images for forecasting are effective. For example, the authors of [3] 
predict potato yields based on identifying the relationship between the values of vegetation indices 
and yields with deviations of 5-9% from the average, but the elements of the training and test sets 
belonged to the same field, which makes it difficult to assess the generalizability of this approach. In 
[4], 5 fields form the training set, and the other 5 fields are used to test the model. The results indicate 
that the most effective model is Random forest, operating with RMSE values from 0.284 to 0.473 t/ha, 
or about 9-14% of the average sunflower yield. However, due to the small size of the test sample, it 
is difficult to assert the reliability of these results. According to the authors, the study had a good 
period for collecting information: 16 satellite images were collected on sunny days during the 
ripening period, providing favorable conditions for model training. Usually, due to the constant 
presence of clouds, only 3 to 7 images can be collected, which greatly complicates forecasting using 
such models. 

Thus, we argue that the primary disadvantages of modern forecasting technologies are their 
insufficient accuracy and the significant dependence of results on weather conditions. Moreover, 
most studies focus on predicting total yield, while those that attempt site-specific forecasting often 
rely on highly limited samples during experimental validation, making it impossible to reliably 
evaluate the effectiveness of the proposed methods [5]. Additional challenges stem from the 
uncertainty regarding the feasibility of using different data sources: it remains unclear which factors 
exert the greatest influence on plant yields. Consequently, studies incorporate a wide variety of data, 
including plant genotypes, weather conditions, terrain variations, nitrogen and phosphorus soil 
content, and satellite imagery—data that originate from diverse sources and vary greatly in 
complexity and acquisition cost. 

Agronomic experts and farm owners frequently encounter the challenge of insufficient accuracy 
and reliability in modern forecasting services. Forecast deviations from actual values range from 3–
5% to as high as 30–40%, highlighting the inefficiency of current methods [6]. As a result, many 
abandon forecasting altogether, which hinders the advancement of agricultural production. This 
abandonment deprives developers of data analysis and decision-making technologies of adequate 
funding for further development and prevents farm owners from realizing the potential profits these 
technologies could have delivered. 

3. Analysis of data sources and processing methods 
3.1. Satellite images 

Most of the data on plants and their maturation conditions are a set of constant values that are 
known at the beginning of the maturation period: genotype, sowing density, sowing date, field 
coordinates, etc. Such data are static, reflecting only the initial conditions, and forecasting based on 
them often leads to significant deviations from actual values. 

For refined site-specific forecasting, satellite images are the most important source of data, as they 
are accumulated throughout the entire ripening period and allow tracking the dynamics of plant 
development, recording any deviations in time. When applying machine learning in yield prediction 
tasks, the parameters whose values are obtained from satellite images are assigned the highest 



weighting coefficients [7, 8]. Table 1 presents the list of parameters and their feature importance 
scores for the LightGBM model. The importance scores are calculated during training: the parameters 
are used to build decision trees, and those that contribute to a greater reduction in error receive a 
higher importance score. 

Table 1 
Estimates of the importance of parameters for yield forecasting 

Table 1 indicates: 
 

● GLI, CLr, NDVI, CLg, NDWI are vegetation indices, the values of which are calculated for 
each field area based on satellite data; 

● mid, mid_early are parts of the categorical variable hybrid, which indicates the plant hybrid 
of a given plot; the value 1 is set for the corresponding hybrid, and 0 for all others; 

● Density is the density of planting on the field; 

● CAPE_180-0_mb_above_gnd_max, Temperature_2_m_elevation_corrected_max, fungicide_58 - 
other parameters from the sets of meteorological data and data on plant characteristics in the 
field. 

Monitoring services often provide data in the form of maps with vegetation index values, but the 
primary source of information is the intensity of reflected solar radiation in different spectral ranges, 
which is recorded for each field once a day. Most satellites have sensors that measure the reflected 
radiation for ten standard wavelengths belonging to the visible, near-infrared, and mid-infrared 
spectrums. These values are presented in Table 2. 

