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Abstract 
The traveling salesman problem (TSP) is a classical combinatorial optimization problem that involves 
finding the shortest or fastest route among a set of cities. To formalize the uncertainty and imprecision in 
input data, often caused by subjective evaluations of the travel time intervals, this paper employs fuzzy 
numbers. The form of these fuzzy numbers is based on a Gaussian-like approach. This work examines the 
specifics of applying the ant colony optimization (ACO) algorithm and proposes an approach for its 
optimal use. The impact of the algorithm's parameters on the quality of the approximated best solution is 
analyzed. The problem is illustrated with numerical examples involving a sufficiently large number of 
cities in the transportation network. 
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1. Introduction 

One of the promising directions in scientific and practical research of social and information 
processes is based on the use of mathematical methods that incorporate the principles of natural 
decision-making mechanisms. Swarm intelligence is a relatively new technological approach 
formalized through the analysis of the social behavior of animals and insects. In particular, 
observations of ants have led to the development of several methods and techniques, the most 
studied and successful of which is the general optimization method known as Ant Colony 
Optimization (ACO). The simulation of the self-organization of an ant colony forms the basis of ant 
optimization algorithms—a new and promising method of natural computation. Other natural 
prototypes for optimization methods include the behavior of dragonflies (Dragonfly Algorithm, 
DA), bees (Bee Algorithm, BA), termites (Termite Algorithm), fish (Fish Swarm Algorithm, FSO), and 
wolves (Wolf Pack Algorithm, WSA). 

The implementation of swarm intelligence refers to the method of solving various optimization 
problems using a group of agents that interact with each other based on simple rules, which guide 
the complex behavior of the entire system. Regarding its use in optimization techniques, the main 
advantage is the ability to find global optima in problems with a large number of parameters and 
constraints, as well as flexibility, scalability, distributed computation capabilities, and fault 
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tolerance. Systems based on swarm intelligence allow for the rapid discovery of efficient solutions 
under conditions of dynamic parameter changes, agent failures, and without requiring centralized 
control limitations. 

Let us consider the application of swarm intelligence for solving optimization problems using 
ACO [1]. The first version of the algorithm in own Ph.D. work was proposed by Marco Dorigo in 
1996 [2]. Ant algorithms have been widely used by scientists since the mid-1990s [3]. To date, good 
results have been achieved with ant optimization in solving complex combinatorial problems such 
as truck route optimization, graph coloring, the quadratic assignment problem, network schedule 
optimization, calendar planning problems, and others [4, 5]. Ant algorithms are particularly 
effective in online optimization of processes in distributed non-stationary systems, such as traffic 
distribution problems in telecommunications networks [6]. 

An ant colony can be viewed as a multi-agent system in which each agent (ant) operates 
autonomously according to defined rules. The behavior of each agent is governed by simple 
probabilistic rules. This principle aligns with the behavior of ants in the real world, where they 
work together to build nests, forage for food, and protect the colony. Studies [7, 8] have shown that 
based on the primitive behavior of individual agents, the collective system’s behavior allows for 
achieving optimal results for various classes of problems. 

The idea of the algorithm is based on the behavior of an ant colony, which finds a path to food 
that is close to optimal. The core of ant behavior is self-organization - a set of dynamic mechanisms 
by which the system achieves a global goal as a result of interactions at a low level.  

Multiple interactions are implemented in the form of sequential iterative route searches 
conducted simultaneously by several ants. Each ant starts its movement randomly when leaving 
the nest in search of food. It is assumed that each agent does not follow a predetermined path or 
direction. This exploratory behavior allows ants to explore a wide area around the nest. A key 
aspect of ant behavior is their ability to leave chemical traces—pheromones—along their path. 
These pheromones serve as signals for other ants, indicating that the path has already been 
explored and is in use. When an ant finds food, it returns to the nest, leaving a pheromone trail 
that helps other ants find the path to the food. The amount of pheromone deposited by the ant on 
each segment of the route is inversely proportional to the length of that segment. The shorter the 
path found by the ant during the search, the more pheromone will be deposited on the 
corresponding segments (graph edges). 

