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Abstract 
This article is more of an overview, but it shows the importance of analysing the structure of the rhythmic 
variation of the time series of electricity consumption. The integration of renewable energy sources and the 
development of multi-directional smart grids present challenges for the stability and management of modern 
energy networks. Unlike traditional unidirectional systems, smart grids incorporate feedback loops and distributed 
energy generation, introducing high-frequency fluctuations that can propagate through the network, so This study 
identifies and analyzes the rhythmic variability in electricity consumption time series using deterministic and 
probabilistic approaches, including Fourier and spectral-correlation theories. An application of Periodically 
Correlated Random Processes (PCRP) is proposed to model and forecast energy flows, offering a robust framework 
for identifying hidden variability structures. The findings support enhanced decision-making for network 
regulation and the optimization of smart grids architectures, ensuring resilience and reliability in energy 
distribution. 
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1. Introduction 

The development of the Green transmission concept and the adoption within the EU of a number of 
regulatory acts within the framework of the European Green Deal, which oblige to integrate into a single 
energy network practically all available energy sources down to the level of individual households, the 
integration of low-power renewable energy sources into common “global” consumption networks have 
created serious challenges for the organization and management of the operation of such a network. 

This kind of network, unlike previous, classical, essentially unidirectional networks of the type “from 
power generation – through distribution networks – to consumers”, is transformed into a multi-stream 
multi-directional network (Smart Grids) on the type of modern Internet data transmission networks. 

This network itself is a generating multi-level distributed network, since it provides for reverse energy 
flows, and each, even the smallest of its nodes is a separate dynamic system with feedback, i.e. it can also 
potentially generate consumption-generation fluctuations. Minor fluctuations in consumption are not 
critical in the case of a unidirectional system, although there have been significant accidents (blackouts) 
that have led to major losses in power grids that arose as a result of minor “hidden” fluctuations. It should 
be noted separately that a significant component of electricity consumption is chaotic, and known low-
frequency (daily, weekly, monthly) consumption cycles are known and non-critical, they are “global”, i.e. 
they cover a significant part (or parts) of the unidirectional distribution network. In the case of a 
generating multi-level network with feedback in nodes, short-term high-frequency fluctuations may occur, 
primarily local, which can quickly lead to local oscillations and, as it was in the case of “unidirectional” 
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networks, spread over a short period of time to significant fragments of the entire “global” network. It is 
clear that scenarios of this type are mostly probabilistic, but ignoring them, given the obvious ability of 
active networks or electrical circuits with complex feedback loops to generate oscillations, including those 
of a chaotic nature, is at least unreasonable. Therefore, identifying and analyzing the structure of the 
hidden rhythmic variability of time series of energy consumption in networks can become a serious 
safeguard against possible accidents on the one hand and an important tool for supporting network 
regulation decisions and even a basis for optimizing its structure. This research is highly significant for the 
future of energy development due to its alignment with key trends and challenges in the energy sector. It 
is important is integration of renewable energy sources; smart grid evolution, decentralization of energy 
systems. Future energy systems will heavily rely on renewable sources like solar and wind, which are 
inherently variable and unpredictable.  

By analyzing rhythmic patterns in energy consumption and generation, this research helps to integrate 
these intermittent sources more seamlessly into the grid, ensuring stability and efficiency. 

As energy systems evolve into smart grids, the complexity of managing bidirectional energy flows 
increases. This research contributes to developing intelligent systems capable of predicting energy 
demands and generation patterns, crucial for optimizing the operation of smart grids. 

The shift towards decentralized energy systems, where individual households and small-scale producers 
contribute energy, requires advanced forecasting and analysis tools. 

Understanding consumption rhythms aids in managing these decentralized networks effectively, 
minimizing losses and maximizing energy use. 

Not to be overlooked also energy security and resilience, so the shift towards decentralized energy 
systems, where individual households and small-scale producers contribute energy, requires advanced 
forecasting and analysis tools and understanding consumption rhythms aids in managing these 
decentralized networks effectively, minimizing losses and maximizing energy use. With the increasing 
complexity of energy systems, the risk of disruptions and blackouts rises. 

This research can provide tools to identify and mitigate hidden fluctuations and anomalies that could 
compromise energy security. 