A snapshot can be labeled 𝑋𝑋𝑏𝑏𝑑𝑑 = {𝑥𝑥1𝑏𝑏𝑑𝑑 ,𝑥𝑥2𝑏𝑏𝑑𝑑 , … , 𝑥𝑥𝑛𝑛𝑏𝑏𝑑𝑑 }, where 

● 𝑛𝑛 - the number of field areas, each of which is represented by a separate pixel in the image; 

Number Feature Importance score 
1 GLI_mean 286 
2 GLI_max 259 
3 CLr_mean 254 
4 NDVI_max 223 
5 NDVI_mean 217 
6 GLI_min 211 
7 CLr_max 195 
8 NDWI_max 189 
9 CLg_max 174 
10 CLr_min 156 
11 NDVI_min 154 
12 CLg_mean 147 
13 NDWI_mean 146 
14 NDWI_min 127 
15 CLg_min 122 
16 mid 61 
17 Density 29 
18 CAPE_180-0_mb_above_gnd_max 17 
19 fungicide_58 12 
20 mid_early 7 
21 Temperature_2_m_elevation_corrected_max 5 
... ... ... 



● 𝑏𝑏 ∈ {𝐵𝐵02,𝐵𝐵03, … ,𝐵𝐵12} - is the wavelength for which the intensity value is recorded; 

● 𝑑𝑑 ∈ {1,2, … ,𝑇𝑇} - the day on which the picture was taken, where 𝑇𝑇 - is the number of days, 
which can vary depending on the conditions (usually 𝑇𝑇 = 100). 

● 𝑋𝑋𝑏𝑏𝑑𝑑 - image for the wavelength 𝑏𝑏 and day of observation 𝑑𝑑; 

● 𝑥𝑥𝑖𝑖𝑏𝑏𝑑𝑑 - intensity value for the area 𝑖𝑖 for the wavelength 𝑏𝑏 and day 𝑑𝑑. 
 

Table 2 
Designation of standard wavelengths 

To select a set of images suitable for further processing, we denote the set of distorted elements 
of the set 𝑋𝑋𝑏𝑏𝑑𝑑 as 𝑋𝑋𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑  (the correctness of these elements of each image is determined by an expert [5, 
6]) and check the following criterion: 

if the number of elements of the set of distorted values 𝑋𝑋𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑  exceeds 10% of the total number of 
areas in the image: � 𝑋𝑋𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑  � > 0.1 · 𝑛𝑛, then the image 𝑋𝑋𝑏𝑏𝑑𝑑 is considered unsuitable for further use. 

Since during most observations a certain part of the field is covered by clouds, most images are 
classified as unsuitable for analysis, even if a significant part of the data in these images is correct. 
To solve this problem, cloud recognition can be applied with subsequent recovery of lost information 
by interpolation methods. Cloud recognition can be performed using object recognition technology 
based on multiprojection analysis [9].  

Solving the problem of information loss will enable data representation in the form of time series 
and the application of deep learning methods for forecasting. At the current stage of the study, due 
to insufficient data, only minimum, average, and maximum values are utilized: 

 
min
𝑑𝑑∈𝐷𝐷

{𝑥𝑥𝑖𝑖𝑏𝑏𝑑𝑑 } ,∀𝑖𝑖, 𝑏𝑏, (1) 

𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛({𝑥𝑥𝑖𝑖𝑏𝑏𝑑𝑑  | 𝑑𝑑 ∈ 𝐷𝐷}) =
1

|𝐷𝐷| �𝑥𝑥𝑖𝑖𝑏𝑏𝑑𝑑

𝑑𝑑∈𝐷𝐷

,∀𝑖𝑖, 𝑏𝑏, (2) 

max
𝑑𝑑∈𝐷𝐷

{𝑥𝑥𝑖𝑖𝑏𝑏𝑑𝑑 } ,∀𝑖𝑖, 𝑏𝑏, (3) 
 
where D is the set of days for which the images are considered suitable. 
This creates uncertainty that reduces the information content of the dataset. First, most of the 

information about the sequence of values is lost 𝑥𝑥 by reducing it to only three general characteristics. 
Second, often the values (1) and (3) values often do not correspond to the actual values of the 
minimum and maximum intensity of reflected radiation, which is due to the removal of images for 
the days on which these key indicators could be recorded. In addition, the average value of (2) can 
differ significantly for a complete sequence. Thus, recovering complete time series 𝑋𝑋𝑏𝑏𝑑𝑑 , 

Number Symbolic designation Wavelength, nanometers 
1 B02 492.4 
2 B03 559.8 
3 B04 665.2 
4 B05 704.1 
5 B06 740.5 
6 B07 782.8 
7 B08 832.9 
8 B8A 864.7 
9 B11 1613.7 
10 B12 2202.4 



𝑏𝑏 ∈  {𝐵𝐵02,𝐵𝐵03, … ,𝐵𝐵12}, 𝑑𝑑 ∈ {1,2, … ,𝑇𝑇}, will allow us to track the dynamics of changes in 
parameter values during the ripening period, which will significantly increase the amount of 
information about the state of plants.  

3.2. Features of data display and sample balancing 

During training, the weights of the neural network are adjusted to identify the most informative 
features and calculate the output values based on them. These features form vectors that can be used 
to analyze and process data. For example, when analyzing such vector representations in natural 
language processing tasks, it was found that for synonyms, antonyms, word pairs in singular and 
plural forms, and other semantically related words, the cosine distance of the corresponding vector 
representations is significantly smaller than for unrelated words [10]. A similar approach is used in 
image classification: vector representations of images are calculated to select key features, and then 
images are divided into classes. Often, this can be done even with a linear classifier due to the fact 
that the vector representations of images of one class are at a small distance and far enough removed 
from the images of other classes. 

This approach can be applied to analyze data collected during the plant maturation period. For 
instance, it can be used to detect anomalies: vector representations of field areas containing distorted 
information (e.g., regions covered by clouds or parts of the field occupied by equipment instead of 
plants) are expected to deviate significantly from the majority of the data. Clustering techniques can 
identify typical patterns, and the centroids of these clusters can serve as reference points for 
detecting outliers. 

Another potential application is the detection of fields with atypical data. For instance, if a dataset 
includes a field with plants of an uncommon hybrid or other distinct characteristics, its data points 
should be significantly distant from the majority of the training set. This concept can serve as the 
basis for developing a method to construct balanced and representative samples. To ensure 
representativeness, the training dataset should include a wide variety of plant species grown under 
diverse conditions, thereby reducing the likelihood that a field will appear atypical compared to the 
training data when the technology is implemented. 

In trained models, vector representations typically capture the key features of the input data. For 
example, in image recognition, objects can still be identified even if parts are missing or deformed—
the recognition process relies on the most significant features, while disregarding distortions in less 
critical ones [11, 12]. Therefore, it can be inferred that analyzing the sensitivity of vector 
representations to variations in input data can help identify the most important parameters: higher 
sensitivity indicates greater importance. 

When constructing training sets with a sufficient amount of data, the sample is typically balanced 
to ensure an even distribution of data. This often involves maintaining an equal number of 
representatives from each original class, which, in the context of forecasting, translates to an equal 
number of observations corresponding to low, medium, and high yields (divided into an arbitrary 
number of ranges). 

Additionally, balancing the input data is also crucial. For instance, if the training set is dominated 
by plants of a single hybrid, this can lead to overfitting and reduced prediction accuracy for plants 
of other hybrids. Such balancing can be achieved through the analysis of vector data representations, 
enabling the identification and adjustment of class imbalances [13]. 