It should be noted that the use of only positive feedback leads to the rapid (premature) 
convergence of the algorithm, meaning that all ants will follow the same suboptimal route. To 
prevent oversaturation of the paths, pheromones evaporate over time, which implements negative 
feedback. This allows ants to adapt to changes in the environment (for example, the appearance of 
new food sources or obstacles on the paths).  

Thanks to the mechanisms of inter-agent interaction, the system self-organizes, allowing 
individual ants to use optimal paths to food sources while enabling efficient solutions to resource 
allocation and search problems without centralized control. 

From a mathematical perspective, the ACO model is described through the following basic 
components related to the behavior of both individual ants and the system as a whole: mechanisms 
for path formation; pheromone deposition to mark the traversed paths;  pheromone evaporation; 
rules for an ant's path selection. 

One of the problems for which a solution based on the ant colony algorithm can be proposed is 
the traveling salesman problem [9]. This study considers the adaptation of the ACO algorithm to 
solve the traveling salesman problem with fuzzy parameters of movements at the stages of the 
transport network, determined by fuzzy trapezoid numbers. The implementation of components of 
self-organizing behavior of ants for optimizing the route of the traveling salesman is proposed and 
computational experiments are carried out to determine the effectiveness of the developed method.  



2. Task statement 
The standard formulation of the traveling salesman problem is to choose the shortest (in length or 
time) closed path on a network of cities that passes through all cities exactly once. The number of 
possible options is ( )−1 !n , and if the stages of the route are symmetric, the number of unique 

routes is ( )−1 2!/n . 
The problem is to find the optimal traveling salesman path, the determination of which requires 

a very large amount of computational resources, which leads to the need to use approximate 
algorithms such as ACO. 

His In real logistics problems, the concept of the duration or cost of travel between individual 
points of the transport network cannot be fixed; they are determined approximately, often with the 
influence of the subjective factor based on estimates of time periods or the cost of movement along 
the route sections. This leads to the need to take into account uncertainty, its formalization based 
on different methods. One of the approaches used in this case is to involve fuzzy numbers and 
implement means of manipulating them. 

Let's consider the formulation of the traveling salesman problem with a vaguely specified 
duration of movements at the stages of the transport and logistics network. In this case, it is 
necessary to find a cyclic permutation of the numbers of the cities to be visited by the traveling 
salesman, according to which the time spent will be minimal, taking into account the restriction on 
visiting each of the points no more than once. The mathematical formulation of the fuzzy problem 
of the traveling salesman can be written as follows: it is necessary to minimize, taking into account 
some method of comparing fuzzy numbers, the objective function 
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For the software implementation, the diagonal elements iit  of the matrix T  should be set to 
large positive numbers to ensure that the solution provides values =0iix  for all =1 2, , ....,i n . The 

fuzzy travel durations ijt  between arbitrary cities =1, ,i j n , will be represented as trapezoidal 
fuzzy numbers.  

Definition. A trapezoidal fuzzy number A  [11] is an ordered quadruple of real numbers 
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If a Gaussian-based approach with corresponding characteristics is applied to the representation 
of a trapezoidal fuzzy number, then in the generalized case, the trapezoidal fuzzy number can be 
represented in a slightly different form: 
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a am  is the midpoint, −
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2
a aw  is the half-width of the plateau, and the coefficients 

α = −2 1a a  and  β = −4 3a a  define the left and right distribution of the fuzzy number 

( )= 1 2 3 4, , ,A a a a a . To operate with fuzzy numbers, it is necessary to define operations based on the 
description provided above. The midpoint is taken as the simple arithmetic mean of the plateau 
boundaries, and the left and right distributions are considered according to the lattice rule, where 
for arbitrary real numbers ,a b  we set { }∪ =max ,a b a b  and { }∩ = ,a b min a b . 