Forecasting energy flows accurately allows for better planning and allocation of resources, reducing 
waste and operational costs. This efficiency is critical for the sustainable growth of energy infrastructure 
and keeping energy affordable. 

Meeting global climate goals, such as those outlined in the Paris Agreement and European Green Deal, 
requires innovative solutions for reducing carbon emissions. 

By optimizing energy systems and integrating renewable resources, this research supports the 
transition to low-carbon and sustainable energy models. The methods developed can drive technological 
innovation in energy analytics, smart sensors, and IoT applications, laying the groundwork for future 
advancements in energy management systems. 

2. Approaches to the research of oscillatory processes 

During studying of oscillatory processes two main attempts are conditionally distinguished. The first one 
is grounded on the so-called phenomenological models, which is based on the principles, formulated by 
Fourier: it is assumed that arbitrary oscillations can be combined from simple harmonic ones, that is, a 
complex oscillatory process is interpreted as the result of superimposing of oscillations of individual 
harmonic oscillators. 

The second one is grounded on the construction of physical and mathematical models of the systems 
that generate oscillations, and the analysis of their properties on this basis. Both of these attempts were 
closely joined during their development. Despite the mathematical complexity of the analysis of system 
oscillations, associated primarily with their nonlinearity and the dependence of parameters on time, this 
methodology is successfully developing and important results have been obtained in it during the study of 
the properties of oscillatory motion. 

The first studies of the properties of oscillations mostly used a deterministic approach, according to 
which the time changes of the function, describing the oscillations occur according to certain established 
dependencies, which actually represent their defining feature – repetition. Among the deterministic 
oscillations two classes are distinguished: oscillations with limited power and oscillations with limited 
energy [1, 2]. Among the first class, a special place is occupied by periodic and almost periodic oscillations, 



the properties of which are analyzed using Fourier series. Oscillations belonging to the second class are 
also called transient or vanishing. Methods of their analysis and processing are based on the theory of 
Fourier integrals. Determination of Fourier coefficients or Fourier images that correspond to functions 
given in one way or another is called harmonic analysis [3]. Harmonic analysis methods transfer the study 
of oscillations from the time domain to the frequency domain, in which their properties are characterized 
by the amplitude and phase spectra, as well as the power spectrum or energy spectrum. Note that the 
power spectrum does not depend on the phase relations between the harmonic components that form the 
oscillations, so it cannot be used to describe their shape in the time domain. The spectra of periodic and 
almost periodic oscillations are discrete, and the spectra of vanishing oscillations are continuous. The first 
ones do not belong to the class of oscillations with limited energy, so they cannot be represented by the 
Fourier-Riemann integral. Combining the discrete and continuous cases allows obtaining a representation 
in the form of the Fourier-Stieltjes integral, which can be used to describe the sum of periodic or almost 
periodic oscillations and vanishing oscillations. However, non-vanishing oscillations with a continuous 
spectrum remain outside the scope of such a model. 

Mathematically rigorous theory of non-vanishing oscillations with a continuous spectrum was 
developed by N. Wiener [4, 5] and was called by the author himself generalized harmonic analysis. 
N. Wiener moved away from the analysis of individual oscillatory processes and come on to the study of 
their correlation functions, defined by means of time averaging. The Fourier transform of such correlation 
functions characterizes the power of the harmonic components of the oscillation. However, when directly 
transferring such an approach to the analysis of real oscillatory processes, researchers encountered a 
number of problems that manifested themselves as instability of the estimates of the spectra obtained 
during the processing of experimental data. Similar problems appear when using a purely spectral 
approach to the analysis of non-vanishing oscillations, introduced by A. Schuster [6–8] and called 
periodogram analysis. Therefore, the instability of the results can be explained primarily, as noted in the 
work of A. Einstein [9], by fluctuating time changes in the studied quantities. Fluctuating components can 
be added to regular oscillations, modulate oscillations as a whole, as well as its individual components. In 
many situations, the power of fluctuation changes is significant if compared to the power of regular 
oscillations and even may exceed it. In this case methods for analyzing and processing of oscillations 
should be developed on the basis of their models in the form of random processes. Such an approach is also 
necessary because of it is the probabilistic characteristics of random processes that those properties of 
oscillations, that are essential for determining their physical nature and describing the state of the objects 
that generate them are mostly associated. 

3. Random oscillations analysis methods 

The theory of random processes and methods of their statistical analysis are developed based on their 
division into classes.  