3.3. Use of additional sources of information 

The current forecasting method utilizes input data that includes satellite images, meteorological 
indicators, and supplementary information about the plants in the field, such as hybrid type, seeding 
density, and dates of chemical application. Additionally, the potential effectiveness of incorporating 
other parameters—such as the elevation of field sections above sea level, section coordinates, and 



sowing dates—should be thoroughly analyzed to assess their contribution to improving forecasting 
accuracy. 

Studies on yield forecasting also use data on plant yields in previous years [14] and data on 
patterns of climate change in previous years [15]. Incorporating information about predecessor 
crops, along with meteorological data and satellite imagery from previous years, can enhance 
forecasting accuracy. 

4. Approaches to yield forecasting 
4.1. Uniformity of ripening 

An essential parameter for yield prediction is the uniformity of plant maturation within a field. 
Harvesting combines are calibrated to collect plants at a specific maturity stage, typically targeting 
the stage that represents the majority of plants. However, yield losses occur when plants that are 
either over-mature or under-mature are not harvested under optimal conditions. Since combines are 
generally adjusted according to predefined standards, incorporating the distribution of plant 
maturity across the field into the input data could improve prediction accuracy. Agronomic experts 
often rely on the NDVI vegetation index to evaluate plant maturity [16]. Consequently, the formation 
of this parameter can be achieved using the following algorithm: 

1. Dividing NDVI values into ranges with the help of expert opinion; 
2. Determining the distribution of the area of the field parts in these ranges; 
3. A categorical variable is created based on the distribution, assigning a value of 1 to the 

category with the largest area and 0 to all others. 
Instead of using a categorical variable with possible values {0, 1}, a set of variables can be 

employed to represent the full distribution—specifically, the percentage of the field area falling 
within each range of NDVI values. 

While NDVI is primarily used during the final stages of ripening, it can also be utilized for early-
stage forecasting by predicting future NDVI values based on the dynamics of its changes over time. 
This approach enables more accurate predictions of plant maturity and yield at earlier stages. 

4.2. Using deep learning models for time series forecasting 

When data is presented as time series, the most effective artificial intelligence methods for 
forecasting are recurrent neural networks (RNNs) and transformers. 

Recurrent neural networks, including architectures such as Long Short-Term Memory (LSTM) 
and Gated Recurrent Unit (GRU), are widely used for efficiently processing sequential data while 
preserving the context of previous observations. These models are particularly effective for 
forecasting based on sequences of observations collected over multiple years [17, 18]. 

Transformers, a more recent development in time-series forecasting, are gaining traction due to 
their flexibility and ability to process sequences in parallel. While their application in yield 
forecasting remains an emerging field, transformers have been increasingly utilized in recent 
research [19, 20]. 

4.3. Using separate models for different sources of information 

In previous studies, high accuracy was achieved by combining models, specifically the computer 
vision model U-Net and the ensemble model LightGBM. U-Net was employed to forecast yield based 
on satellite images by segmenting fields into nine performance categories, ranging from the lowest 
to the highest. LightGBM was then used to refine these predictions by incorporating additional data, 
such as meteorological indicators and field-specific plant characteristics. This approach effectively 
distributed tasks, leveraging the strengths of each model for their most suitable functions. 



The effectiveness of this approach warrants further investigation with alternative models and 
different methods of dataset construction. For segmentation tasks, modern models like YOLO [21] 
and SAM [22] could potentially outperform U-Net, offering improved accuracy and efficiency. 

Currently, each forecasting iteration processes approximately 1 hectare of a field. The U-Net 
model is designed to perform predictions separately for each segment of the data, after which the 
results are aggregated. While this approach allows for dataset augmentation and facilitates model 
training even with limited data, it restricts insights into the overall field condition.   

Given that weather conditions and plant maturation data are already incorporated in the 
LightGBM forecasting stage, a new model is required to analyze satellite images of the entire field 
and extract key features. This could involve developing a dedicated artificial intelligence model to 
either transform the data into usable formats or independently derive general characteristics deemed 
important by agronomic experts, such as the average NDVI value across the entire image, the range 
(difference between maximum and minimum values) of specific vegetation indices, and similar 
metrics. 