Then, for arbitrary trapezoidal fuzzy numbers ( ) ( )( )α β=  
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be defined, which in the general case are denoted by the symbol  : 
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Finally, we have:  
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To perform the operations of comparison and ranking of fuzzy numbers, we will use the method 
based on the median average value. In other words, if for each ( ) ( )= ∈
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then for any two trapezoidal fuzzy numbers ( )= 1 2 3 4, , ,A a a a a  and ( )= 1 2 3 4, , ,B b b b b  we have the 
following possible comparison options:  

                                           -  

A B  if and only if ( ) ( )> R RA B ;  

                                           -  

A B  if and only if ( ) ( )< R RA B ; 

                                       - ≈ A B  if and only if ( ) ( )= R RA B . 

(7) 

The process of handling fuzzy numbers involves a defuzzification stage - converting a fuzzy 
result into a crisp (numerical) value. This is a crucial step in the methodology of applying fuzzy 
logic, especially in fuzzy control and fuzzy business logic tasks, where fuzzy solutions need to be 
transformed into specific events or numerical values. There are various defuzzification methods, 
the most common of which are the Center of Gravity (CoG) or centroid method, the mean of 
maxima method, and the maximum method. For comparison of research results, we will use the 



Center of Gravity method. In this method, the defuzzification point is calculated as the center of 
gravity of the fuzzy set by the formula: 
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where x  are the points of fuzzy number support, and ( )µ x  is the membership degree of each 
point. 

3. Algorithm for finding the traveling salesman route   

Path formation in the ASO model is described using a graph. Let ( )= ,G V E  represent a graph, 

where V  – is the set of m vertices, and E  is the set of edges. Each edge ( )∈,i j E  is associated 

with two key parameters: the travel time ijt  along edge ( ),i j  (typically proportional to the path 

length ijD ) and the pheromone intensity τ ij  on edge ( ),i j , =,i j m . The preservation of 
pheromone levels is a key process for inter-agent interaction among ants. The pheromone intensity 
on edge ( ),i j  is updated based on the experience of the ants that have traversed this edge. The 
pheromone level is often updated using the following formula: 

( ) ( ) ( ) ( )τ ρ τ τ+ = − ⋅ + ∆1 1ij ij ijs s s , (9) 

where ρ  is the pheromone evaporation coefficient, and ρ< <0 1 , а ( )τ∆ ij s  is the amount of 

pheromone deposited by the ants on edge ( ),i j  during iteration s , =0 1 2, , , ...s  
Pheromone evaporation decreases the intensity of pheromones on all edges, allowing the 

system to forget previous (possibly suboptimal) paths and adapt to changes. This prevents 
premature convergence to local optima. The selection of each step in the ant's path is based on 
probabilistic rules. When, at iteration s  ant k  is at vertex i , it chooses the next vertex j  with a 

certain probability ( )k
ijP s , which depends on the pheromone intensity and visibility ηij , the latter 

being inversely proportional to the path length η =1/ij ijD : 
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where ( )τ ij s  is the pheromone intensity on edge ( ),i j , η =1/ij ijD  is the visibility (inversely 

proportional to the path length), and α  and β  that control the influence of pheromone intensity 
and visibility, respectively. The sum in the denominator is calculated over all available edges (the 
set of available vertices k

iJ  from vertex i ). If α =0 , the most likely transition will be to the 
nearest cities. In classical optimization theory, this corresponds to the so-called greedy algorithm. If 
β =0 , only pheromone reinforcement operates, which leads to the rapid termination of the 
algorithm as all ants converge on the same suboptimal solution. Note that the sum of all transition 
probabilities from city i  over all possible options from the set k

iJ  at iteration s  equals 1: 

( )
∈

=∑ 1
i

k
ijj J

P s . (11) 

The main objective of the ant algorithm is to minimize the path length L , which is the sum of 
the lengths of the edges along the ant's path: 

( )∈
=∑ , iji j P

L D , (12) 

where P  denotes the set of edges that make up the ant's path. 