The methods of stationary random processes and certain types of nonstationary ones are developed and 
mostly used in practice: random processes with evolutionary nonstationarity, including locally stationary 
ones, and random processes with the so-called rhythmic structure. The latter include periodically 
nonstationary random processes and their generalizations: bi-, poly- and almost periodically nonstationary 
random processes. In the second-order theory (also called spectral-correlation theory), the properties of a 
random process are described by the mathematical expectation, correlation function and its Fourier 
transform - spectral density. The foundations of the spectral-correlation theory of stationary random 
processes were performed in the works of A.Ya. Khinchin [10, 11]. The theorem on the spectral 
decomposition of the correlation function proved by him is actually another expression of S. Bochner's 
theorem on the harmonic analysis of positive definite functions [12]. N. Wiener's condition on the 
existence of the correlation function obtained by means of time averaging was replaced by A.Ya. Khinchin 
with the condition of stationarity of the random process. In the case of ergodic stationary random 
processes, A.Ya. Khinchin's theorem follows from N. Wiener's theorem, therefore the theorem on the 
spectral decomposition of the correlation function is often called the Wiener-Khinchin theorem [13]. The 
results obtained by A.Ya. Khinchin were developed by A.M. Kolmogorov [14, 15] and G. Kramer [16, 17], 
who substantiated the harmonic decompositions of the random processes. Non-correlating of harmonics in 
this expansion is a consequence of the stationarity of the random process. These results are actually a 
transfer to random processes of the Fourier-Stiltjes transform, while the transition to the ordinary Fourier 



integral in this case is impossible. The pioneer of empirical spectral analysis, i.e., the estimation of the 
spectral density of a stationary random process from experimental data, is considered to be J. Tukey [18]. 
To calculate the spectral density, he used smoothed estimates of the correlation function. The smoothing 
procedure itself, i.e., the use of the correlation function estimates of certain windows in calculating the 
Fourier transform, made it possible to obtain valid estimates of the spectral density, and therefore led to 
stable results of empirical spectral analysis. This method of nonparametric spectral analysis was called the 
Blackman-Tukey method [19]. After smoothing, the estimates of the spectral density obtained using the 
periodogram method of A. Schuster [6–8], which can be considered as a special case of the Blackman-
Tukey correlogram method. It differs from the latter only in the method of calculating the spectral density. 

The mathematical expectation of a stationary random process determines the regular component of the 
oscillation, and the correlation function characterizes the relationships between the values of the 
oscillatory process at time points and depends only on the difference. The power spectral density describes 
the distribution of the oscillation power in harmonics, therefore it is called the power spectral density. This 
value, as already noted, is not affected by the phase relations between the harmonic components, therefore 
it cannot characterize time structure of the oscillatory process, namely its repeatability, which, although in 
an idealized form, is represented by deterministic models. If the oscillations contain regular time changes, 
then within the framework of the stationary model they are analyzed in terms of the correlation function 
and the power spectral density, which is not logical and creates methodological problems as well as 
difficulties in interpreting the results of statistical processing of experimental data. This was first noted by 
E. Slutsky [20], who showed that peak values of spectral density can be the result of a certain type of 
relations of time series, but not only the presence of a regular periodic component. A natural resolve of 
this situation is to isolate regular oscillations in the form of a time-varying mathematical expectation 
function and to study it using deterministic function methods. The mathematical model of oscillation then 
will be a random process nonstationary in terms of mathematical expectation. However, as the results of 
real data processing show [20–30], in many cases nonstationarity is also inherent in higher order moment 
functions, and then it is necessary to move on to the analysis of the properties of oscillations based on 
their models in the form of periodically nonstationary random processes. 

4. Methods of analysis of periodically nonstationary random processes 
(PNRP) 

The first step in the development of the theory of nonstationary random oscillations can be considered an 
extension of the conditions for the existence of a harmonic decomposition, which were introduced by 
M. Loev [31]. 