One limitation of this approach is that the models are trained separately. After training they are 
simply combined: using the first model, 𝑀𝑀1 (U-Net), the yield is predicted 𝑌𝑌1 based on satellite images. 
𝑋𝑋1: 

𝑌𝑌1 = 𝑀𝑀1(𝑋𝑋1) (4) 
 
and when forecasting with the second model 𝑀𝑀2 (LightGBM), the output values of the first model 

are used together with additional data 𝑋𝑋2 to generate the final yield forecast: 
 

𝑌𝑌 = 𝑀𝑀2(𝑌𝑌1,𝑋𝑋2) (5) 
 
Each model is trained independently. The process is shown schematically in Fig. 1. 

 
Figure 1: Schematic of the independent model learning process 
 



Since LightGBM does not allow specifying a differentiated loss function, an alternative model, 
such as a multilayer perceptron (MLP), can be used instead. This substitution enables the use of a 
customized loss function tailored to the specific requirements of the task. 

The learning process can also be adapted to allow simultaneous error propagation for both 
models. This means that the training pipeline can be designed to integrate the outputs of both models, 
ensuring that updates to the parameters of one model account for the influence of the other, thereby 
improving overall synergy and performance 𝑀𝑀1 and 𝑀𝑀2 and facilitate their simultaneous learning 
and effective interaction. For this purpose, a common loss function is calculated: 

 
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 𝐿𝐿(𝑌𝑌,𝑌𝑌𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡) = 𝐿𝐿(𝑀𝑀2(𝑀𝑀1(𝑋𝑋1),𝑋𝑋2),𝑌𝑌𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡), (6) 

where 𝐿𝐿 - is a loss function (e.g., root mean square error), 𝑌𝑌 - is the final forecast, and 𝑌𝑌𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡 - is 
the set of actual values. 

For example, learning by gradient descent will work like this: 
1. For model 𝑀𝑀2 the gradient with respect to its weights 𝜃𝜃2: 

𝛻𝛻𝜃𝜃2𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 =
𝜕𝜕𝐿𝐿
𝜕𝜕𝑌𝑌

·
𝜕𝜕𝑌𝑌
𝜕𝜕𝜃𝜃2

 (7) 

2. For model 𝑀𝑀1 the gradient with respect to its weights 𝜃𝜃1: 

𝛻𝛻𝜃𝜃1𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 =
𝜕𝜕𝐿𝐿
𝜕𝜕𝑌𝑌

·
𝜕𝜕𝑌𝑌
𝜕𝜕𝑌𝑌1

·
𝜕𝜕𝑌𝑌1
𝜕𝜕𝜃𝜃1

 (8) 

3. Updating the weighting coefficients 𝑀𝑀1 and 𝑀𝑀2: 
𝜃𝜃1 ← 𝜃𝜃1 − 𝜂𝜂𝛻𝛻𝜃𝜃1𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 
𝜃𝜃2 ← 𝜃𝜃2 − 𝜂𝜂𝛻𝛻𝜃𝜃2𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 

(9) 

where 𝜂𝜂 - is the learning rate. 
Thus, model 𝑀𝑀1 is trained to generate intermediate outputs 𝑌𝑌1 that maximize the accuracy of 

model 𝑀𝑀2's predictions. In turn, model 𝑀𝑀2 is trained to optimally utilize the intermediate outputs 𝑌𝑌 
to minimize the deviation of the final forecast 𝑌𝑌 from the actual values 𝑌𝑌𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡. The backward 
propagation of errors affects the weights of both models, enabling joint learning where each model 
is optimized to improve the final forecast 𝑌𝑌. This process is illustrated schematically in Fig. 2. 



