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Abstract
Cardiac magnetic resonance imaging (MRI) is vital for diagnosing cardiovascular diseases, yet its classification
faces significant challenges, including domain shifts across heterogeneous datasets, limited annotated data, and
privacy regulations, particularly when deploying deep learning models on resource-constrained edge devices.
These issues hinder real-time diagnostics and data protection in edge-computing scenarios. To address these
issues, this paper introduces Enhanced Multi-Teacher Knowledge Distillation (EMTKD), an edge-based framework
designed to enhance cardiac MRI classification. EMTKD employs adaptive multi-teacher knowledge distillation,
utilizing an adaptive weighting mechanism to balance contributions from multiple teacher models trained on
diverse domains, ensuring the student model learns from the most reliable sources. It integrates domain adaptation
to align feature representations, semi-supervised learning with pseudo-labeling to leverage unannotated data, and
differential privacy to safeguard patient information. Experimental results show EMTKD achieves an accuracy of
88.5% and an area under the curve of 92.5% on target domain images, outperforming state-of-the-art baseline
models. Ablation studies highlight the critical roles of adaptive weighting, domain adaptation, and semi-supervised
learning in improving performance under edge constraints. These findings demonstrate EMTKD’s ability to
generalize across domains and utilize limited data effectively. Overall, EMTKD offers a robust, privacy-preserving
solution for cardiac MRI classification on edge devices, ideal for rapid diagnostics in challenging environments.
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1. Introduction

Cardiovascular diseases remain the foremost cause of mortality worldwide, creating an urgent need
for precise, timely diagnoses to improve patient outcomes. Cardiac magnetic resonance imaging (MRI)
has become a crucial non-invasive modality for examining cardiac structure, function, and pathology
[1]. It delivers the high-resolution information necessary for detecting conditions such as myocardial
infarction, cardiomyopathies, and congenital heart diseases [2]. However, interpreting cardiac MRI
scans manually is time-intensive and requires substantial expertise [3], which is not always available in
every clinical setting. Consequently, automated techniques are needed to streamline MRI data analysis
and assist clinicians with accurate interpretations [4].

Despite progress in deep learning (DL) and machine learning for medical image analysis, processing
cardiac MRI data still faces two major hurdles. First is the heterogeneity of data sources [5]: scans
acquired via different imaging protocols and equipment often exhibit domain shifts [6]. Consequently,
models trained on one dataset tend to underperform when evaluated on unseen data. Second, annotated
datasets are scarce; labeling MRI scans demands substantial expert effort [7], meaning large-scale
labeled data are seldom available [8]. Additionally, privacy regulations prevent the free exchange of
clinical data between institutions, further hindering the creation of comprehensive training sets.
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Emerging strategies like knowledge integration [9] and knowledge distillation [10] offer ways to
address these challenges. Knowledge integration merges information from varied origins to bolster
model learning [11], while knowledge distillation transfers insights from one or more teacher models
to a student model [12]. In cardiac MRI, these methods help build models that generalize better and
reduce the requirement for extensive annotation [13]. By harnessing knowledge distilled from multiple
teachers trained on diverse data, the student model captures a broader range of features [14], boosting
overall classification performance on new samples.

In light of these shortcomings – particularly domain generalization [15] and data scarcity [16] – this
study focuses on distilling knowledge from multiple teacher models to establish a robust student model
capable of operating effectively under heterogeneous conditions. The main contributions of this work
are as follows:

• Adaptive Teacher Weighting Mechanism: Employs confidence calibration to dynamically
balance each teacher’s impact on the student model.

• Domain-Adaptive Feature Alignment: Extracts domain-invariant features from teacher mod-
els, enhancing the student model’s cross-domain generalization.

• Semi-Supervised Learning (SSL) Integration: Utilizes pseudo-labeling for unannotated data,
reducing dependence on large annotated datasets.

• Privacy-Preserving Techniques: Implements differential privacy to protect sensitive informa-
tion during training.

By tackling key limitations in cardiac MRI analysis, this research aims to develop DL models that are
not only accurate and generalizable but also aligned with essential privacy requirements.

The rest of the manuscript is structured as follows. Section 2 reviews key studies on DL in medi-
cal imaging, highlighting limitations in knowledge distillation, domain adaptation, semi-supervised
learning, and privacy preservation—underscoring the impetus for a more holistic framework. Section 3
presents the authors’ proposed EMTKD solution, detailing the integration of domain-adaptive teacher
models, an adaptive weighting mechanism, SSL with pseudo-labeling, and differential privacy to address
domain shift, data scarcity, and confidentiality concerns. Section 4 showcases the experimental results
and discussion, comparing the new method against baseline and state-of-the-art techniques using
standard evaluation metrics. Finally, section 5 concludes on the efficacy and broader applicability of the
EMTKD approach.