Random processes for which such a decomposition exists were called harmonized. In the general case, 
individual harmonics of the decomposition are correlated, therefore their property in the frequency 
domain is described by the two-frequency spectral density. The two-frequency spectral density takes on a 
diagonal form, that is, becomes a function of one argument, in the case of a stationary random process, 
when the harmonics of the decomposition are uncorrelated. When determining the two-frequency spectral 
density from experimental data, a number of difficulties arise, therefore, in practice, for the analysis of 
nonstationary random oscillations, a time-dependent spectral density, which is called a variable 
(instantaneous) spectrum [32], as well as the spectral density of their stationary approximation, are often 
used. The probabilistic characteristics of a stationary approximation are the time-averaged probabilistic 
characteristics of a nonstationary random process. The correlation function of a stationary approximation 
has all the properties of the correlation function of a stationary random process, so its Fourier transform is 
called the power spectral density of the stationary approximation. This quantity describes the frequency 
distribution of the time-averaged power of the oscillations. 

A more complete and deep study of the structure of nonstationary random oscillations allows 
specifying the type of time changes in their probabilistic characteristics. In this way, we arrive at models of 
oscillations in the form of locally stationary random processes and random processes with a rhythmic 
structure. The latter are called cyclostationary in literature [23, 29, 30]. We note that belonging to 
processes with a rhythmic structure does not exclude the properties of local stationarity. 

Locally stationary random processes are characterized by the fact that their probability characteristics 
change significantly over a relatively large time interval, and this interval is much larger than the 



correlation interval, which is determined by the behavior of the correlation function with respect to the 
shift. At the same time, for any moment in time, the probability characteristics of such processes have the 
properties of stationary random processes (hence the term local stationarity). Although the correlation 
function is variable in time, it is a positive definite function for each, and the change in spectral density is 
non-negative and is interpreted as an instantaneous power spectral density. Under such conditions, when 
studying the probability structure of real fluctuations, statistical methods of stationary random processes 
can be used. The main issue here is determining the length of the processing interval, since due to the 
presence of two trends in the behavior of the evaluation efficiency characteristics with increasing length – 
increasing bias and decreasing variance – there is a certain optimal length of the processed segment that 
provides the minimum total processing error. 

5. PCRP approach to analysis of the PNRS 

A special place in the development of the theory and methods of analysis of stochastic oscillations belongs 
to their models in the form of random processes with a rhythmic structure.  

In the second-order theory, they are defined as processes with a periodic or almost periodic change in 
time of the mathematical expectation, correlation function, spectral density. They are called periodically 
correlated random processes (PCRP) and their generalization - almost periodically correlated random 
processes (APCRP), as well as subclasses of the latter: bi- and poly-periodically correlated processes [22, 24, 
25, 33, 34]. Research, based on models of nonstationary random processes belonging to these classes 
naturally combines and develops deterministic and probabilistic approaches, which are based, respectively, 
on the theory of periodic and almost periodic functions and the theory of stationary random processes. 
PCRP models and their generalizations make it possible more adequately describe the structure of the 
oscillatory process, covering as separate extreme cases the above-mentioned representations, as well as 
models known in the literature, in which attempts have been made to combine the features of repeatability 
and stochasticity: additive, multiplicative, their combinations, poly-harmonic, quadrature, etc. All this 
creates a basis for the analysis of stochastic oscillations not only by special means characteristic of each 
model, but also in terms common to all of them. 

Random processes with periodic and almost periodic in time probabilistic characteristics were first 
considered in the work of L.I. Koronkevych [35]. This was done when studying solutions of differential 
equations with periodic and almost periodic coefficients and a force in the form of a stationary random 
process. This work is referred to by E.G. Gladyshev [36], analyzing the properties of the Fourier 
coefficients of the correlation function, their representations, and the issue of harmonization of these 
classes of nonstationary random processes. E.G. Gladyshev first used the terms “periodically correlated” 
and “almost periodically correlated” random processes. U. Bennett [37] and R.L. Stratonovich [38] 
considered random processes with periodically varying characteristics as a models (V. Pleskach [39]), 
suitable for describing of telecommunication signals and fluctuation oscillations in telecommunication 
systems. The first author introduced the term “cyclostationary”, and the second – “periodically 
nonstationary”. The latter term was also used in signal analysis in a later work by L. Franks [40]. The first 
studies on the theory of estimating probabilistic characteristics of the PCRP were carried out by 
L.I. Gudzenko [41, 42]. He obtained the conditions for the consistency of estimates of the Fourier 
coefficients of the mathematical expectation and the correlation function, as well as estimates of these 
characteristics themselves, which are based on the first estimates. The author showed the asymptotic 
convergence of the estimates calculated in this way to those found by averaging the PCRP samples taken 
over the correlation period. As L.I. Gudzenko noted, the validity of the latter estimates is a consequence of 
the fact that this type of reference sequences are stationary and stationary related. The properties of 
reference sequences were analyzed more fully in the work of Ya.P. Dragan [43]. Estimates of correlation 
components, as well as estimates of spectral components of the PCRP constructed on their basis, were 
studied by H. Hurd [44, 45]. 