Let us consider the implementation scheme of the four main components of the self-organizing 
behaviour of ants during the optimization of the traveling salesman route. Sequentially 
implementing the iterative steps that replicate the procedure of finding the route by each ant, we 
obtain the functioning scheme of the ant algorithm for solving the fuzzy traveling salesman 
problem. The transition of an ant from city i  to city j  at iteration s  of the algorithm depends on 
three components: the tabu list, visibility, and the virtual pheromone trail. The tabu list k

iA  is a list 
of cities that ant k  has already visited before reaching vertex i  , and revisiting them is forbidden. 
This list grows as the ant progresses along the route and is cleared at the beginning of each 
iteration of the algorithm. Let k

iJ  denote the list of cities that ant k , currently at city i , still needs 
to visit. It is clear that the union of the lists k

iA  and k
iJ  gives the set of all cities specified in the 

traveling salesman problem.  
At the first iteration =0s , the amount of pheromones on each path is equal to ( )τ =0 0ij . At 

the start of the iteration, a set of ants is generated at each vertex of the graph.  
During the iteration, each ant acts independently. In the first city i  , the tabu list k

iA  for ant k  

consists of the city where the ant is currently located { }=k
iA i . Then, each ant probabilistically 

selects the next city for movement based on the given travel time to the nearest cities using 
formula (1). For this, a random number generator will be used. 

After selecting the next city j , this city is added to the tabu list { }= ,k
jA i j . In the next step, the 

ant selects the following city to move to, and so on, until the last city in the route. If the route 
cannot be closed, the ant is considered invalid until the next iteration. After the iteration is 
completed, pheromone evaporation is calculated for each possible edge. Then, for each ant that 
successfully completes its route after iteration s , the route duration is calculated, and for each 
edge used in the route, pheromone is added in an amount inversely proportional to the route 

duration for each ant ( )τ∆ =ij
k

Qs
L

, where kL  is the duration of the successful route of each ant 

k , and edge ( )∈, ki j L  belongs to the route of ant k , Q  is a tunable parameter, the value of which 
is chosen to be on the same order as the length of the optimal route [12]. 

Thus, with properly chosen parameter values for α  and β , we gradually obtain improved 
results with each iteration. 

4. Results of numerical calculations  
Let us proceed to the experimental section. As part of the computational experiment, we will 

calculate and compare the solution to the usual traveling salesman problem obtained by the 
enumeration method and the solutions to the corresponding fuzzy problem using the proposed 
approach. 

Let us consider the traveling salesman problem on a transport network with a given travel time 
(Fig. 1, the travel time between individual nodes is given by the values placed on the corresponding 
edges) [13]. 

 
Figure 1: An example of a transport network in the traveling salesman problem 



The optimal solution to the traveling salesman problem (1), (2) with a time criterion for the 
route duration is determined by the following sequence: 

→ → → → → → → → → → →1 2  6  10  11  8  5  9  7  4  3 1 , (13) 
which is 156 units [13]. 

In the first stage, the ACO algorithm was adapted to solve the traveling salesman problem with 
fuzzy travel durations between cities. For this, the problem was fuzzified using trapezoidal fuzzy 
numbers (Fig.2). 

 
Figure 2: Schematic example of the traveling salesman problem with fuzzy travel durations 

 
The ranking of routes with fuzzy durations was performed using the CoG method for 

continuous distribution. 
For this problem, numerical calculations of the traveling salesman route were conducted using 

the ACO algorithm and the exhaustive search method. The application of the ASO algorithm to the 
traveling salesman problem in the specified configuration is characterized by a high convergence 
speed and ensures the best result with fairly conservative ASO parameters (see Table 1). 