2. Related works

Over recent times, DL-based solutions have increasingly permeated medical imaging, yielding progress
in classification, segmentation, and detection tasks. However, new methods are needed to resolve
outstanding issues in cardiac MRI processing.

Knowledge distillation has been a prominent direction: Hinton et al. [10] introduced the idea of
transferring a larger model’s knowledge to a smaller student network by matching outputs. Chen
et al. [17] later proposed multi-teacher knowledge distillation, where each teacher is trained on a
distinct dataset, and the student learns from the collective. Although beneficial, combining knowledge
from heterogeneous data sources remains difficult because domain shifts among datasets may create
conflicting information.

Domain adaptation has likewise garnered attention. Ganin and Lempitsky [18] explored domain-
adversarial training to produce domain-invariant representations, and Zeng et al. [19] employed an
unsupervised strategy for cross-modality medical image segmentation. Although these methods improve
generalization, they often presume direct access to both source and target domains – an assumption
complicated by privacy constraints.

To counteract limited annotations, SSL approaches like that of Yuan et al. [20] employ minimal labeled
data combined with substantial unlabeled data. Their teacher-student structure uses pseudo-labeling
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to leverage unannotated samples. Yet, they do not incorporate multi-teacher integration or address
domain shifts.

Privacy-preserving methods, such as adding differential privacy noise to training gradients, have
also emerged in medical imaging. Montenegro et al. [21] demonstrated that this approach reduces the
likelihood of memorizing individual data points. However, fusing differential privacy with complex
training architectures, including knowledge distillation, remains challenging [22].

A more recent approach by Nabavi et al. [23] applies a multi-teacher, single-student framework to
address domain shift and data scarcity. While it preserves privacy by requiring only teacher parameters,
its performance may deteriorate if confronted with entirely novel data distributions. Some knowledge
distillation gaps in cardiac MRI classification thus remain unsolved. Specifically, persistent obstacles
include:

• Difficulty Integrating Multiple Teachers: Domain shifts across heterogeneous datasets hinder
the student model’s consistency.

• Dependence on Source Domain Data: Domain adaptation methods sometimes require both
source and target data, which conflicts with privacy standards.

• Limited Utilization of Unannotated Data: Scarce labeled samples restrict model capacity, and
existing methods do not fully exploit unlabeled data.

• Inadequate Privacy Measures: Knowledge distillation frameworks may overlook explicit
safeguards for patient confidentiality.

Hence, the proposed solution addresses these gaps by embedding domain adaptation within teacher
models to extract domain-invariant features. An adaptive weighting mechanism guided by confidence
calibration ensures the student model assimilates knowledge from multiple teachers, and SSL broadens
the training set with unlabeled samples. Lastly, differential privacy is woven into training to keep
patient data confidential.

Accordingly, this study proposes an enhanced multi-teacher knowledge distillation (EMTKD) ap-
proach for cardiac MRI classification that integrates knowledge from diverse datasets, confronts domain
shifts, and alleviates data scarcity. The corresponding tasks are:

• Task 1: Train domain-adapted teacher models on different cardiac MRI datasets.
• Task 2: Devise an adaptive distillation protocol to unify knowledge from multiple teachers into

one student.
• Task 3: Employ SSL to exploit unlabeled data, advancing the student model’s learning potential.
• Task 4: Incorporate privacy-preserving measures, including differential privacy, to secure sensi-

tive information.
• Task 5: Compare the resulting method against existing approaches using standard cardiac MRI

datasets.

By merging these techniques, the proposed approach aims to deliver robust, domain-spanning
classification performance even under limited annotation conditions.

3. The proposed approach

The proposed approach aims to improve cardiac MRI image classification by effectively distilling
knowledge from multiple teacher models into a single student model. The approach is formalized
as a step-by-step method that addresses challenges such as domain shift, data heterogeneity, limited
annotated data, and privacy concerns.

The method comprises three main blocks:

• Block 1: Teacher model training with domain adaptation.
• Block 2: Adaptive knowledge distillation.
• Block 3: Student model training with privacy preservation.
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Figure 1: The proposed EMTKD comprises three blocks: (i) a multi-teacher model block that extracts diverse
feature representations, (ii) an adaptive knowledge distillation block that aggregates and (iii) transfers knowledge
using attention and pooling mechanisms, and a student model block that fine-tunes distilled knowledge for
classification tasks through transfer learning.

The schematic representation of the proposed approach is illustrated in figure 1.
Each block involves specific inputs, processes, and outputs that collectively contribute to the final

goal of enhancing the student model’s performance.