The two-frequency spectral representation of the correlation function was considered by A. Papoulis 
[46], S.M. Rytov [47], H. Ogura [48]. The latter obtained a representation of the PCRP through stationary 
random processes, which are selecting using frequency shift and linear bandpass filtering.  

Such stationary components have a finite spectrum. Mathematically rigorous representations through 
stationary random processes with a finite spectrum for PCRPs harmonized according to M. Loev were 
analyzed by H. Hurd [49, 50]. V. Gardner and L. Franks [51] systematized a number of properties of PCRPs, 



and also considered the problem of optimal linear filtering of PCRPs using filters with periodically varying 
parameters. 

The basics of the spectral-correlation theory of PCRP with limited average power were developed by 
Ya.P. Dragan [22, 25, 33, 34, 52, 53]. He was the first to establish a representation for PCRP obtained using 
a filter with periodically varying parameters in terms of stationary random processes with a infinite 
spectrum [54]. Ya.P. Dragan [53, 54] outlined the class of D-harmonized random processes and showed 
that this class of processes and the class of processes with limited average power are equivalent. For D-
harmonized PCRP, transformation was obtained in the general case through stationary random processes, 
and a one-to-one correspondence between transformation with finite and infinite spectra was established. 

A number of works by W. Gardner and colleagues [23, 28, 55–57] were motivated by 
telecommunications problems. W. Gardner [57] developed a non-probabilistic approach to the analysis of 
so-called cyclostationary processes, which can be considered a further development of N. Wiener's 
generalized harmonic analysis. On the initiative of W. Gardner, a monograph [23] was published in 1994, 
which collected the main results in the field of PCRP analysis and its applications obtained by well-known 
specialists in this field. This monograph mainly highlights the results, published in the English-language 
literature. The results of research by a wider range of specialists, including those from Ukraine and the 
former Soviet Union, are briefly reviewed in [28]. This work also provides an extensive list of literature 
(786 titles) on the theory, statistics of PCRP and generalizations, as well as applications in various fields of 
science and technology. It should be noted that the first studies by scientists from Eastern Europe in the 
English-language literature were characterized in the well-known monograph by A.M. Yaglom [58]. 
Among the latest monographic publications is the book by H. Hurd and A. Miami [29], devoted to the 
analysis and statistics of periodically correlated random sequences and their applications. It develops the 
results obtained in the initial works of E.G. Gladyshev [40, 59], Ya.P. Dragan [25, 33]. 

One of the first works on research on the use of PKRP methods for the analysis of real stochastic 
oscillations, along with the already mentioned work of L.I. Koronkevych [35] in the field of mechanics, 
was the work of L.I. Gudzenko on the study of the properties of fluctuations in self-oscillating systems. 
S.M. Rytov [47] indicated the use of PCRP for the study of cyclic magnetization reversal noise, 
O.F. Romanenko and T.O. Sergeyev [60] noted the possibility of describing by these processes the 
turbulent flow of water adjacent to the ship's propeller, temporal changes in electricity consumption, and 
physiological phenomena. V.I. Kolesnikova and A.S. Monin [61] emphasized the expediency of studying 
the seasonal and daily variability of meteorological phenomena from the PCRP perspective, which is 
constrained, in the authors' opinion, by insufficient elaboration of theoretical and methodological issues. 