 
Figure 2: Diagram of the simultaneous model training process 

 
Alternatively, a unified model capable of analyzing all types of information simultaneously might 

prove even more effective. For instance, study [23] introduced a transformer-based model designed 
to integrate various information sources, including both static and dynamic indicators. This approach 
enabled the model to outperform commonly used methods, such as Random Forest and XGBoost, in 
terms of forecasting accuracy, making it a promising direction for further research and application 
in yield prediction. 

5. Application prospects 
5.1. Differentiated application of chemicals 

One of the primary methods for preparing plants for harvest is desiccation, an artificial drying 
process that equalizes moisture levels in the field and accelerates ripening. This practice addresses 
the problem of uneven ripening, which can otherwise lead to significant harvest losses. However, 
desiccation is not always economically justified, as the costs of the substances and their application 
may exceed the value of the yield saved. Forecasting technology can play a key role in evaluating 
the feasibility of desiccation [24]. 

Assume the existence of a highly accurate yield prediction model. This model can be retrained by 
incorporating a binary variable, 𝑑𝑑𝑚𝑚𝐿𝐿, into the training set, where 1 indicates that desiccation was 
performed, and 0 indicates it was not. 

The impact of desiccation varies depending on the conditions: in some cases, it results in a 
substantial yield increase, while in others, the improvement is negligible. With a sufficiently large 
dataset, these effects will be reflected in the data. Once trained, the model can be used to predict the 
potential benefits of desiccation, enabling informed decision-making for its application: 



1. Yield forecast without desiccation: 𝑌𝑌𝑛𝑛𝑛𝑛_𝑑𝑑𝑡𝑡𝑑𝑑 = 𝑀𝑀(𝑋𝑋,𝑑𝑑𝑚𝑚𝐿𝐿 = 0) 
2. Yield forecast with desiccation: 𝑌𝑌𝑤𝑤𝑖𝑖𝑑𝑑ℎ_𝑑𝑑𝑡𝑡𝑑𝑑 = 𝑀𝑀(𝑋𝑋, 𝑑𝑑𝑚𝑚𝐿𝐿 = 1) 
3. Increase in yields: 𝛥𝛥𝑌𝑌 = 𝑌𝑌𝑤𝑤𝑖𝑖𝑑𝑑ℎ_𝑑𝑑𝑡𝑡𝑑𝑑 − 𝑌𝑌𝑛𝑛𝑛𝑛_𝑑𝑑𝑡𝑡𝑑𝑑 
The value of the crop and the cost of purchasing desiccants and spraying may vary, but agronomic 

experts can get accurate information about them. The only uncertainty is the potential yield of the 
field. Thus, if forecasting accuracy is high, the potential benefit of desiccation can be calculated with 
high accuracy: 

𝑃𝑃𝑃𝑃𝐿𝐿𝑃𝑃𝑖𝑖𝑃𝑃 = �𝛥𝛥𝑌𝑌 · 𝑐𝑐𝐿𝐿𝐿𝐿𝑃𝑃𝑦𝑦𝑖𝑖𝑡𝑡𝑦𝑦𝑑𝑑� − 𝑐𝑐𝐿𝐿𝐿𝐿𝑃𝑃𝑑𝑑𝑡𝑡𝑑𝑑, (10) 
 
where 𝑐𝑐𝐿𝐿𝐿𝐿𝑃𝑃𝑦𝑦𝑖𝑖𝑡𝑡𝑦𝑦𝑑𝑑 - is the cost per unit of harvest, 𝑐𝑐𝐿𝐿𝐿𝐿𝑃𝑃𝑑𝑑𝑡𝑡𝑑𝑑 - cost of desiccants and their application. 
To further enhance the training dataset, the model can be improved by incorporating detailed 

information about desiccation application methods. This involves adding data on two key aspects: 
1. Selective Spraying: Desiccation can be applied only to specific areas where it is necessary. 
2. Variable Intensity: Different chemical application intensities can be used for different 