3.1. Block 1: Teacher model training with domain adaptation

The input data of block 1 consists of annotated datasets from multiple domains. Each dataset is
represented as 𝒟(𝑡) = {(x(𝑡)

𝑖 , 𝑦
(𝑡)
𝑖 , 𝑑(𝑡))}𝑁𝑡

𝑖=1 for 𝑡 = 1, 2, . . . , 𝑇 , where x
(𝑡)
𝑖 is the 𝑖-th cardiac MRI

image from domain 𝑡, 𝑦(𝑡)𝑖 is the corresponding label (such as “normal” or “pathological”), and 𝑑(𝑡) is
the domain identifier. The total number of samples in dataset 𝑡 is denoted by 𝑁𝑡, and 𝑇 represents the
total number of teacher models or domains involved.

Step 1. Data preparation

The first step in the process is collecting and preparing the data. Datasets are gathered from 𝑇
different domains, each containing annotated cardiac MRI scans. Once the datasets are collected,
preprocessing begins. The images are normalized, resized to a consistent dimension, and undergo
necessary augmentations to enhance model performance. These preprocessing techniques ensure
uniformity across the datasets and help improve the model’s generalization capabilities.

Step 2. Model initialization

With the data prepared, the next step is to initialize the teacher models. For each domain 𝑡, a neural
network model 𝑀𝑡 is initialized with random weights. Additionally, for each model 𝑀𝑡, a domain
discriminator network𝐷𝑡 is defined. This domain discriminator plays a critical role in domain adaptation,
allowing the models to learn domain-invariant features that can generalize well across multiple domains.
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Step 3. Training with domain adaptation

During training, two key loss functions are employed. The first is the classification loss for model 𝑀𝑡,
which is calculated as:

ℒ(𝑡)CE = − 1

𝑁𝑡

𝑁𝑡∑︁
𝑖=1

𝑦
(𝑡)
𝑖 log𝑀𝑡(x

(𝑡)
𝑖 ), (1)

where 𝑦
(𝑡)
𝑖 represents the true label for sample 𝑖 and 𝑀𝑡(x

(𝑡)
𝑖 ) is the predicted probability distribution

over the classes.
The second loss function is the domain adaptation loss, which uses a Gradient Reversal Layer (GRL)

to promote learning domain-invariant features. The domain adaptation loss is computed as:

ℒ(𝑡)DA = − 1

𝑁𝑡

𝑁𝑡∑︁
𝑖=1

𝑑(𝑡) log𝐷𝑡(𝑀𝑡(x
(𝑡)
𝑖 )), (2)

where 𝑑(𝑡) is the domain label and 𝐷𝑡 represents the domain discriminator network.
These two loss functions, formalized by formulas (1)–(2), are combined into the final loss for each

teacher model 𝑀𝑡:
ℒ(𝑡)teacher = ℒ

(𝑡)
CE − 𝜆DAℒ(𝑡)DA, (3)

where 𝜆DA is a hyperparameter that balances the classification and domain adaptation losses.

Step 4. Optimization

Once the loss functions are defined by (3), the next step is to update the model parameters. Using an
optimizer, such as Adam, the parameters 𝜃𝑡 of model 𝑀𝑡 are updated to minimize the combined teacher
loss:

𝜃𝑡 ← 𝜃𝑡 − 𝜂∇𝜃𝑡ℒ
(𝑡)
teacher, (4)

where 𝜂 is the learning rate.
This optimization process by formula (4) adjusts the model weights to minimize classification and

domain adaptation losses, enabling the model to learn useful patterns across domains.

Step 5. Feature extraction

After the models are trained, the next step is to extract features. For each sample x in dataset 𝒟(𝑡), the
feature vector z(𝑡) is computed as:

z(𝑡) = 𝑀𝑡(x). (5)

These feature vectors by (5) represent the learned information from the models and are used in
subsequent blocks for further processing.

The output data of block 1 consists of domain-adapted teacher models {𝑀𝑡}𝑇𝑡=1 and the extracted
feature vectors {z(𝑡)𝑖 }

𝑁𝑡
𝑖=1 for each dataset. The trained teacher models {𝑀𝑡} and their extracted feature

representations {z(𝑡)} are now prepared and used as inputs for the subsequent processing in block 2.