Table 1 
ACO parameters for solving the TSP shown in Fig. 1. 

In the “iteration” column, the first iteration that contains the best solution with the highest 
probability is indicated.  

The optimal solution to the problem defines the duration of the traveling salesman route as a 
fuzzy trapezoidal number ( )156 156 167 189, , , , with the result generally being achieved by the 3rd 
or 4th iteration, and its defuzzified value based on the CoG method is 167.92 units. 

Further experiments with ASO were conducted to assess the quality of the obtained result, 
taking into account various numbers of cities in the transportation network. During the numerical 
calculations, the genetic algorithm was used to solve the TSP with random placement of 
=16 17 18, ,n  cities on a two-dimensional 200x200 plane, where the travel durations between 

network cities were determined by the average fuzzy time duration, assumed to be proportional to 
the distance between the corresponding cities. Three series of experiments were conducted, with 
the number of iterations equal to: four times the number of cities (Table 2), twice the number of 
cities (Table 3), and the number of cities (Table 4). The number of ants in each case was equal to the 
number of cities. For each experiment, simulations were conducted to vary the parameters β  and 
α . A comparison of the best result obtained for the specified number of iterations with the best 
result obtained by exhaustive search is presented as percentages in Tables 2, 3, and 4. As can be 

 α  β   Q  vapV  Iteration 

0.1 -1 20 0.05 4 
0.1 -2 20 0.05 3 
0.1 -4 20 0.05 2 
0.15 -1 20 0.05 5 
0.2 -1 20 0.05 5 
0.25 -1 20 0.05 7 
0.3 -1 20 0.05 8 



seen from the results, when the number of iterations is equal to the number of cities, the algorithm 
yields results within 5% of the best solution. Increasing the number of iterations improves the 
results. The variation of the parameter β  within the range from -4 to -1 and the parameter α  
within the range from 0.1 to 0.3 qualitatively impacts the results, bringing them closer to 5% 
deviation from the best result obtained by exhaustive search.  
 

Table 2 
The number of iterations is four times the number of cities  

 vapV   α   β   Q  Number of cities, quality 
16 17 18 

0.05 0.15 -1 20 103.72% 104.31% 104. 0% 
0.05 0.15 -1.5 20 103.56% 103.81% 104.28% 
0.05 0.15 -2 20 103.67% 103.73% 104.19% 
0.05 0.15 -2.5 20 103.75% 103.93% 103.97% 
0.05 0.15 -3 20 103.68% 104.18% 104.27% 
0.05 0.15 -3.5 20 103.97% 104.21% 104.30% 
0.05 0.15 -4 20 103.88% 104.11% 104.33% 
0.05 0.1 -3 20 103.77% 104.04% 104.64% 
0.05 0.15 -3 20 103.68% 103.78% 103.87% 
0.05 0.2 -3 20 103.66% 103.71% 103.98%  
0.05 0.25 -3 20 104.02% 104.10% 104.19%  
0.05 0.3 -3 20 104.08% 104.11% 104.32%  

 
Table 3 
The number of iterations equals twice the number of cities 

 vapV   α   β   Q  Number of cities, quality 
16 17 18 

0.05 0.15 -1 20 104.04% 104.50% 104.74% 
0.05 0.15 -1.5 20 103.94% 104.48% 104.78% 
0.05 0.15 -2 20 103.98% 104.23% 104.81% 
0.05 0.15 -2.5 20 103.99% 104.17% 104.26% 
0.05 0.15 -3 20 103.97% 103.99% 104.56% 
0.05 0.15 -3.5 20 104.10% 104.26% 104.38% 
0.05 0.15 -4 20 103.86% 104.36% 104.55% 
0.05 0.1 -3 20 103.88% 104.11% 104.58% 
0.05 0.15 -3 20 103.87% 103.91% 104.56% 
0.05 0.2 -3 20 104.01% 104.40% 104.47%  
0.05 0.25 -3 20 104.12% 104.28% 104.83%  
0.05 0.3 -3 20 104.34% 104.44% 104.72%  