Ya.P. Dragan, in collaboration with K.S. Voychyshyn [62], and then independently [63, 64], considered 
the general properties of the stochastic rhythmic model within the framework of the PCRP model, which is 
interpreted as the result of a regular in the probabilistic sense repetition of cycles - an interconnected 
sequence of phases in the development of the system under study. These works formulated the main 
requirements for the rhythmic model: a description of its stochasticity, decomposition into harmonics and 
repeatability of properties. K.S. Voychyshyn [65] made the first attempts to analyze the daily rhythmicity 
of some geophysical processes based on such a model, and Ya.P. Dragan and I.M. Javorskyj applied this 
approach to the study of sea wind waves [25, 66, 67]. In the first case, the rhythmicity analysis was carried 
out at the level of the time dependence of the estimates of the mathematical expectation and dispersion, in 
the second case, estimates of correlation characteristics were included in the analysis. It should be noted 
that even earlier, the PCRP model, even in a somewhat broader aspect (with the involvement of histograms 
and estimates of correlation functions), was used to study the daily changes of air temperature and 
humidity, as well as soil temperature [68–73]. P.Ya. Groisman considered the correlation properties of 
precipitation series within the framework of PCRP [74]. Other properties PCRP are considered in [75, 76]. 

The best modern methods of analysis and demodulation of signals, representing PNRS are based on the 
application of the Hilbert transform and the construction of an analytical signal. It is necessary due to 
complex mutual amplitude- and phase- modulations between signal components. A significant advantage 
of applying the Hilbert transform to the analysis of diagnostic signals is the ability to analyze all types of 
carrier's modulations: amplitude, frequency and phase, as well as their effective separation [77, 78]. 
However, frequent neglecting of known significant limitations in the application of the Hilbert transform 
to the processing of modulated signals formulated by the Bedrosian and Nuttall theorems [79, 80] leads to 
errors in detecting defects and  significant errors in their classification as well as assessment of the degree 



of development. To avoid such troubles, the decomposition of the PNRS by empirical methods into a 
number of narrow-band so-called “eigenmode functions” and the application of the Hilbert transform to 
analyze the structure of each of these modes separately is used [Feldman, Huang]. The most widely used 
are various versions of the empirical method of decomposition (EMD) (so-called Hilbert-Huang method) 
[78, 81]. This empirical method involves a cyclic procedure of signal analysis with the selection and 
subtraction of “average modes” from the signal until the rest bacame purely stochastic. The difference 
between the various implementations of the method is mainly reduced to the use of different stopping 
criteria for mode selection and methods of signal interpolation between peaks (except for the original cubic 
spline method proposed by Huang). In the works [82-84], the correlation structure of the PNRS was 
analyzed theoretically for different types of carrier signal modulations. Based on this study, a model for 
such signal was proposed and a rigorous theoretical analysis of its application under the conditions of 
various types of carrier modulations was carried out. A method for narrow-band filtration and 
demodulating of the quadratures of the modulating components was developed and verified. Its 
effectiveness for real diagnostic vibration signal data processing was demonstrated. In particular, it was 
proposed to estimate the degree of defect development in the system under investigation based on higher-
order joint correlations between different signal components. For this purpose, a map of correlations 
between different signal components was constructed. The dependence of defect development degree 
estimates on signal filteration parameters was shown and conditions for avoiding the leakage effect during 
signal processing were established. 

6. Conclusion 

Use of the PCRP model and its generalizations for the analysis of stochastic oscillations is based on a data 
processing methodology grounded on the theory of evaluating the entire complex of probabilistic 
characteristics of a given class of nonstationary random processes. 

The development of such a methodology and its use for studying the structure of variability of 
periodically nonstationary random oscillations in electrical networks will provide an important basis for 
the development and reliable operation of modern “smart power grids”. 

The research is crucial due to its relevance in modern energy systems, especially with the shift toward 
smarter and more sustainable grids. The transition from unidirectional traditional energy systems to 
bidirectional, multi-level smart grids has introduced complexities. Analyzing rhythmic variations helps in 
understanding and optimizing these flows, minimizing inefficiencies and disruptions. Smart grids, with 
their feedback loops, are more susceptible to high-frequency and localized fluctuations that can propagate 
and cause system-wide failures. Identifying hidden patterns in energy consumption can provide early 
warnings for such risks. Understanding the rhythmic variability of electricity consumption enables better 
forecasting and regulation, which is critical for balancing supply and demand, so supports the stability and 
reliability of power systems, especially as renewable energy sources are intermittent. Accurate modeling 
and forecasting of energy flows reduce operational costs, improve resource allocation, and enhance the 
economic feasibility of renewable energy such projects. 

The study bridges deterministic and probabilistic approaches, offering a robust methodology to analyze 
and forecast energy flows in modern power systems, thereby addressing critical challenges in energy 
management and sustainability. 
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