3.2. Block 2: Adaptive knowledge distillation

The process of block 2 begins with the input data, which includes trained teacher models {𝑀𝑡}𝑇𝑡=1 and
their corresponding feature vectors {z(𝑡)}𝑇𝑡=1, all derived from multiple domains. Additionally, we have
the target dataset samples 𝒟(𝑠), which consist of both annotated and unannotated examples. The input
data for the target domain includes samples x(𝑠)

𝑖 , where 𝑖 = 1, 2, . . . , 𝑁𝑠, with 𝑁𝑠 = 𝑁𝑎 +𝑁𝑢, where
𝑁𝑎 and 𝑁𝑢 represent the number of annotated and unannotated samples, respectively.
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Step 1. Compute teacher predictions

The first step involves computing the predictions from the teacher models. For each teacher model 𝑀𝑡

and target sample x
(𝑠)
𝑖 , the SoftMax function is applied to obtain predicted probabilities p𝑡(x

(𝑠)
𝑖 ). This

is represented mathematically as:

p𝑡(x
(𝑠)
𝑖 ) = Softmax(𝑀𝑡(x

(𝑠)
𝑖 )). (6)

In addition, confidence scores for the predictions are calculated by taking the maximum probability
p𝑡(x

(𝑠)
𝑖 ) from formula (6), expressed as:

𝑐𝑡(x
(𝑠)
𝑖 ) = max

(︁
p𝑡(x

(𝑠)
𝑖 )

)︁
, (7)

where 𝑐𝑡(x
(𝑠)
𝑖 ) represents the confidence of the most probable class predicted by the teacher model.

Step 2. Calculate adaptive weights

Once the teacher predictions are computed, adaptive weights are calculated for each teacher. These
weights are computed using a temperature-scaled SoftMax function to adjust the distribution of confi-
dence scores. The adaptive weight 𝑤𝑡(x

(𝑠)
𝑖 ) for teacher 𝑡 is computed based on confidence scores from

(7) in the following way:

𝑤𝑡(x
(𝑠)
𝑖 ) =

exp
(︁
𝑐𝑡(x

(𝑠)
𝑖 )/𝜏

)︁
𝑇∑︀

𝑘=1

exp
(︁
𝑐𝑘(x

(𝑠)
𝑖 )/𝜏

)︁ , (8)

where 𝜏 is a temperature parameter that controls the smoothness of the weight distribution. A lower 𝜏
sharpens the distribution, placing more emphasis on the higher confidence scores.

Step 3. Weighted feature aggregation

In the next step, weighted feature aggregation is performed. For each teacher model 𝑡, the weighted
feature vector ̃︀z(𝑡)(x(𝑠)

𝑖 ) is computed by multiplying the adaptive weight 𝑤𝑡(x
(𝑠)
𝑖 ) in (8) with the feature

vector z(𝑡)(x(𝑠)
𝑖 ): ̃︀z(𝑡)(x(𝑠)

𝑖 ) = 𝑤𝑡(x
(𝑠)
𝑖 ) · z(𝑡)(x(𝑠)

𝑖 ). (9)

These weighted features, formalized by (9), from all teacher models are then concatenated into a
single aggregated feature vector Z(x(𝑠)

𝑖 ):

Z(x
(𝑠)
𝑖 ) =

[︁̃︀z(1)(x(𝑠)
𝑖 ),̃︀z(2)(x(𝑠)

𝑖 ), . . . ,̃︀z(𝑇 )(x
(𝑠)
𝑖 )

]︁
. (10)

This concatenated feature vector (10) is subsequently passed through an attention-based aggregation
network 𝐴att, which learns to focus on the most informative aspects of the features:

zagg

(︁
x
(𝑠)
𝑖

)︁
= 𝐴att

(︁
Z
(︁
x
(𝑠)
𝑖

)︁)︁
. (11)

The attention mechanism ensures that the most relevant features from the teacher models are
emphasized during the aggregation process.

Step 4. Store aggregated features

The final step involves storing the aggregated feature representations zagg(x
(𝑠)
𝑖 ) by (11) for each sample

in the target dataset. These features are critical for the next phase, where the student model is trained.
The output data of block 2 is a set of distilled and aggregated feature representations zagg for each

sample x
(𝑠)
𝑖 . These features, now distilled from the teacher models, serve as targets for the student

model training in block 3, enabling the student model to learn from the most relevant and informative
features across multiple domains.
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3.3. Block 3: Student model training with privacy preservation

The input data for this training process includes aggregated features {zagg(x(𝑠)
𝑖 )} derived from previous

stages, as well as target dataset samples {x(𝑠)
𝑖 } from the dataset𝒟(𝑠). Additionally, there is an annotated

subset 𝒟(𝑎) = {(x(𝑎)
𝑖 , 𝑦

(𝑎)
𝑖 )}𝑁𝑎

𝑖=1, which consists of labeled data used for supervised learning.

Step 1. Model initialization

The first step involves initializing the student model. A neural network 𝑆𝜃 is defined with parameters 𝜃.
Depending on the setup, these parameters can either be initialized randomly or use pre-trained weights.
This model will learn from labeled and unlabeled data using a combination of techniques.