 
Table 4 
The number of iterations equals the number of cities  

 vapV   α   β   Q  Number of cities, quality 
16 17 18 

0.05 0.15 -1 20 104.75% 104.92% 104.96% 
0.05 0.15 -1.5 20 104.61% 105.06% 105.20% 
0.05 0.15 -2 20 104.42% 104.45% 104.69% 
0.05 0.15 -2.5 20 104.35% 104.69% 105.11% 
0.05 0.15 -3 20 104.54% 104.57% 104.75% 
0.05 0.15 -3.5 20 104.38% 104.39% 104.71% 
0.05 0.15 -4 20 104.11% 105.12% 105.15% 
0.05 0.1 -3 20 104.37% 104.50% 105.13% 
0.05 0.15 -3 20 104.34% 104.47% 104.75% 
0.05 0.2  -3  20  104.31%  104.77%  104.83%   
0.05 0.25 -3  20  104.45%  104.70%  104.83%   
0.05 0.3 -3 20 104.47% 104.96% 105.05%  



For comparison with the results obtained by other methods, computational experiments were 
conducted using a genetic algorithm (GA) [14] with the use of an improved mutation scheme and 
population diversity increase related to the PNP (Pick Near point) group [15] and without using 
PNP. Similar versions of the fuzzy traveling salesman problem with 16, 17, 18 cities were 
considered.  

The table 5 shows the data of the averaged quality indicators of the obtained results of solving 
the traveling salesman problem based on the genetic algorithm with modeling of a transport 
network map consisting of =16 17 18, ,n cities (without and with PNP, respectively). The efficiency 
indicators of calculations using the AСO method were compared with the time indicators of 
solving the problem using the genetic algorithm (Table 6). 

 
Table 5 
The results of numerical calculations based on GA  

Number of cities GA without PNP, deviation from the 
optimal solution by, % 

GA with PNP, deviation from the 
optimal solution by, % 

16 
17 
18 

5.11 
5.22 
5.51 

4.94 
5.05 
5.25 

 
Table 6 
The efficiency indicators of GA and ACO 

Number of cities Genetic Algorithm, sec  Algorithm Colony Optimization, sec 
16 
17 
18 

1.191  
1.452  
1.516 

1.212 
1.512  
1.553 

 
As can be seen from tables 5 and 6, the deviations of the obtained results from the optimal also 

do not exceed 5.5%, and the time costs for finding a solution do not differ significantly [16]. Thus, it 
can be concluded that the use of the ACO algorithm allows solving fuzzy traveling salesman 
problems, while maintaining the accuracy and efficiency of the desired solutions. 

5. Conclusion 

The results of the studies conducted in this paper demonstrate the application of the Ant 
Colony Optimization (ACO) algorithm to solve the traveling salesman problem with fuzzy 
travel time along the transport network. Trapezoidal fuzzy numbers are used to formalize 
the travel time values. A transformation of fuzzy number representation based on a 
Gaussian-like approach is used, and operations on fuzzy values are defined. The features of 
the ACO algorithm are considered and an approach for its application is proposed. The 
effectiveness of using this algorithm for finding locally optimal solutions in traveling 
salesman problems with a sufficiently large number of cities in the transport network is 
shown. Estimates of the deviation of the duration of the obtained solutions from the 
duration of the optimal route are given. 

Computational experiments are conducted that show a significant influence of the ant 
colony algorithm parameters on the accuracy of approximate solutions to the fuzzy 
traveling salesman problem. The numerical examples provided also demonstrate the 
influence of the number of iterations on the accuracy of the results obtained. 

A conclusion is made about the efficiency of using the ASO algorithm for solving fuzzy 
traveling salesman problems. 
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