areas, tailored to the needs of the plants in each plot. 
With a sufficiently large dataset, a model can be trained to predict yield improvements based 

on the method of application. To achieve this, the dataset should include an additional variable, 
𝑑𝑑𝑚𝑚𝐿𝐿𝑖𝑖𝑛𝑛𝑑𝑑𝑡𝑡𝑛𝑛𝑑𝑑𝑖𝑖𝑑𝑑𝑦𝑦 ∈  [0, 2], representing the intensity of substance application for each plot (e.g., 0 liters 
for no application, and 2 liters for the standard maximum intensity). 

Once the model is trained, the most effective desiccation strategy can be determined using the 
following algorithm: 

1. generation of application variants: since each field consists of numerous plots, and an 
arbitrary amount of substance can be applied to each within the standard range, it is advisable 
to limit the generated variants using heuristics based on accepted desiccation practices; 

2. limitation of the generated options: even with the previous limitation, the set of options may 
be too large, so some rules need to be applied, such as discarding similar options (which 
options are considered similar should be determined separately) and search algorithms to 
minimize computation; 

3. forecasting yields for each of the application methods. Formally, for each variant 𝑉𝑉𝑖𝑖 
containing information about the intensity of desiccation 𝑑𝑑𝑚𝑚𝐿𝐿𝑖𝑖𝑛𝑛𝑑𝑑𝑡𝑡𝑛𝑛𝑑𝑑𝑖𝑖𝑑𝑑𝑦𝑦 on each field plot; 

4. selection of the best option: the option is selected 𝑉𝑉∗for which the predicted yield is 
maximized: 𝑉𝑉∗ =𝑚𝑚𝑃𝑃𝑎𝑎 max

Vi
𝑌𝑌𝑖𝑖   

This approach enables optimized desiccation by incorporating selective spraying and variable 
application rates, thereby ensuring more efficient resource use. 

This approach can be extended to apply to other agronomic procedures, such as the use of 
pesticides and other chemicals. 

5.2. Prediction in the early stages of maturation 

If the forecasting technology is successfully developed, it can be extended to smaller, limited 
datasets. By considering the input data as a time series 𝑋𝑋𝑑𝑑 , 𝑑𝑑 ∈ {1,2, … ,𝑇𝑇}, the sample size can be 
reduced by decreasing the value of 𝑇𝑇, thereby training the model on shorter time periods. Although 
this may reduce accuracy, it enables yield predictions at earlier stages of plant development. 

One key advantage of early-stage forecasting is the ability to promptly detect problems. For 
example, a low predicted yield in a specific area may indicate the presence of diseases or pests, 
allowing agronomic experts to address potential issues proactively and prevent significant yield 
losses. This application can be further enhanced with remote monitoring and plant health analysis 
techniques, such as automated lesion detection [25]. 

Overall, early problem detection and early planning capabilities can significantly improve 
decision-making and optimize agricultural production processes. 



6. Conclusions 

The site-specific yield forecasting technology developed through these methods and approaches 
has the potential to significantly enhance agricultural efficiency. The proposed data processing 
techniques are designed to effectively leverage available data, even under challenging conditions 
such as heavy cloud cover in satellite images, enabling accurate forecasts across diverse scenarios. 

The method emphasizes the formation of balanced and representative samples, ensuring that 
forecasting models can generalize effectively across varying conditions and plant types. By 
integrating advanced deep learning models and their combination methods, the accuracy of forecasts 
is expected to improve significantly. 

Implementing this technology will enable better resource management by adapting field care to 
specific conditions, thereby reducing the risks of yield losses due to uneven maturation, pests, or 
diseases. Its successful application could facilitate innovations such as optimized, differentiated 
fertilization and precise early-stage yield forecasting. Practical implementation is anticipated to 
validate the effectiveness of these technologies, paving the way for broader applications across 
different regions and crop types. 

 
Declaration on Generative AI 
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