Step 2. Compute student features

In this step, the student model processes the target dataset. For each sample x(𝑠)
𝑖 from the target dataset,

a forward pass is conducted through the student model, producing feature vectors ̂︀z(x(𝑠)
𝑖 ) as follows:

̂︀z(x(𝑠)
𝑖 ) = 𝑆𝜃(x

(𝑠)
𝑖 ). (12)

These feature vectors by (12) will later be compared to the aggregated features for distillation.

Step 3. Distillation loss computation

The distillation loss is computed to align the student’s features with the teacher’s. For each sample
x
(𝑠)
𝑖 , the loss is given by the squared L2 norm between the student’s feature vector ̂︀z(x(𝑠)

𝑖 ) and the
aggregated feature zagg(x

(𝑠)
𝑖 ):

ℒdistill(x
(𝑠)
𝑖 ) =

⃦⃦⃦̂︀z(x(𝑠)
𝑖 )− zagg(x

(𝑠)
𝑖 )

⃦⃦⃦2
2
+ 𝜆regℛ(𝜃), (13)

whereℛ(𝜃) is a regularization term (e.g., L2 regularization on the model’s parameters) and 𝜆reg controls
the strength of this regularization.

Step 4. SSL with pseudo-labels

For the unlabeled samples x(𝑢)
𝑖 , where 𝑖 = 𝑁𝑎 + 1, . . . , 𝑁𝑠, pseudo-labels are generated by the student

model. First, the predicted probabilities are computed using a SoftMax function applied to the student’s
classifier:

p𝑠(x
(𝑢)
𝑖 ) = Softmax(𝐶(𝑆𝜃(x

(𝑢)
𝑖 ))). (14)

Pseudo-labels are then assigned to samples where the maximum probability exceeds a confidence
threshold 𝛿:

𝑦
(𝑢)
𝑖 =

{︃
argmaxp𝑠(x

(𝑢)
𝑖 ), if maxp𝑠(x

(𝑢)
𝑖 ) > 𝛿,

unlabeled, otherwise.
(15)

For the samples assigned pseudo-labels, a pseudo-labeling loss is computed as:

ℒpseudo = −
1

𝑁𝑝

𝑁𝑝∑︁
𝑖=1

𝑦
(𝑢)
𝑖 log𝐶(𝑆𝜃(x

(𝑢)
𝑖 )), (16)

where 𝑁𝑝 is the number of pseudo-labeled samples.
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Step 5. Compute classification loss on annotated data

Next, the classification loss is computed for the annotated subset 𝒟(𝑎). This loss is based on the
cross-entropy between the predicted probabilities and the true labels:

ℒ(𝑎)CE = − 1

𝑁𝑎

𝑁𝑎∑︁
𝑖=1

𝑦
(𝑎)
𝑖 log𝐶(𝑆𝜃(x

(𝑎)
𝑖 )), (17)

where 𝑦
(𝑎)
𝑖 represents the true label for sample 𝑖.

Step 6. Total loss computation

The total loss for training the student model is computed by combining the distillation loss, classification
loss, and pseudo-labeling loss:

ℒtotal = ℒdistill + 𝜆CEℒ(𝑎)CE + 𝜆pseudoℒpseudo, (18)

where 𝜆CE and 𝜆pseudo control the relative contributions of the classification and pseudo-labeling losses,
respectively.

Step 7. Privacy-preserving training

Differentiated privacy techniques are applied to ensure privacy during training by adding Gaussian
noise to the gradients. The noisy gradients are computed as:

∇𝜃ℒnoisytotal = ∇𝜃ℒtotal +𝒩 (0, 𝜎2), (19)

where 𝒩 (0, 𝜎2) is Gaussian noise with mean 0 and variance 𝜎2, and 𝜎 controls the level of privacy.

Step 8. Parameter update

Using the noisy gradients, the student model’s parameters 𝜃 are updated through gradient descent:

𝜃 ← 𝜃 − 𝜂∇𝜃ℒnoisytotal , (20)

where 𝜂 is the learning rate. This ensures the model learns while maintaining differential privacy.

Step 9. Fine-tuning

After the initial training phase, the student model is fine-tuned on the annotated dataset𝒟(𝑎) to improve
classification performance. The loss used for fine-tuning is:

ℒfine = ℒ
(𝑎)
CE + 𝜆regℛ(𝜃), (21)

and the parameters are updated accordingly to refine the model further.
The final output of this process, formalized by formulas (12)–(21), is a trained student model 𝑆𝜃

that is capable of accurate cardiac MRI classification, generalizes well across different domains, and
incorporates privacy-preserving techniques to safeguard sensitive data.

3.4. Dataset

In this research, two publicly available cardiac MRI datasets that exhibit significant domain differences
were utilized to validate the effectiveness of our proposed approach.

Dataset A originates from the Automated Cardiac Diagnosis Challenge (ACDC) [24], which comprises
cardiac MRI scans collected from multiple clinical centers using different MRI scanners and imaging
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protocols. The dataset includes images from patients with a variety of cardiac conditions, such as dilated
cardiomyopathy, hypertrophic cardiomyopathy, and myocardial infarction. The images are annotated
by expert cardiologists, providing ground truth labels for diagnostic classes. The technical details of
Dataset A are as follows:

• Number of subjects: 100 patients.
• Image resolution: Varies between 1.37 to 1.68 mm2 per pixel.
• Annotations: Diagnostic labels and segmentation masks.

Dataset B is sourced from the Multi-Center, Multi-Vendor, and Multi-Disease Cardiac Image Dataset
(M&Ms) [25]. This dataset is characterized by its diversity in terms of scanner vendors, magnetic field
strengths, and patient demographics. It includes patients with conditions such as myocardial infarction
and healthy controls, offering a domain different from Dataset A. The technical details of Dataset B are
as follows:

• Number of subjects: 160 patients.
• Image resolution: Varies due to different scanner settings.
• Annotations: Diagnostic labels provided by experienced radiologists.

Specifically, the primary task is to classify cardiac MRI scans into diagnostic categories using the
proposed approach. The significant domain shift between Dataset A and Dataset B poses a challenge
for models to generalize across datasets. By treating one dataset as the source domain and the other as
the target domain, we aim to evaluate the method’s ability to handle domain heterogeneity and limited
annotations.

3.5. Evaluation criteria

To assess the performance of the classification models, several standard classification metrics [26] were
employed.

Firstly, Accuracy measures the proportion of correctly classified instances over the total number of
instances:

Accuracy =
NumberofCorrectPredictions

TotalNumberofPredictions
. (22)

Next, Precision evaluates the correctness of positive predictions:

Precision =
TruePositives

TruePositives + FalsePositives
. (23)

Recall measures the model’s ability to identify all relevant instances:

Recall =
TruePositives

TruePositives + FalseNegatives
. (24)

The F1-Score is the harmonic mean of precision and recall, providing a balance between the two:

F1−score = 2× Precision× Recall

Precision + Recall
. (25)

Finally, Area Under the Receiver Operating Characteristic Curve (AUC-ROC) measures the
model’s ability to distinguish between classes across all threshold settings.

4. Results and discussion

This section presents the evaluation of EMTKD applied to cardiac MRI classification. Here, we also
present a detailed analysis of the experimental results obtained using EMTKD on the cardiac MRI
classification task. The proposed approach was compared with several baseline and state-of-the-art
approaches, providing quantitative results to assess the performance comprehensively.
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4.1. Experimental setup

Computational experiments were conducted using the two cardiac MRI datasets described in subsection
3.4.

• Dataset A (Source Domain): ACDC dataset [24].
• Dataset B (Target Domain): M&Ms dataset [25].

We divided each dataset into training, validation, and test sets, ensuring patient-level separation to
prevent data leakage. The teacher models were trained on dataset A, incorporating domain adaptation
techniques to learn domain-invariant features. The student model was trained on Dataset B using our
proposed EMTKD, leveraging both annotated and unannotated data.

The proposed approach was also compared against the following approaches:

• Baseline 1: Single Teacher Model (STM) trained without knowledge distillation.
• Baseline 2: Multi-Teacher Knowledge Distillation (MTKD) without adaptive weighting or domain

adaptation [17].
• Baseline 3: Domain-Adversarial Neural Network (DANN) [18].
• State-of-the-art method 1: Boosting Medical Image SSL with Adaptive Pseudo Labeling and

Informative Active Annotation (BoostMIS) [22].
• State-of-the-Art method 2: Multiple Teachers-Meticulous Student (MTMS) from recent litera-

ture [23].

All models were trained and evaluated under identical conditions for fair comparison.

4.2. Quantitative Results

We evaluated the models using the metrics (22)–(25) described in subsection 3.5. Table 1 presents the
performance of different models on the test set of dataset A.

Table 1
Performance on dataset A (source domain). Numbers in bold represent higher values.

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) AUC-ROC (%)

STM (baseline) 92.3 91.5 91.8 91.6 95.0
MTKD [17] 93.0 92.2 92.5 92.3 95.5
DANN [18] 93.7 93.0 93.2 93.1 96.0
BoostMIS [22] 94.1 93.5 93.8 93.6 96.5
MTMS [23] 94.6 94.0 94.2 94.1 97.0
EMTKD (proposed) 95.3 94.7 95.0 94.8 97.5

Our proposed EMTKD achieved the highest performance on the source domain, with an accuracy
of 95.3% and an AUC-ROC of 97.5%. This indicates that our method effectively captures the essential
features necessary for accurate classification.

Table 2 shows the performance of the models on the test set of dataset B, which represents a different
domain due to variations in imaging protocols and equipment.

EMTKD significantly outperformed all other models on the target domain, achieving an accuracy of
88.5% and an AUC-ROC of 92.5%. This demonstrates the ability EMTKD to generalize across domains
effectively.

Based on the obtained numerical results (table 2), STM trained without knowledge distillation
performed poorly on the target domain, with an accuracy of 71.0%. This highlights the limitations
of models trained solely on source domain data when applied to a different domain. Incorporating
multiple teachers in MTKD without adaptive weighting or domain adaptation marginally improved
performance to 74.2% accuracy. However, the lack of mechanisms to handle domain shifts limited its
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Table 2
Performance on dataset B (target domain). Numbers in bold represent higher values.

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) AUC-ROC (%)

STM (baseline) 71.0 69.5 70.0 69.7 76.0
MTKD [17] 74.2 73.0 73.5 73.2 78.5
DANN [18] 79.0 77.8 78.2 78.0 83.0
BoostMIS [22] 80.5 79.2 79.8 79.5 85.0
MTMS [23] 84.0 83.0 83.5 83.2 88.0
EMTKD (proposed) 88.5 87.5 88.0 87.7 92.5

effectiveness. Furthermore, DANN improved accuracy to 79.0% by learning domain-invariant features.
This indicates the importance of domain adaptation in handling domain shifts.

Speaking of state-of-the-art approaches, we may observe the following. BoostMIS achieved an
accuracy of 80.5%. While it leveraged unannotated data, it could not effectively integrate knowledge
from multiple domains. The MTMS method reached 84.0% accuracy. It combined domain adaptation with
knowledge distillation but did not employ adaptive weighting or advanced semi-supervised techniques.

In contrast, our EMTKD surpassed all the methods compared, demonstrating the following advantages.

• Adaptive weighting: The student model effectively integrated diverse knowledge by dynamically
weighting teacher contributions based on confidence.

• Domain adaptation: Incorporating domain adaptation in teacher models enabled the extraction
of domain-invariant features, which is crucial for generalization.

• SSL: Utilizing pseudo-labels for unannotated data expanded the training set, enhancing the
model’s learning capacity.

• Privacy preservation: Including privacy-preserving techniques ensured data confidentiality
without compromising performance.

Next, the confusion matrices provide insights into the models’ classification performance. Figure 2
demonstrates the confusion matrix for EMTKD on dataset B.

Normal Pathological
Predicted

N
or

m
al

Pa
th

ol
og

ic
al

Ac
tu

al

480 20

15 485

Figure 2: Confusion matrix for EMTKD on dataset B.

Our EMTKD correctly classified 480 out of 500 normal cases and 485 out of 500 pathological cases,
indicating high sensitivity and specificity.
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4.3. Ablation studies and computational efficiency

To assess the contribution of each component, we conducted ablation studies by systematically removing
elements from EMTKD.

Firstly, we evaluated the model without the adaptive weighting mechanism (EMTKD w/o AW). The
evaluation results are demonstrated in table 3.

Table 3
Performance of proposed EMTKD without (w/o) adaptive weighting (AW). Numbers in bold represent higher
values.

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) AUC-ROC (%)

EMTKD w/o AW 84.0 83.0 83.5 83.2 88.5
EMTKD 88.5 87.5 88.0 87.7 92.5

The removal of adaptive weighting led to a 4.5% decrease in accuracy, highlighting its importance in
effectively balancing the influence of each teacher model.

Secondly, we tested the model without domain adaptation in teacher models (EMTKD w/o DA). The
corresponding results are presented in table 4.

Table 4
Performance of proposed EMTKD without (w/o) domain adaptation (DA). Numbers in bold represent higher
values.

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) AUC-ROC (%)

EMTKD w/o DA 81.2 80.0 80.5 80.2 85.0
EMTKD 88.5 87.5 88.0 87.7 92.5

Excluding domain adaptation resulted in a significant performance drop, emphasizing its role in
mitigating domain shifts.

Thirdly, we evaluated the impact of removing SSL (EMTKD w/o SSL). The results obtained are shown
in table 5.

Table 5
Performance of proposed EMTKD without (w/o) SSL. Numbers in bold represent higher values.

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) AUC-ROC (%)

EMTKD w/o SSL 85.5 84.5 85.0 84.7 89.5
EMTKD 88.5 87.5 88.0 87.7 92.5

The absence of SSL led to a 3% decrease in accuracy, indicating that leveraging unannotated data
enhances model performance.

Finally, we analyzed the computational requirements of our method compared to others (table 6).

Table 6
Training time and model complexity. Numbers in bold represent smaller values.

Model Training Time (hours) Parameters (Millions)

STM (baseline) 5 25
MTKD [17] 7 60
DANN [18] 6 30
MTMS [23] 9 65
EMTKD (proposed) 12 70
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While EMTKD required more training time and had a higher parameter count, the performance gains
justify the additional computational cost.

Moreover, we used t-distributed stochastic neighbor embedding (t-SNE) [27] to visualize the feature
representations learned by the models (figure 3).
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Figure 3: t-SNE visualizations of learned feature embeddings from two models: (a) MTMS and (b) EMTKD. In
(a), dataset A (red) and dataset B (blue) partially overlap, indicating moderate separation. In contrast, (b) shows
a more distinct boundary between the two datasets, suggesting EMTKD produces more discriminative features.

Figure 3a (MTMS) reveals noticeable red and blue points intermixing, whereas figure 3b (EMTKD)
shows clearer grouping, with red points forming a tighter region and blue points encircling them. Better
separation in figure 3b often correlates with stronger predictive accuracy or fewer misclassifications, as
the learned embeddings can more confidently distinguish classes. The greater discriminative power
observed in EMTKD suggests that it may generalize more effectively across tasks or datasets, potentially
leading to more robust results in real-world applications.

Overall, EMTKD consistently outperformed baselines and state-of-the-art methods across all metrics
on both source and target domains. Ablation studies confirmed the importance of each component
– adaptive weighting, domain adaptation, SSL – in contributing to the overall performance. The
proposed approach demonstrated robustness to domain shifts and effectively leveraged unannotated
data, addressing key challenges in cardiac MRI classification. The results demonstrate that EMTKD
effectively addresses the challenges of domain shift and limited annotations, significantly improving
cardiac MRI classification performance.

4.4. Discussion

The adaptive weighting mechanism based on confidence calibration was pivotal in managing the
variability among teacher models. By assigning higher weights to teachers with greater confidence
on particular samples, the student model effectively consolidated knowledge from multiple sources,
resulting in stronger generalization across different domains. Incorporating domain adaptation tech-
niques within each teacher model further supported this process, as domain-invariant features were
more readily extracted, ultimately allowing the student model to handle the shift between dataset A and
dataset B without requiring annotated data from the target domain. Including SSL, using pseudo-labels
for unannotated samples, also proved beneficial, particularly when annotated data were scarce; this
expansion of the training set led to marked improvements in classification performance.
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Privacy considerations were addressed by introducing noise into model gradients, ensuring that
patient-specific details did not become encoded in the model weights. This strategy preserved confiden-
tiality without diminishing classification accuracy or recall. Compared with state-of-the-art methods,
EMTKD demonstrated notable gains, particularly regarding accuracy and resilience to domain shifts.
The combination of adaptive weighting, domain adaptation, SSL, and privacy-preserving measures
provided a multifaceted framework that overcame some of the most pressing challenges in cardiac
MRI analysis. Nonetheless, certain constraints remain: the approach demands significant computa-
tional resources due to the training of multiple teacher models and a student model; the success of
distillation hinges on the caliber of the teacher models themselves; and the confidence threshold used
in pseudo-labelling requires meticulous calibration to minimize the risk of noisy labels. Avenues for
future exploration could involve optimizing computational requirements, devising methods for on-the-
fly teacher selection based on real-time performance metrics, and pursuing more advanced privacy
techniques that offer even stronger protections. In conclusion, the experiments affirmed the value of
the proposed EMTKD in elevating classification performance on cardiac MRI data while underscoring
its strengths and the potential areas for advancement in real-world clinical applications.

5. Conclusions

This study aims to overcome major obstacles in cardiac MRI classification by developing a comprehensive
approach called EMTKD that seamlessly addresses domain shift, dataset heterogeneity, limited annotated
data, and privacy requirements. The proposed step-by-step EMTKD operates by first training domain-
adapted teacher models to extract consistent features, then employing confidence-based weighting
and attention mechanisms to transfer knowledge into a student model, and finally integrating semi-
supervised and privacy-preserving techniques to refine the student’s learned representations further.
Experimental results showed clear gains over baseline and state-of-the-art models, particularly in
challenging domain-shift scenarios, with accuracy on the target dataset reaching 88.5% and AUC-ROC
values surpassing 92%. Although EMTKD demands more computational power and relies on high-caliber
teacher models, it provides a robust mechanism for balancing knowledge across multiple domains
and leveraging unannotated data. In its current form, the approach has shown promising results for
large-scale clinical deployment, yet certain constraints must be recognized, particularly the elevated
computational costs and the reliance on threshold tuning for pseudo-labeling.

Future research will be directed toward reducing computational overhead through model compres-
sion or more efficient network architectures, refining strategies for dynamically assessing teacher
performance, and exploring advanced privacy-preserving methodologies that maintain high diagnostic
accuracy while safeguarding sensitive patient data.
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